V ol . 1 0 1 ( 2002) A CT A P HY SIC A P O LO N IC A A No . 3 P ro ceed in gs of t h e I n t er n at iona l Co n f er ence \ Qu an tu m O p t i cs V " , Ko ƒci el isko, Po la nd , 200 1 R eson an ce Su p er Ûu id i t y in a Qu antu m De gen erate Ferm i G as S. K ok k el man s , M. H olla n d, R . W als er Ê JI L A , U ni v er sit y of Col or ado and Na ti onal Insti t ute of Standa rds and T echno lo gy Bo ul der, Col ora do 80 309-0440, U. S.A. and M. Chi of al o Scuol a No r mal e Superi ore, Pi azza dei Caval i eri 7, 56126 Pi sa, Ita l y W e consi der t he sup erÛuid ph ase transition that arises when a F eshbach resonance pairin g occurs in a dilute F ermi gas. T his is related to the phenomenon of sup ercondu cti v it y describ ed by the seminal Bardeen { Coop er{ Schrie ˜er theory . In supercondu ctivi ty , the phase transition is caused by a couplin g betw een pairs of electrons w ithin the medium. T his coupli ng is perturbative and leads to a critical temp erature T c w hich is small compared to the Fermi temp erature T F . Even high- T c sup erconductors typically ha ve a critical temp erature which is two orders of magnitude below T F . H ere w e describ e a resonance pairing mechanism in a quantum degenerate gas of potassium ( 4 0 K ) atoms w hich leads to sup erÛui di ty in a no vel regime | a regime that promises the unique opp ortunity to exp erimentally study the cross-over from the Bardeen À C oop er{Schrie˜er phase of w eakly- coupled fermions to the Bose{Einstei n condensate of strongly- boun d comp osite bosons. W e Ùnd that the transitio n to a superÛuid phase is possible at the high critical temp erature of about 0 :5 T F . I t should b e straightf orw ard to verif y this prediction, since these temp eratures can already be achieved exp erimentally . PACS numb ers: 03.75.Fi, 67. 60. {g, 74.20. { z 1. I n t r o d u ct io n The pheno m enon of superÛuidi ty i s closely rel ated to Bo se{ Ei nstei n condensati on (BEC), as was shown i n the founda ti on of the mi croscopi c theo ry of superÛui d 4 He i n the 1960' s. In b osoni c Ûuids the pha se tra nsiti on i s m ar ked by the app earance of a m acroscopi c numb er of bosons in the l owest qua ntum sta te. In ferm i oni c system s the occurrence of superconducti vi ty and superÛuidi ty i n suÊ corr esp on din g au t h o r; e-m ail : servaa s. kok kel ma ns@ji la. color a do .edu (3 87) 388 S. K okkelman s, M. H ol l and, R. Wal ser , M. C hi ofal o p erconducto rs and l i qui d 3 He, i s due to the ri se of a pai ri ng Ùeld and thereby , i n a general i zed sense, to a condensati on of Co oper pa i rs. The study of superÛui d pha se tra nsiti ons i n ferm i on and b oson system s ha s pl ayed an i m p orta n t ro le in the developm ent of m any areas of qua ntum physi cs. Thei r chara cteri sti cs determ i ne the observed pro perti es of som e of the most di sti nct system s im agina bl e, i ncl udi ng the cosm ol ogy of neutro n sta rs, the no n- vi scous Ûow of superÛuid l iqui d heli um , the non- resisti ve currents in superconducto rs, and the structure and dyna mi cs of m i croscopi c elementa l nucl ei. Recentl y, physi ci sts ha ve succeeded i n dem onstra ti ng the creati on of weakl y i ntera cti ng qua ntum Ûuids by cool i ng di l ute gases to tem p eratures i n the na nokel vi n scal e. For these near i deal gases, reachi ng such i ncredi bl y lo w tem pera tures is requi red i n order to cross the thresho l d for superÛuid pro p erti es to emerge. These system s o˜er great o pp ortuni ti es for study since they can b e created i n ta bl e-to p exp eri ments, mani pul ated by l aser and m agneti c Ùelds whi ch can be contro l l ed wi th hi gh preci sion, and di rectl y observed usi ng conventio na l opti cs. Furtherm ore thei r m icro scopi c b eha vi or can b e understo od