V ol . 1 0 1 ( 2002) A CT A P HY SIC A P O LO N IC A A No . 5 P r oceedi ng s o f t h e Sy m p o siu m o n Syn chr otr on Cr y st all ogr ap hy, Kr y n ica, Po l an d 200 1 N an ost r u ctu r e an d T h er m al B eh a v iou r of L i qu id C r y stallin e Oli go este r J . Jani c ki T ech ni cal Aca dem y of Bi elsko- Bi a ¤a, W i l lowa 2, 43-309 Bi el sko-Bi a¤a, Po l and T h e nanostr ucture an d ther ma l behav iour of li quid cr ystalli ne oli goester w ere examined by combination of real -time synchrotron small- angl e and w ide- angle X -ray scattering metho ds w ith di˜erential scanning calorimetry . T he synthesi zed oligo ester exhibits ability to form a thermotro pic mesophase. I t was show n that solid crystalli ne state is observed in the temp erature range 25 to 1 2 3 C and liquid crystalli ne state betw een 118 À 1 5 6 C . T he transitio n temp erature determined from dynamic small- angl e and w ide-angle X -ray scattering exp eriments agrees very w ell w ith the results obtained from dif ferential scannin g calorimetry . £ £ PAC S numb ers: 87.64.Bx , 81. 07. N b, 82. 35. Lr 1. I n t r o d u ct io n D uri n g the l ast decade, l i qui d crysta l l i ne p ol ym ers ( L CP) ha ve b een presented as new com p ounds wi th superi or pro perti es as com pared to conventi onal p ol ym ers. The search for mel t- pro cessabl e l i qui d crysta l l i ne p ol ym ers, whi ch are m i scibl e or pa rti al l y m i scibl e wi th conventi onal p ol ym ers, i s sti l l a great chal l enge i n p olym er science [1, 2]. Therm otro pi c LCP usual l y conta i n ri gi d- ro d chem i cal structure and theref ore possess uni que pro p erti es such as l ow m elt vi scosity and hi gh m odul us i n the sol i d form , whi ch is di recti on dep endent. Bl endi ng of therm otro pi c LCP wi th semi crysta l l ine therm opl asti c p ol ym ers to form i n sit u p ol ym er comp osites i s very attra cti ve b ecause of the adva nta ges i n l oweri ng the vi scosity duri ng pro cessing and in rei nf orci ng the Ùnal m echani cal pro perti es [3{ 5]. However, the m elti ng tem p erature of l i qui d crysta l l i ne pol ym ers i s usual l y ab o ve 200 C, whi ch i s to o hi gh for pro cessing semi crysta l l i ne therm opl asti c pol ym ers. In order to reduce the m elti ng and tra nsiti on tem p erature new LCP , wi th Ûexi bl e uni ts i n the ma in chai n were synthesi zed, resul ti ng i n a lower m elti ng tem p erature [6{ 8 ]. In thi s search fo r new com p osite materi al s, less attenti on i s pai d to the pro per chara cteri zati on of the structure of therm otro pi c l i qui d crysta l l ine pol ym ers. It i s £ ( 761) 762 J . Jani cki shown tha t an una mbig uous chara cteri zati on i s onl y po ssibl e by a com bina ti on of di ˜erent techni ques such as sm al l- and wi de-ang l e X- ra y scatteri ng ( SAXS, W AXS) wi th di ˜erenti al scanni ng cal ori metry (D SC). 2 . E x p er i m en t a l 2.1. Mat er i al s Li qui d crysta l l i ne com p ounds ha vi ng three ri ng s ro d-l i ke m esogen and al i pha ti c end gro ups are synthesi zed. The aro mati c ri ng s i n the mesogen are b onded to ester gro ups whi l e the al ipha ti c end gro ups, consisti ng of eleven carb o n ato ms are connected wi th the arom atic ri ng by ester b onds. The m acrom olecul e chain of ol i goester i s presented i n Fi g. 1. Fig. 1. T he macromolecula r chain of liqui d crystalli ne oligo ester. 