Instabilities Susan Lea January 2007 1 Two-stream instability 1.1 Dispersion relation This instability occurs when the electrons and ions have a relative velocity. Working in the frame moving with the ions, we have: Ions: n = n0 + ni; ~v = ~v i; (~v0 ´ 0 for the ions.) Electrons: n = n0 + ne ; ~v = ~v 0 + ~ve ~ 0 = 0, and we look for an electrostatic perturThere is no magnetic ¤eld, B ~ bation so B1 = 0 too. Then the equations of motion are: ions: and electrons: Poissonzs equation: Continuity: mn0 M n0 · @~vi ~ = en0 E @t ´ ¸ @~ve ³ ~ ~ + ~v0 ¢ r ~v e = ¡en0E @t (1) (2) ~ ¢E ~ = e (ni ¡ ne) r "0 (3) @ni ~ + r ¢ (n0~vi ) = 0 @t (4) for ions, and @ne ~ ¢ ([n0 + ne ] [~v 0 + ~v e]) = 0 +r (5) @t for electrons. Linearizing, and using the usual wave form for the perturbed quantities, we have: Eqn (1) ~ ¡i!M n0~vi = en0 E (6) Eqn (2) ³ ´ ~ ¡imn0 ~v e ! ¡ ~k ¢ ~v 0 = ¡en0 E 1 (7) Eqn (3) ~ = e (ni ¡ ne ) i~k ¢ E "0 (8) ¡i!ni + in0~k ¢ ~vi = 0 (9) ¡i!ne + i~k ¢ (n0~ve + ne~v0 ) = 0 (10) Eqn (4) and eqn (5) Solving for the densities, we have from (9): ~k ¢ ~vi ! (11) ~k ¢ ~ve ! ¡ ~k ¢ ~v0 (12) ni = n0 while from (10) ne = n0 The denominator here indicates the doppler-shifted frequency in the electron rest frame. Then from Poissonzs equation (8): à ! ~k ¢ ~v e en0 ~k ¢ ~v i ~ ~ ik ¢ E = ¡ "0 ! ! ¡ ~k ¢ ~v0 Finally we use the equations of motion (6) and (7): 0 1 ~ ~ ~ ~ k ¢ eE k ¢ eE C ~ = en0 B i~k ¢ E ¡ @ ³ ´2 A "0 ¡i! 2 M im ! ¡ ~k ¢ ~v0 ~ to be non zero in an electrostatic wave, we divide it out Since we expect ~k ¢ E to get the dispersion relation: 2 3 6 m 1 = ! 2pe 4 +³ M !2 1.2 1 ! ¡ ~k ¢ ~v0 7 ´2 5 (13) Growth rate Letzs try to ¤nd the growth rate for the 2-stream instability. The dispersion relation (13) is a fourth order equation for !: ³ ´2 ³ ´2 ! 2 ! ¡ ~k ¢ ~v0 = ! 2 !2pe + ! ¡ ~k ¢ ~v0 ! 2pi If ~k ¢ ~v0 = 0; we get !2 = ! 2pe + !2pi with no imaginary part to !: These are just plasma oscillations. Thus the interesting case is propagation parallel to 2 ~ ¢ ~v 0 = kv 0: Calling the right hand side of equation (13) F (!); we the stream: k see that F ¡! 0 as ! ¡! §1; and F ¡! 1 as ! ¡! 0 or kv0 : Thus there is a minimum at point A where 0 < ! < kv0 : If this minimum is less than 1, then there will be 4 real roots, implying that the system is stable. But if the minimum is greater than 1, there will be only 2 real roots, and two complex roots (a complex conjugate pair). One of these complex roots corresponds to growth, and one to damping. Thus the condition for instability is: (14) F (! A) > 1 8 6 y 4 2 -1 0 1 2 p w/kv Plot shows F (!) with kv 0 = ! p = 2 and m=M = 0:1 First we ¤nd the position of the minimum. 0 dF B m=M = !2p @¡2 3 ¡ ³ d! ! Set this equal to zero: ¡2 m=M ¡³ !3 3 4 5 1 2 C ´3 A ~ ! ¡ k ¢ ~v 0 ³ m ´1=3 ³ m ´1=3 ! ´ = ¡ =¡ ´3 = 0 =) ³ M M ! ¡ ~k ¢ ~v 0 ! ¡ ~k ¢ ~v0 2 where we have taken the real cube root. This gives: ! A = kv0 and ! A ¡ kv0 = kv 0 ³ m ´1=3 µ M 1+ à ¡ ¢1=3 m M 1+ ³ m ´1=3 ¶¡ 1 ¡ m ¢1=3 ¡ 1 M 3 (15) M ! = 1+ kv0 ¡ m ¢1=3 M Then F (! A) 0 B = ! 2p @ = = ³ ¡ m ¢1=3 ´2 (m=M ) 1 + M (kv0 )2 (m=M )2=3 + ³ 1 ¡ m ¢1=3´2 M C A (kv0 )2 1+ ³ m ´1=3 ¶2 µ ³ m ´1=3 ¶ 1+ 1+ 2 M M (kv0 ) µ ¶ ³ m ´1=3 3 ! 