theo reti cal l y fro m Ùrst pri nci pl es. Observ ati ons of Bo se{Ei nstei n condensati on [1], and demonstra ti ons of the near i deal degenerate Ferm i gas [2], are b ecomi ng fai rl y routi ne i n ato m ic physi cs | som ethi ng whi ch woul d ha ve b een ha rd to foresee even ten years ago. The pheno m enol ogy of superÛuid di lute gases can b e qui te di sti nct fro m tha t of condensed matter systems. In thi s l etter, we present a stri ki ng i l l ustra ti on of thi s Fig. 1. A log{lo g plot show ing six distinct temp erature normalized Tc regimes for quantum Ûuids. T he transitio n is show n as a function of the relev ant gap energy 2 . Both quantities are by an e˜ective F ermi temp erature TF . F or the BC S systems in region ( a ), and the systems in the cross- over region ( b ), 2 is the energy needed to break up a fermion pair, and Ê TF Ê is the Fermi energy . F or the systems in region ( c ), which are all strongly bound comp osite bosons and exhibi t BEC phenomenol ogy, 2 is the smallest energy needed to break the comp osite boson up into two fermions, i. e. ionizati on to a charged atomic core and an electron, and Ê TF is the ionic F ermi temp erature. Resonance Super Ûuidi t y i n a Quant um Degenerate Fer mi Gas 389 p oi nt by predi cti ng the existence of a Feshbach resona nce superÛuidi ty i n a gas of ferm i oni c pota ssium ato ms. Thi s system has an ul tra hi gh cri ti cal pha se tra nsi ti on tem p erature i n close pro xi m it y to the Fermi tem p erature. Thi s is a no vel regi me for qua ntum Ûuids, as i l l ustra ted i n Fi g. 1, where our system a nd others whi ch exhi bi t superÛui di ty or BEC are com pared. Sim pl y by m odi fying a contro l pa ram eter, i n thi s case the streng th of m agneti c Ùeld, the system we consider can p otenti al l y expl ore the cross-o ver regi m e b etween the Ba rdeen{ Co op erÀ Schri e˜er (BCS) [3] tra nsiti on of weakl y-coupl ed ferm i on pa i rs and the Bo se{Ei nstei n condensati on of stro ngl y- b ound com p osite pa rti cl es [4]. Thi s i s an i ntri gui ng regi m e for qua ntum Ûuids as i t bri dges the physi cs of superconduc to rs and sup erÛuid 3 He, a nd the physi cs of superÛui d 4 He and b osoni c al kal i gases. Non- resona nt pai ri ng appl i ed to a di l ute ga s yi elds a T c tha t depends exp onenti al ly on the i nv erse scatteri ng l ength [5], as wi l l b e poi nted out i n the fol l owing section. Typi cal l y thi s results i n a cri ti cal tem p erature of order T c ¤ 1 0 4 T F or T c ¤ 10 K, whi ch i s way out of reach i n current exp eri ments. Ma ny qua li ta ti ve features of the na ture of the superÛui d pha se tra nsiti on are m odi Ùed i n the presence of a resonance coupl i ng, i ncl udi ng the parti cipa ti on of al l ferm i ons i n the pa iri ng Ùeld and the form ati on of a Bo se{Ei nstei n condensate of mol ecules at the cri ti cal p oi nt. Thi s i s i l l ustra ted À 390 S. Kokkel mans, M. H ol l and, R. Wal ser, M. C hi ofal o i n Fi g. 2, where the na ture of a resona nce pai ri ng m echani sm i s com pa red to the case of non- resona nce pai ri ng. The system we study consi sts of an ensembl e of ferm ioni c 4 0 K ato ms equal l y di stri buted between the two hyp erÙne sta tes whi ch ha ve the l owest i nterna l energy i n the presence of a m agneti c Ùeld. W e cal cul ate the ful l therm odyna mi cs for thi s resona nt superÛuid system vi a a reno rm al ized l ow energy Ùeld theory [6]. W e trea t expl i citl y a short ra nge quasib ound resona nt sta te by extendi ng the theo ry gi ven i n Refs. [7]. The pa ra meters of the theo ry are uni quel y speciÙed by the kno wn dependence o f the scatteri ng pro p erti es on magneti c Ùeld. In a di l ute gas, al l i ntera cti ons are assumed to o ccur thro ugh bi nary col l i sions descri bed by a two -b o dy i