2.2. Met hods The SAXS and WAXS i nv esti gati ons were carri ed out using synchro tro n b eam l i ne on the X3 3 doubl e focusi ng cam era of the EMBL i n Hasyl a b, on the sto ra ge ri ng D O RIS I I I of the D ESY i n Ha m burg at a wavel ength of 0.15 nm . The SAXS pi nho l e patterns of l i qui d crysta l ol i goester (LCO) were recorded using sam pl e{ detecto r di sta nce of 2.8 m to cover the ra ng e of magni tude of the scatteri ng vecto r 0 : 0 1 2 ç s ç 0 : 8 9 4 nm 1 ( s = 2 sin ˚ = Ñ , where 2 ˚ is the scatteri ng ang le and Ñ i s the wa vel ength). Duri ng the real -ti me measurem ents, SAXS and WAXS pa tterns were sim ulta neously recorded every 6 seconds gi vi ng a tem p erature resol uti on of 1 C p er one pa ttern, using a sta nda rd acqui siti on system wi th two del ay l i ne detecto rs connected i n series [9, 10]. The ra nge of scatteri ng vecto rs was cali bra ted usi ng the Ùrst ni ne i nterf erence orders of dry col la gen wi th a spacing of 64 nm . The WAXS da ta were col l ected o ver the ang ul ar ra ng e 1 1 : 7 ç 2 ˚ ç 4 6 cal ibra ted wi th a sili con sta nda rd. The SAXS and W AXS i ntensi ti es were no rm al i zed to the intensi ty of the pri m ary b eam a nd correcte d for the detecto r response. Fi nal l y, an a veraged m elt pattern wa s subtra cted fro m each curve to eli m ina te ba ckg round scatteri ng . The di ˜erenti al scanni ng cal ori m etry m easurem ents were carri ed out on a Perki n El m er{ Pyri s instrum ent. The tem p erature was cal i bra ted wi th the m elti ng poi nts of i ndi um (1 5 6 :6 C) and b enzopheno ne ( 4 8 C) and the entha l py was cal ibra ted wi th i ndi um (2 8.45 J g 1 ). The contri buti on of an empty pa n wa s subtra cted fro m each measurem ent. The bl ock surro undi ng the m easurem ent uni ts was therm o stated at À 1 0 C wi th li qui d ni tro gen and the m easuri ng cell wa s Ûushed wi th ni tro gen g as. The heati ng and cool i ng rate of sam pl es was 1 0 C / mi n. À £ £ £ £ À £ £ N anost r uct ure and T her mal Beha vi our 763 . .. 3 . R esu l t s an d d i scu ssio n Inf orm ati on concerni ng the therm al b ehavi our of l i qui d crysta l l i ne ol i goester wa s obta i ned by di ˜erenti al scanni ng cal ori metry . D SC heati ng and cool ing curves of ol i goester col l ected at the ra te 1 0 C/ m i n are shown in Fi g. 2. The heati ng curves exhi bi t three endotherm i c p eaks. The Ùrst wi de p eak i s connected wi th the gl ass tra nsiti on tem perature whi ch was eval ua ted as 5 6 C, a nd so- cal l ed col d crysta l l i zati on whi ch i s observed duri ng heati ng ab o ve the gl ass tra nsiti on [11]. The m ai n endotherm i c p eak i ndi cates the melti ng tem pera ture ( 1 1 8 : 7 C) and the thi rd one the i sotro pi zati on tem p erature ( 1 5 6 : 6 C). W hen a cool i ng run is p erform ed after i ni ti al heati ng , three exotherm i c p eaks are observed. The tra nsiti on tem peratures and the corresp ondi ng entha l pi es duri ng heati ng and cool i ng are presented i n T abl e. £ £ £ £ Fig. 2. DSC heating and cooling curves for LC O; Tg, Tm , T c, Ti are glass transition, melting, crystalliza tion , and isotropizati on temp erature, respectively . TABLE Enthalpies and temp eratures of face transitio ns. H eating C] 56 C ooling [ C] [J /g] [ C] [J /g] [ C] [J /g] [ C] [J /g] 118.7 17. 