2pe 1+ 2 M (kv0 ) !2p µ (16) Thus instability should occur for: ³ ´3=2 kv0 · ! pe 1 + (m=M )1=3 (17) For a given v 0; this relation gives the maximum k (minimum ¸) for instability. Small enough k (long enough ¸) are always unstable. Equivalently, for a given v 0 and a given k; it gives a minimum density (in ! pe ): Another way to look at this is that electron plasma oscillations, Doppler shifted to the ion frame, resonate with the ion plasma oscillations. Now rewrite the dispersion relation (13): ! 2pi !2 Rearrange: +³ ! 2pe ! ¡ ~k ¢ ~v 0 ³ ´2 ! ¡ ~k ¢ ~v 0 = ! 2pe à ´2 = 1 ! 2pi 1¡ 2 ! !¡ 1 We expect to ¤nd that the real part of the frequency is roughly comparable to ! pe À ! pi (we can check this later) so we approximate: à ! ³ ´ ! 2pi ~ ! ¡ k ¢ ~v0 = §! pe 1 + (18) 2! 2 where the terms match up as follows: ~k ¢ ~v0 ' §! pe and ! 30 ' § so !0 = !pe !2pi 2 !pe ³ m ´2=3 ! pe ³ m ´2=3 §i¼ =3 ; and ! = e 0 2 1=3 M 2 1=3 M 4 The last two roots form a complex conjugate pair: p ´ ! pe ³ m ´2=3 1 ³ ! 0 = 1=3 1§ i 3 2 M 2 and one of these roots represents growth at rate p ! pe ³ m ´2=3 3 ° = 1=3 M 2 2 Check: µ ¶1=3 µ ¶ 1=3 !0 ! pe M ' = ' 12 À 1 !pi !pi m so our approximation is valid. 2 Rayleigh Taylor Instability 2.1 Drift Analysis ~ The magConsider a plasma supported against gravity by a magnetic ¤eld B: 2 netic ¤eld acts like a }light ¢uid} of density » ¹0 B supporting the }heavy} plasma. The system is unstable to overturning, putting the heavy ¢uid on the bottom. The gravitational drift (motion notes eqn 7) is ~vDg = ~ m ~g £ B m (¡g^ y ) £ B z^ m g^ x = =¡ 2 2 q B q B q B (19) So electrons go in the plus x¡direction, and protons go in the ¡x¡direction. Thus we get a charge separation as shown in the ¤gure, which, in turn, produces an electric ¤eld in the x¡direction. 5 ~ £B ~ drift Now the E ~vE = ~ £B ~ E B2 (20) ~ is in the x¡direction, ~v E is is the same for both protons and electrons. Since E in the direction of x^ £ z^ = ¡^y : Thus the perturbation continues to grow. Let the perturbation be of the form 4y = a sin kx (21) where the amplitude a is intially small (a ¿ ¸). Since the gravitational drift speed is proportional to m; we neglect the electrons. The equation of charge continuity is: @½q ~ ¢ ~j = 0 +r (22) @t Thus at the boundary, the surface charge density ¾ grows because the current density brings charge to the surface. Integrate over a pillbox crossing the surface, as usual: Z I @½q dV = ¡ n ^ ¢ ~jdA @t Thus @¾ = ¡^ n ¢ ~j @t (23) where ^n is the inward (upward here) pointing normal. The surface has slope @y = ka cos kx = tan µ @x and thus a vector tangent to the surface has components: 0 1 1 ka cos kx A ^t = (cos µ; sin µ) = @ q ;q 2 1 + (ka cos kx) 1 + (ka cos kx)2 and thus the normal we want has components: 0 1 ¡ka cos kx 1 A n ^ = @q ;q 2 2 1 + (ka cos kx) 1 + (ka cos kx) For small amplitude perturbations, ka ¿ 1; we may approximate: n ^ ¼ (¡ka cos kx; 1) Then, with ~vDg in the x¡direction, ~j = n0 e~v i = ¡n0 M g x^ B 6 (24) and equation (23) becomes @¾ g g = ¡n0 M ka cos kx = ¡n0 M ka cos kx @t B B (25) So we may write ¾ = ¾ 0 cos kx where d¾ 0 g = ¡n0 M ka (26) dt B Now recall the dielectric constant for low frequency motions in a magnetized plasma (Chen equation 3-28, ¢uids notes eqn 1) µ ¶ ¹ ½c2 ¹ ½c2 " = 1+ 0 2 " 0 ¼ 0 2 "0 À "0 B B We use this with Poissonzs equation: ~ ¢ "E ~ =½ r Integrating across the boundary, we have: ~ ¢n ~V ¢ n ~ ¢n "E ^ ¡ "0E ^ ' "E ^=¾ ~ V on the vacuum side is unimportant since " À "0 : Thus. where the ¤eld E ~ ¢ ^n = ¾ 0 cos kx = Ex nx + E y ny ¼ E y E " (27) ~ With our usual assumed form for perturbations, ei(k¢~x¡ !t) ; and uniform density away from the boundary, the electric potential satis¤es Laplacezs equation: r2 © = 0 =) k 2 © = 0 =) kx2 + ky2 = 0 =) ky = §ikx Thus Ey = and ¾ 0 cos kx ¡ ky e " (28) (29) ¾ 0 sin kx ¡ky e (30) " ¡ ¢ = ¾"0 k cos kxe ¡ky + (¡k) cos kxe¡ky = 0 as Ex = ~ ¢E ~ = @E x + @E y (Check : r @x @y required) ~ £B ~ drift moves the boundary, so: Now the y¡component of the E @ Ex ¾ 0 sin kx da 4y = vEy (y = 0) = ¡ =¡ = sin kx @t B "B dt 7 (31) where we used equation (21) in the last step. Thus, di¤erentiatinbg wrt t and using equation 26, we get d2 a dt2 = = 1 d¾ 0 1 ³ g ´ 1 =¡ ¡n0 M ka = n0M gka "B dt "B B "B 2 1 1 n0 M gka = n0 M gka = gka ¹ 0½c 2 2 "0 ¹0 ½c2 2 "0 B ¡ (32) B p This is the exponential equation with solutions e §°t and ° = gk: The positive root indicates growth of the perturbation. Note that any drift that has a similar e¤ect to the gravitaional drift (e.g. curvature drift) would cause a similar instability. 2.2 Normal mode analysis We can get the same result by several di¤erent methods. Next we consider a somewhat more powerful method that allows to consider an equilibrium state that is non-uniform. Consider a plasma at rest in the lab, supported by a magnetic ¤eld. We ~ 0 = B0 (y)^z: First we investigate choose coordinates such that ~g = ¡g^ y and B the initial equilibrium. From the momentum equation: ³ ´ ³ ´ ~ P0 + ¹0 B02 = ½0~g + ¹0 B ~0 ¢ r ~ B ~ 0 = ½0~g r (33) 2 ~ 0 is not a function of z in this case. We also have Maxwellzs equation since B ~ ~ ~ 0 : Finally, r¢B = 0; which is automatically satis¤ed by our assumed form for B we choose ~v0 = 0: Since ~g is in the ¡y direction, equation 33 may be written as: ´ @ ³ ¹ P 0 + 0 B02 = ¡½0 g (34) @y 2 Next we perturb and linearize. : Momentum equation: ³ ´ ³ ´ ³ ´ @~v 1 ~ 1 ¡ ¹0 r ~ B ~0 ¢ B ~ 1 + ¹0 B ~0 ¢ r ~ B ~ 1 +¹0 B ~1 ¢ r ~ B ~ 0 + ½1~g (35) ½0 = ¡rP @t Maxwell equation: ~ ¢B ~1 = 0 r (36) @½1 ~ (½ ~v 1 ) = 0 +r 0 @t (37) Continuity equation: Equation of state: 1 @ =) ° P1 + p 0 ½0 @t à d dt µ P ½° ° ¶ @½ ¡ °+1 1 @t ½0 8 =0 ! ³ ´µ P ¶ ~ + ~v1 ¢ r =0 ½° (38) Magnetic ¤eld evolution: ´ ³ ´ ³ ´ ~1 ³ @B ~ B ~0 + B ~0 r ~ ¢ ~v 1 ¡ B ~0 ¢ r ~ ~v1 = 0 + ~v1 ¢ r @t (39) ¡i!½0 vx = ¡ikx P1 ¡ ikx ¹0 B0 Bz (40) Now letzs look at these equations component by component. Since the equilibrium state has gradients in the y¡direction, then.we assume all perturbations are of the form s 1 (y)ei(kx¡!t) ; with no z¡dependence. The momentum equation has three components: ¡i!½0 v y = ¡ @P 1 @ ¡ ¹0 (B0 Bz ) ¡ ½1 g @y @y ¡i!½0 vz = ¹0 By @B0 @y (41) (42) ~ 1: Maxwell equation for B ikxBx + @By =0 @y (43) Continuity equation: ~ ¢ ~v1 + v y @½0 = 0 ¡i!½1 + ½0 r @y (44) Equation of state: i! i!° @ ¡ ° P1 + °+1 P0 ½1 + v y ½0 @y ½0 µ P0 ° ½0 ¶ =0 (45) Expand out the last term, and multiply by ½°0 : ¡i!P1 + i!