ntera cti on. The pro perti es o f the scatteri ng are determ i ned by the p ositi ons of the b ound sta tes i n the i ntera cti on potenti al s. In the l ow energy reg im e, onl y the hi ghest b ound states pl ay an i m p orta n t rol e, and the scatteri ng i s com pl etely descri bed by the s -wa ve pha se shi ft chara cteri zed by the scatteri ng l ength a . In a two -b ody potenti al , a b ound sta te may l i e near thresho l d and give ri se to a very l arg e val ue of the scatteri ng l ength. Thi s occurs, fo r exam pl e, i n the tri pl et p otenti al of 6 Li whi ch yi elds a scatteri ng l ength o f ab out À 2 0 0 0 a 0 [8]. Acco rdi ng to the conv enti onal BCS theo ry , thi s woul d im pl y a m uch l arg er val ue for the cri ti cal tem p erature [9] tha n the typi cal va lue for no nresona nt scatteri ng m enti oned previ ously. Mo reo ver, i n a m ul ti -channel system, a b ound sta te may cro ss the thresho ld energy as a functi on of m agneti c Ùeld and enter the conti nuum , resul ti ng i n a Ùeld- dependent Feshbach scatteri ng resonance [10]. As thi s occurs, a dra m ati c mo di Ùcati on of the scatteri ng l ength i s observed (see Fi g. 3). Fig. 3. Scattering length as a function of magnetic Ùeld, for a collisi on betw een atoms prepared in the two low est hyp erÙne states. T he resonance Ùeld value is 1 96 gauss and the w idth is equal to 7.7 gauss [16]. T he asymptotic by a Feshbac h resonance. 40 B K = b ehavior is caused Resonance Super Ûuidi t y i n a Quant um Degenerate Fer mi Gas 391 2 . P r o b l em s wi t h B C S t h eo r y cl o se t o r eso n an ce The BCS theo ry of superconduc ti vi ty appl i ed to a di l ute gas considers bi na ry i ntera cti ons b etween parti cles in two di sti ngui shabl e qua ntum sta tes, say j " i and j # i . For a uni form system , the ferm i oni c Ùeld o perato rs m ay b e Fouri er- expanded i n a b ox wi th p eri odi c b ounda ry condi ti ons gi vi ng wavev ector- k dependent creati on and a nni hi l ati o n opera to rs a k ¥ and a kk ¥ for states j ¥ i . At l ow energy, the bi na ry scatteri ng pro cessesare assumed to b e compl etely chara cteri zed by the - wave scatteri ng l ength i n term s of a conta ct qua sip otenti al , where i s the numb er density . The Ham i lto nia n descri bi ng such a system i s gi ven by y (1 ) where i s the ki neti c energy, i s the m ass, and the constra int g ives mom entum conserv ati on. For a negati ve scatteri ng length, the therm odyna m ic pro p erti es of the gas show a sup erÛuid pha se tra nsi ti on at a cri ti cal tem p erature whi ch ari ses due to an i nsta bi l i ty to wards the form atio n of Coo per- pai rs. W hen the gas i s di l ute, as chara cteri zed by the i nequa l i ty (o r equi v alently , where is the Ferm i wavenum ber), the appl i cati on of mean- Ùeld theo ry gi ves a wel l -known sol uti on for the ra ti o of to the Ferm i tem p erature [5] exp (2 ) The exact pref acto r to the exponenti al depends on the preci se fo rm of the ana l yti c i nteg ra l appro xi mati ons made i n the deri vati on. Several pa pers ha ve p oi nted out tha t the presence of a scatteri ng resonance i n di lute al kal i gases can b e used to obta i n a very l arg e negati ve val ue for the scatteri ng l ength [9]. Thi s pro m i ses the opp ortuni ty for the system to enter the hi gh- superÛuidi ty reg im e as the ra ti o i n Eq. (2 ) appro aches uni ty . Howev er, di rect appl i cati on of the BCS theo ry close to resona nce then b ecom es speculati ve due to the p otenti al brea kdo wn of a num b er of underl yi ng assumpti ons: 1. Exa ctl y on resonance the theo ry fai l s as the scatteri ng l ength pa ssesthro ugh and the Ham i lto ni an i n Eq. (1 ) canno t b e deÙned. 