5 156. 6 2.3 114. 8 {11. 0 155 {2. 6 , , , are glass transitio n, melting, crystallizati on and isotropizati on temp erature, respectively , , , are enthalpy of melting, crystalli zati on, and isotropi zatio n, respectively . T ra nsiti on tem pera tures of ol i goester, determ i ned f rom DSC duri ng heati ng , are schemati cal ly shown b elow: sol i d crysta l li ne state li qui d crysta l l ine state isotro pi c m elt : 764 J . Jani cki Ba sed on D SC results i t seems to b e clear tha t the synthesi zed ol i goester exhi bi ts the abi l i ty to form the therm otro pi c m esopha se i n the tem p erature ra nge 118À 1 5 6 C. The l iqui d crysta l l i ne state is deta ched both duri ng heati ng and cooli ng , whi ch i s typi cal of an enanti otro pi c l iqui d crysta l comp ound. £ Fig. 3. WA X S patterns of LC O as a function of temp erature during heating. Fig. 4. SA X S curves after background subtraction for LC O as a function of temp erature during heating. In order to determ i ne the na nostructure of ol i goester, the WAXS and SAXS rea l- ti m e synchro tro n experi m ents were p erform ed duri ng heati ng and cool i ng at the ra te of 1 0 C/ mi n. The WAXS pa tterns of l i qui d crysta l li ne o li go ester as a functi on of tem p erature duri ng heati ng are presented i n Fi g. 3. Ba sed on a qua l i ta ti ve a nal ysi s one can say tha t stro ng crysta l li ne p eaks on the WAXS curves observed fro m 25 to 1 2 3 C and very l ow am orpho us hal o i ndi cate the well -ordered structure. Crysta l l i ne peaks di sapp ear at 1 2 3 C and the scatteri ng curve at hi gher tem p erature i ndi cates the l i qui d crysta l l ine sta te. Mo re structura l para m eters can b e obta i ned fro m the SAXS i nvesti gatio ns. SAXS curves f or ol i goester duri ng heati ng are shown i n Fi g. 4. The SAXS curves exhi bi t two di sti nct di ˜ra cti on m axi ma, correspondi ng to sol i d crysta l l i ne sta te and l i qui d crysta l l i ne sta te, respecti vely. The angul ar po siti on of the peaks is connected wi th the superm ol ecular structure wi th di ˜erent el ectro n densiti es o f pha ses, whi ch are separa ted by a rep eated di sta nce. The val ues of the rep eated di sta nce ( d - space) were eval ua ted using Bra gg' s l aw and are presented i n Fi g. 5. The val ues of the d -space cal culated ba sed on the ang ul ar p ositi on of the Ùrst SAXS p eak are consta nt and equal to 4.33 nm and they are chara cteri sti c of the sol i d sta te. Ba sed on com puter m odel li ng , the l ength of m acrom ol ecular chai n was esti mated as 4.2 nm , whi ch is i n goo d agreem ent wi th the result deri ved fro m the SAXS m easurem ents. D uri ng the m elti ng pro cess, m acromol ecular chai ns b ecome m ore Ûexibl e and values of the d - space steadi l y decrease, whi ch i s shown i n Fi g . 