° P0 @P 0 P0 @½0 ½ + vy ¡ °v y =0 ½0 1 @y ½0 @y (46) Magnetic ¤eld evolution (3 components) ¡i!Bx : = 0 (47) ¡i!By = 0 ´ @B0 ³ ~ ¡i!Bz + vy + r ¢ ~v 1 B0 = 0 @y (48) So Bx = By = 0: Thus the ¤eld lines do not bend. P 1 ; and Bz : From (44) µ ¶ 1 @½0 ~ ½1 = ½0 r ¢ ~v 1 + vy i! @y 9 (49) Now we solve for ½1 ; (50) From (46) and (50) µ ¶ µ ¶ P0 1 @½0 1 @P0 P 0 @½0 ~ P1 = ° ½0 r ¢ ~v1 + v y + vy ¡ °vy ½0 i! @y i! @y ½0 @y µ ¶ 1 @P ~ ¢ ~v1 + v y 0 = °p0 r i! @y From (49) Bz = · ´ ¸ 1 @B0 ³ ~ vy + r ¢ ~v1 B0 = 0 i! @y (51) (52) Notice that these three expressions have very similar forms. Now we put these expressions into the momentum equation components and solve for the components of ~v : µ ´ ¶¶ @p 0 @B0 ³ ~ + ¹0 B0 vy + r ¢ ~v 1 B0 @y @y µ µ ¶¶ ¡ ¢ i ~ ¢ ~v 1 + vy @p 0 + ¹ B0 @B0 = ¡ 2 kx °p0 + ¹0 B02 r (53) 0 ! ½0 @y @y vx = 1 !½0 µ kx i! ¶µ ~ ¢ ~v 1 + v y °p 0 r From the intial equilibrium equation (34), we may simplify the factor multiplying v y : ³¡ ´ ¢ i ~ ¢ ~v1 ¡ ½0 gv y vx = ¡ 2 kx °p 0 + ¹0 B02 r (54) ! ½0 y component: i!½0 vy vy µ ¶ · µ ´ ¶¸ @ 1 @p 0 @ B0 @B0 ³ ~ ~ = °p 0 r ¢ ~v1 + v y + ¹0 vy + r ¢ ~v1 B0 @y i! @y @y i! @y µ ¶ 1 ~ ¢ ~v1 + v y @½0 g + ½0 r i! @y · µ µ ¶¶¸ ¢ ¡1 @ ¡ @p 0 @B0 2 ~ = °p 0 + ¹0 B0 r ¢ ~v 1 + vy + ¹0 B0 ! 2 ½0 @y @y @y µ ¶ 1 ~ ¢ ~v1 + v y @½0 g ¡ 2 ½0 r ! ½0 @y · ¶ ¸ ³ ´ µ ¡ ¢ ¡1 @ @½0 2 ~ ~ = °p 0 + ¹0 B0 r ¢ ~v 1 ¡ ½0 gvy + ½0 r ¢ ~v1 + vy (55) g ! 2 ½0 @y @y The z¡component is trivial: (56) ¢ ~ Now we use the equation (54) for v x to eliminate the quantity °p0 + ¹0 B20 r¢ vz = 0 ~v 1 i Then vy becomes: ¡ ¢ ! 2 ½0 ~ ¢ ~v1 v x + ½0 gv y = °p 0 + ¹0 B02 r kx 10 ¡ (57) vy = = ¶ µ ¶ ¸ ! 2 ½0 @½0 ~ i v x + ½0 gv y ¡ ½0 gv y + ½0 r ¢ ~v 1 + vy g kx @y · 2 µ ¶ ¸ ¡1 ! @ ~ ¢ ~v1 + v y @½0 g i (½0 vx ) + ½0 r (58) 2 ! ½0 kx @y @y ¡1 ! 2 ½0 · @ @y µ At this point we can simplify by considering only incompressible modes: ~ ¢ ~v1 = 0: We couldnzt do this before, because incompressible is equivalent r ~ ¢ ~v 1 ; which is therefore to ° ¡! 1; and our equations contained a term ° r indeterminate. Now that we have eliminated this term, we are free to make the incompressible assumption. Note this does not mean the entire plasma is incompressible, but only that the modes we are investigating are incompressible. Then: ~ ¢ ~v1 = ikxv x + @vy = 0 r (59) @y and the equation (58) for vy becomes: vy = µ vy 1 + g @½0 ! 2 ½0 @y ¶ ¡i @ v y @½0 (½0 vx ) ¡ 2 g ½0 kx @y ! ½0 @y = = ¡i ½0 kx 1 ½0 k2x (60) µ ¶ µ ¶ @ ½0 @v y 1 @ @vy ¡ = ½0 @y ikx @y ½0 kx2 @y @y 2 @½0 @v y 1 @ vy + 2 (61) @y @y kx @y 2 Some possible solutions of this equation are: 1. Exponential density variations: 1 @½0 = constant = ® ½0 @y (62) The equation for v y becomes: ³ @ 2v y @vy g ´ 2 + ® ¡ k v 1 + ® =0 y x @y 2 @y !2 (63) This di¤erential equation has a solution of the form v y = v1 epy where p is a solution of the equation: ³ g ´ p2 + ®p ¡ k2x 1 + 2 ® = 0 (64) ! r³ µ q ¶ ´ k2 k2 k2 1 1 ® 2 2 x x x g The solution is p = § 2 ® + 4kx + 4 ! 2 g® ¡ 2 ® = 2 § 1 + 4 ®2 + 4 ! 2 ® ¡ 1 ; and we expect p · 0 (the velocity dies away as we go away from the boundary) we need the minus sign if ® > 0. Then we see that jpj > ®: Thus g® p 2 + ®p ¡ k2x g®k2x 2 = ) ! = !2 kx2 p (p + ®) ¡ kx2 11 We have ! 2 < 0; and thus instability, if kx2 > p (p + ®) ; and then with ! = i°; the growth rate ° is p 1 ° = g® q p(p+ ®) 1 ¡ k2 x 2 If ! + g® = 0; there is a solution in which vy does not vary with y (p = 0). Then we have an instability (! = i°) with growth rate °= p g® : Note we have instability only if the density is increasing upward. If the density decreases upward (® is negative) then the plasma is stable. 0 2. No gradients in the initial state: @½ = 0: Instead we have a sharp @y boundary across which ½0 goes to zero, and the magnetic ¤eld suddenly increases. (This is the case that we anlayzed using drifts above.) Then for y > 0 we have from equation (61): vy = 1 @ 2 vy =) vy = v 1 e§k x y k2x @y2 For y > 0; the minus sign in the exponent is the appropriate choice. @½ boundary itself, @y0 ¡! 1; and equation (61) becomes: vy g @½0 1 @½0 @v y = ! 2½0 @y ½0 k2x @y @y or (65) At the (66) g 1 = (¡kx vy ) =) ! 2 = ¡gkx (67) ! 2 ½0 ½0 k2x p Again we have an instability with growth rate ° = gkx ; the same result we got from the drift analysis. Note this is a pure instability (not overstability) since the frequency has p no real part. The growth rate increases as k; so smaller wavelengths grow faster. At some point this trend is limited by e¤ects we have ignored in this analysis, such as viscosity, which is more important on small scales. Also, once the perturbations become non-linear, this growth rate no longer applies. vy 2.3 Instability of magnetically-con¤ned plasma ~ drift is: The curvature plus grad-B ~vt otal d rift m = qB2 µ 2 v? + vk2 2 12 ¶ ~ Rc ~ £B R2c Comparing with the gravitational drift, we have an e¤ective gravitational acceleration of ¶ ~c µ R 1 2 2 ~ge ¤ = 2 vk + v? Rc 2 ~ c points out of the plasma, as shown below: and thus we have an instability if R Unstable situation 2.3.1 Energy analysis The stable state is one of minimum energy. The energy of this system is the magnetic ¤eld energy (u B = B2 =2¹0 ) and internal (thermal) energy. For an adiabatic equation of state, P / ½° ; the internal energy density is: uin t = N nkT 2 where the number of degrees of freedom N is related to ° by ° = N = Thus uin t = N +2 N 2 ° ¡1 nkT P = °¡1 ° ¡1 and the internal energy in volume V is Uint = PV ° ¡1 In the Rayleigh-Taylor instability driven by gravity, ¢ux tubes are interchanged without any change in volume. There is no change in magnetic or internal energy. The gravitational energy is decreased as the plasma falls. The system is unstable. Now we look at the magnetically con¤ned plasma without gravity. Seen end on, the system looks like this: 13 ¢utes- end view The system is low ¯, the plasma pressure is small compared with the magnetic pressure, so the magnetic energy density does not change much as the ¢ux-tube 1 moves to position 2. The magnetic energy in a ¢ux tube is: Z Z B2 B2 EM = dV = Ad` tu b e 2¹0 tu b e 2¹0 where A is the cross-sectional area of the tube and we integrate along its length. Now the ¢ux © = BA is constant along the length of the tube, so Z ©2 d` EM = (68) 2¹0 tu b e A Thus the change in energy due to the interchange of the ¢ux tubes is: Z Z Z Z ©2 d` ©2 d` ©2 d` ©2 d` ¢EM = 1 + 2 ¡ 1 ¡ 2 2¹0 2 A 2¹0 1 A 2¹0 1 A 2¹0 2 A and this change is zero if the two ¢uxes are equal: © 1 = ©2 : Now we look