5 b. The equi l i bri um sta te app ears at 1 2 3 C since the d -space i s consta nt a nd equal to 3.57 nm . The structure of LCO £ £ £ £ N anost r uct ure and T her mal Behavi our 765 . .. exam ined under p ol ari zing opti cal m i croscop e (no t rep orted i n thi s pap er) was i denti Ùed as a sm ecti c pha se. Two very sharp p eaks on the SAXS curves and correspondi ng chang es of d - space are chara cteri sti c o f the sm ecti c l iqui d crysta l structure and conÙrm the result obta i ned f rom opti cal mi croscop e observ ati ons. Fig. 5. T he d -spacing values for LC O: a | solid crystallin e phase, b | liquid crystallin e phase. Fig. 6. T he inv ariants of LC O: a | solid crystalli ne phase, b | liquid crystalli ne phase. An im p orta nt para m eter tha t can b e obta i ned fro m SAXS i s i nvari ant. The i nv ari an t Q ( T ) i s the to ta l scatteri ng power of the system , whi ch i s indep endent of the size and the shap e of the scatteri ng enti ti es a nd i s a functi on o f the mean square o f el ectro n density di ˜erences of pha ses. The i nva ri ant can be cal cul ated by i ntegra ti on of the scatteri ng i ntensi ty . The val ues of cal cul ated i nv ari an ts for ol i goester (Fi g. 6) as a functi on of tem p erature i ndi cate two sta tes existi ng i n di fferent tem p erature ra nges. Starti ng f rom ro om tem p erature the sol i d crysta l l i ne pha se i s descri b ed by the curve a i n Fi g. 6. The second pa rt of i nvari ant functi on corresponds to the l i qui d crysta ll i ne sta te. In Fi g. 7 the SAXS and WAXS curves are presented to gether for better vi sual i zati on of the pha se tra nsiti on duri ng heati ng . The tra nsi ti on tem p eratures, determ i ned fro m SAXS and W AXS experi m ents, agree very wel l wi th obta i ned by D SC and supp ort previ ous concl usions. Fig. 7. T he SA X S/W A X S patterns of LC O during heating. Ba sed on the results obta i ned, the fol l owing conclusio ns can b e dra wn: 766 J . Jani cki | The synthesi zed ol i goester exhi bi ts abi l i ty to form therm o tro pi c mesopha se. | Sol i d crysta l l i ne state i s observed in the tem p erature rang e fro m 25 to | Li qui d crysta l l i ne state i s observed i n the tem pera ture ra nge 118À | The real - ti m e synchro tro n SAXS and WAXS m easurem ents al l owed to observe the pha se tra nsiti o n and to study the nano structure of l i qui d crysta l p ol ym ers. | The smecti c typ e of m esopha se i s observed fo r the ol i goester i nvesti gated. | Li qui d crysta l l i ne ol i goester can b e used as a pro per comp ound for pro cessing wi th semi crysta l l i ne therm o pl asti c p ol ym ers due to l ow mel ti ng tem p erature and wi de tem p erature ra nge of m esopha se. 123£ 156 £ C. C. Ac kn owl ed gm en t s The autho r tha nks Pro fessor H. Reyna ers and D r. B. G oderi s fro m Catho l ic Uni versi ty of Leuven fo r hel p duri ng synchro tro n m easurem ents and frui tf ul di scussion. R ef er en ces [1] G. C osta, D. Meli, Y. Song, A . T urturro, Poly mer 4 2, 8035 (2001). B. Valenti, M. C astellano, L. F alqui, [2] J.C . H o, K -H . W ei, J . Po l ym. Sci ., Po ly m. Phy s. Ed. 38, 2124 (2001). [3] J.C . H o, K .H . W ei, M acr omo lecules 33, 5181 (2000). [4 ] H . H akeni, Po ly mer 4 1, 6145 (2000). [5] B. Liang, L. Pan, X . H e, J. A ppl. Po ly m. Sci . [6] M. Pracella, D. Daniel li , E. C hielini , [7] W. Brostow , 217 (1 997). 2387 (1986). 979 (1990). [8 ] T . Mitev a, L. Minko v a, P. L. Magagnini , (1998). [9] M. H .J . K och, J . Bordas, 1519 461 (1985). [10] C.J . Boulin , R. K empf , A . Gabriel , M. H .J. K och, 178 (1995). [11] J. Greb ow icz, B. W underlich, 141 (1983).
© Copyright 2024 Paperzz