at the internal energy. As the ¢ux tubes are interchanged, the pressure will change if the volume changes. The new pressure in region 2 is µ ¶° V1 0 P 2 = P1 V2 14 Thus the change in energy is · µ ¶° µ ¶° ¸ 1 V1 V2 ¢E in t = P1 V2 ¡ P1 V 1 + P 2 V 1 ¡ P 2 V2 ° ¡1 V2 V1 i 1 h = P1 V 1° V 21¡° ¡ P 1 V1 + P2 V 2° V11¡° ¡ P2 V 2 ° ¡1 Now letting P2 = P 1 + ±P; V 2 = V 1 + ±V; and expanding to second order, we have: ( ) ¡ ¢ °) ±V 2 1h + (1 ¡ °) ±V + (1¡ °)(¡ ¡ 1+ P 1 V1 V 2 i V ¡ ¢ ¡ ¢2 ¡ ¢¡ ¢ ¢E in t = ° ¡1 1 + ±P 1 + ° ±V + °(°2¡1) ±V ¡ 1 + ±P 1 + ±V P V V P V " # ¡ ±V ¢2 P 1 V1 (1 ¡ °) ±V ¡ °( 1¡°) +1 V 2 V = ¡ ¢ ° ¡ 1 +° ± V + °(°¡1) ±V 2 + ± P + ° ±P ±V ¡ 1 ¡ ±P ¡ ±V ¡ ±P ±V V 2 V P PV P V P V " µ ¶2 # P 1 V1 ±P ±V ±V = (° ¡ 1) + ° (° ¡ 1) ° ¡1 PV V · µ ¶¸ ±V ±P ±V = P1 V 1 +° V P V µ ¶ P = ±V ±P + ° ±V V The ¤rst order terms all disappear, as expected if the initial state is an equilibrium. Any equilibrium is an extremum of the energy, but a stable equilibrium is a minimum. Thus the energy change must be positive for the system to be stable. As P ! 0; the ¤rst term dominates. Thus for stability we need ±P > 0 and ±V > 0 or ±P < 0 and ±V < 0 Now with ©1 = © 2 ; ±V = = Z Z d` d` Ad` = ± BA = ©± B B ·Z Z ¸ d` d` © ¡ 2 B 1 B ± Z Thus if 1 represents the region with the plasma, so that ±P = P 2 ¡ P 1 < 0; we need ±V < 0 for stability. That is Z Z d` d` < for stability. B 2 1 B But since B2 > B1 to con¤ne the plasma, we need l2 < B2 l1 B1 15 stable system - side view Thus the ¤eld lines curve as shown, with the plasma on the "outside". This is the geometry of a neutron star magnetosphere, but is the opposite of what we want for a CNF machine, where the plasma is on the "inside". This is a very dangerous instability, as the growth rate is high and it moves a lot of plasma! 3 Resistive Drift Waves 3.1 Two-¢uid analysis This is an example of a universal instability. We start o¤ by analyzing drift waves with no resistivity, then add the resisitivity and look at its e¤ects. Drift waves are driven by gradients in the intial state. Con¤ned plasmas always have gradients, so these kinds of instabilities occur in many situations. As an example, we consider electrostatic drift waves, which have a phase velocity equal to the diamagnetic drift velocity: ~v D = ¡ ~ £B ~ ~ £B ~ kB T rn kB T rn = q nB2 m!c nB We use the 2-¢uid equations and study small perturbations. · ¸ ³ ´ @~v ³ ~ ´ ~ + ~v £ B ~ ¡ rp ~ nm + ~v ¢ r ~v = nq E @t (69) (70) @n ~ + r ¢ (n~v ) = 0 (71) @t Now we perturb and linearize. In the perturbed state there is an electric ¤eld: ~ = ¡r© ~ E Electrons can move freely along the ¤eld lines, and so establish the Boltzmann distribution: e© n = no exp(e©=kB T ) ) n1 = no (72) kB T 16 ~ = Bo z^; (We could also get this from the equation of motion.) Now let B ~ be along x and let rn ^: Also take ~k in the y ¡ z plane, Ti = 0; ~vi;o = 0 and kB T 1 dn o ~v e;o = ~vD = V D ^ y; with V D = ¡ m! (eqn.69). c n dx Continuity equation (71) dno ¡i!n1 + i~k ¢ ~v ino + vix =0 dx Solve for the ion density n1 : ~ ¢ ~v i n1 vix dno k = + no i!no dx ! (73) Ion equation of motion (eqn 70 for the ions) ³ ´ ~o ¡i!nM ~v i = en ¡i~k© + en~v i £ B Solve the equation of motion for the components of ~v : (Remember that ~k is in the y ¡ z plane.) -c ¡i!M vix = ev iy Bo ) vix = i viy (74) ! ¡i!M viy = ¡iky e© ¡ ev ixBo ¡i!M v iz = ¡ikz e© ) viz = e©kz !M Substitute vix into equation for v iy: ¡i!M viy = ¡iky e© ¡ ei -c ky e© viy Bo ) viy = ! !M µ ¶ ¡1 -2 1 ¡ c2 ! (75) Then we can ¤nd v ix from eqn (74). vix = i -c ky e© ! !M µ ¶ ¡1 -2 1 ¡ 2c ! Now we specialize to low frequency waves with ! ¿ - c; so that 1 ¡ Then: - c ky e© ! 2 e© vix = ¡i = ¡iky ! !M - 2c - cM and v iy = ¡ -2 c !2 -2 ¼ ¡ ! c2 : ky e© ! 2 ky e© ! =¡ 2 !M -c M -c - c and jv iy j ¿ jvix j : Put all this into eqn. 73 for n1 ; ignoring the term in viy compared with v ix: µ ¶ n1 1 e© dno kz e©kz = ¡iky + no i!no - cM dx ! !M µ ¶ 2 2 e© ky V D v k = + s 2z kB T ! ! 17 BT where v 2s = kM : Now we use the plasma approximation. Set this n1 equal to the value in eqn. 72: µ ¶ e© e© ky VD v2k 2 = + s 2z ) !2 ¡ !ky VD ¡ v 2s k2z = 0 (76) kB T kB T ! ! which is the dispersion relation for the drift waves. Notice that if ky ! 0 we get ion acoustic waves, and if kz ! 0 we get ! = ky VD ; waves with phase speed equal to the diamagnetic drift. These are the drift waves. 3.2 MHD analysis We can analyze the same system with single ¢uid MHD. We do not have to use the plasma approximation, as it is "built-in", but now we include a non-zero current, carried by the electrons, in the initial state. The single-¢uid MHD equations are: Momentum equation: · ¸ @~v ³ ~ ´ ~ ¡ rP ~ ½ + ~v ¢ r ~v = ~j £ B (77) @t Ohmzs law: ³ ´ ~ + ~v £ B ~ = ´~j + 1 ~j £ B ~ ¡ rP ~ e E en Continuity equation: @½ ~ + r ¢ (½~v ) = 0 @t Note that in the initial equilibrium we have: (78) (79) ~ ~ ~j o £ B ~ o = rp ~ ) ~jo = ¡ rp £ Bo = ¡noe~vD B2o i.e. the current is due to the electronzs diamagnetic drift. Now perturb and linearize. Because n0 is not uniform, we assume n1 _ n0; all other quantities are independent of x and proportional to exp [i (kz z + ky y)] : For now, we neglect resistivity. Ohmzs law gives the velocity: ~ = ¡ r©; ~ E ~ = ¡i~k© so E y¡component of Ohmzs law: ¡iky © ¡ v xB o ¼ 0 ) v x = ¡iky © Bo (80) where we neglected the higher order terms. x¡component of Ohmzs law: vy Bo ¼ 0 18 (81) and z¡component ¡ikz © = 1 e© (¡ikz n1 kB Te ) ) n1 = no eno kB T e (82) which is just the Boltzmann relation. To get v z we use the equation of motion. The x¡ and y¡components give the current. x¡component µ ¶ 1 dno 1 1 dno ¡i!½vx = j y Bo ¡n1 kB T e ) jy = ¡i!½vx + n1 kB T e (83) no dx Bo no dx y¡component ¡i!½vy = ¡jx Bo ¡¡iky n1 kB T e ) jx = 1 n1 (i!½v y ¡ iky n1 kB T e ) = ¡iky kB T e Bo Bo (84) z¡component ¡i!½v z = ¡ikz n1 kB Te ) vz = kz n1 kB T e ! no M (85) The continuity equation gives: ¡i!½1 + d (½ vx ) + iky ½o v y + ikz ½o vz = 0 dx o Substituting for the velocity components (80), (81) and (85), we have: µ ¶ n1 1 dno © kz n1 kB T e ¡i! + ¡iky + ikz =0 no no dx Bo ! no M (86) Now substitute in from eqn.82: ¡i! e© 1 dno e© ¡ iky kB T e no dx kB T e or µ kB T e eBo ¶ +i k2z e© kB T e =0 ! kB T e M ! 2 ¡ !ky V D ¡ v2s kz2 = 0 as before. (Remember that V D is negative.) 3.3 The instability Inclusion of resistivity causes the electron density to deviate slightly from the Boltzmann relation. The z¡component of Ohmzs law becomes: µ ¶ 1 n1 kB T e ¡ikz © = ´jz + (¡ikz n1 kB T e) ) ¡ikz © 1 ¡ = ´j z eno no e© 19 Resistivity also produces a second-order correction to jy and jx ; which we could get from the equation of motion, but we donzt need those here. . Instead, we use the equation of charge continuity plus the plasma approximation to get: ~ ¢ ~j = 0 = @j x + iky jy + ikz jz r @x Then using equations 83 and 84 µ ¶ µ ¶ · µ ¶¸ @ n1 1 1 dno © n1 kB Te ¡iky kB T e +iky ¡i!½v x + n1 kB T e +ikz ¡ikz 1¡ =0 @x Bo Bo no dx ´ no e© µ ¶ n1 dno kB Te M kB T e 1 dno n1 kB T e 2© ¡iky + !no ky v x + iky + kz 1¡ =0 no dx Bo Bo Bo no dx ´ no e© The terms in ky cancel. Then using equation 80 we have: µ ¶ µ ¶ M © © n1 kB T e !no ky ¡iky + kz2 1¡ =0 Bo Bo ´ no e© which gives the density: " # µ ¶2 n1 e© ky M no = 1 ¡ i´! no kB T e kz Bo2 (87) wthe Boltzmann relation with a correction proportional to ´: As expected. ´ causes the electron density to lag (notice the i indicating a phase shift of ¼ =2): Now we use the continuity equation (equation 86) again, eliminating n1: " #µ µ ¶2 ¶ µ ¶ e© ky M no k2z kB T e e© 1 dno kB T e 1 ¡ i´ ! ¡i! + i ¡ik =0 y kB T e kz Bo2 ! M kB T e no dx eBo " # µ ¶2 ¢ ky M no ¡ 2 1 ¡ i´! ! ¡ kz2 v2s ¡ ky !V D = 0 (88) kz Bo2 which is the new dispersion relation. Check that we get back eqn (13) as ´ ! 0: We look for a solution of the form ! = !r + i° and expect to ¤nd ° ¿ ! r if ´ is small. Then ! 2 ¼ !2r + 2i!r ° and the dispersion relation becomes: " # µ ¶2 ¡ 2 ¢ ky M no 2 2 !r + 2i! r ° ¡ kz vs 1 ¡ i´ (! r + i°) ¡ ky (! r + i°) VD = 0 kz B 2o Expanding, and keeping only ¤rst order terms, we have: " # µ ¶2 ¡ 2 ¢ ky M no 2 2 ! r + 2i! r ° ¡ kz vs 1 ¡ i´! r ¡ ky (! r + i°) VD kz B2o " # µ ¶2 ¡ 2 ¢ ky M no 2 2 ! r ¡ kz vs 1 ¡ i´! r + +2i! r ° ¡ ky (! r + i°) VD kz B2o 20 = 0 = 0 Real part: ¡ ¢ ! 2r ¡ k2z v 2s ¡ ky !r V D = 0 which is the same dispersion relation (76) that we obtained with ´ = 0: Imaginary part: Solve for ° : ¡ ¢ 2!r ° ¡ ! 2r ¡ k2z v 2s ´!r °= ¡ µ ky kz ¶2 ³ ´2 ¢ ! 2r ¡ k2z v 2s ´! r kkyz MBn2o o 2!r ¡ ky VD = M no ¡ ky °V D = 0 Bo2 ky V D ´!2r ³ ky kz ´2 M no B2 o 2! r ¡ ky V D where we used the dispersion relation for ! r to simplify the expression in the numerator. Then if kz ¿ ky ; ! r ¼ ky V D ; the denominator 2! r ¡ ky V D ¼ ky VD ; and we ¤nd: µ ¶2 µ ¶2 ky M no ky M no 2 2 ° ' ´ !r = ´ (ky VD ) kz Bo2 kz Bo2 We can see that this equals Chenzs expression in equation 6-66 by noting that: ´= Then: 2 ° = (ky VD ) µ ky kz ¶2 mº ei e2 no mº ei M no 2 = (ky V D ) e 2 no B2o as given by Chen. 21 µ ky kz ¶2 º ei - c! c The diagram shows what is going on in this wave. Here ~k is in the y¡direction. ~ = ¡i~k© is ¼=2 out of phase. Without resistivity, © is in phase with n1 and E ~ E is maximum where n1 is zero, and has the direction, shown. As the wave ~ £B ~ drift serves to move the particles so as to maintain the propagates, the E wave. When there is a non-zero resistivity, the potential, and hence the ¤eld, gets further out of phase and the drift moves particles that are already displaced left further left, and the amplitude grows. Here we have seen several di¤erent techniques for analyzing stabilty. Wezll see some more when we tackle Vlasov theory. 22
© Copyright 2025 Paperzz