2. For the m ean Ùeld appro ach to be accura te i t i s requi red tha t there are many pa rti cl es i nside a vol ume associ ated wi th the spati al scal e of a Coop er- pai r. Thi s condi ti on b egi ns to break do wn a s appro aches . 3. The theo ry of the di l ute gas i s form ula ted on a p erturba ti on appro ach ba sed on an expansion in the sm al l para m eter . W hen thi s para m eter appro aches uni ty the p erturba ti on theory fai l s to converg e. These p oints show tha t care shoul d b e ta ken i n appl yi ng Eq. (2 ) near the p oi nt of resona nce where the ba sis for the conven ti onal m ean- Ùeld theo ry is no t wel l f ounded. 392 S. Kokkel mans, M. H ol l and, R. Wal ser, M. C hi ofal o D espite these li m i tatio ns, on general gro unds, one woul d expect to be abl e to deri ve a reno rm a li zabl e l ow-energ y e˜ecti ve Ùeld theory even i n clo se pro xi m i ty to a resona nce. Thi s statem ent i s ba sed on the i denti Ùcati on tha t at rel evant densiti es the ra ng e of the i nterpa rti cle p otenti al i s al ways orders of ma gnitude smal ler tha n the i nterpa rti cle spaci ng. Here we present a theo ry of superÛuidi ty i n a gas of di l ute ferm i oni c ato m s whi ch ha ndl es correctl y the scatteri ng resona nce and pl aces the tra nsiti on tem p erature to the superÛui d sta te i n the experi m enta l ly accessibl e ra ng e. W hi l e the scatteri ng l ength a usual l y chara cteri zes the ra ng e of the i nterato m i c p otenti al fo r a col li sion, thi s i s a p oor appro xi m ati on i n the vi cini ty of a scatteri ng resonance. The scatteri ng pro p erti es are com pl etel y determ i ned by the p ositi ons of the b ound sta tes i n the i ntera cti on potenti al s. In a mul ticha nnel system , a b ound sta te may cross the thresho ld as a functi on of magneti c Ùeld and enter the conti nuum , resul ti ng i n a Ùeld-dep endent Feshbach scatteri ng resona nce [10]. As thi s occurs, the scatteri ng l ength becom es stro ngl y dep endent on the Ùeld, and exactl y at thresho l d it chang es sign by passing thro ugh Ï 1 . 3 . R eso n an ce p ai r i n g t h eo r y W hen such resona nce pro cesseso ccur, i t i s necessary to form ul ate the Ha mi l to ni an by separa ti ng out the resona nce sta te and trea ti ng i t expl i ci tl y. Thi s i s m oti vated by the m i croscopi c i denti Ùcati on of tw o typ es of scatteri ng contri buti ons: one fro m the scatteri ng resonance, and one fro m the ba ckg ro und no n- resonant pro cesses tha t incl udes the contri buti ons fro m al l the other b ound sta tes. The no n- resonant contri buti ons gi ve ri se to a ba ckgro und scatteri ng l ength a b g whi ch i s a go od chara cteri zati on of the p otenti al ra nge. The corresp ondi ng qua sip otenti al in tha t case i s given by U bg = 4 ¤ ñh 2 a bg . The Feshbach resona nce occurs due to a coupl ing wi th a mol ecular sta te, tha t i s l ong -l i ved i n com pari son wi th chara cteri sti c no n- resona nt col l i sion ti mescal es. Thi s sta te i s a com p osite b oson whi ch i s descri b ed by bosoni c anni hi l ati on op erato rs . It i s para m eteri zed by a detuni ng energy fro m thresho l d, deno ted by , tha t i s dep endent o n the value of the m agneti c Ùeld. The coupl i ng streng th of to the two -pa rti cle conti nuum i s wel l chara cteri zed by a sing l e coupl i ng consta nt , i ndep endent of . These considera ti ons im ply tha t the Ha mi lto ni an gi ven i n Eq. (1 ) is no t su£ cient to account for the i m porta nt resona nce pro cessesand must b e extended to i ncorp ora te expl i citl y the coupl i ng b etween the ato m ic and m ol ecular gases ... + + (3 ) Evo luti on generated by thi s Ham i lto ni an conserves the pa rti cle num ber . Note tha t the Ham i lto ni an does not conta i n Resonance Super Ûuidi t y i n a Quant um Degenerate Fer mi Gas 393 expl i citl y, and tha t the Ùeld dep endence of the scatteri ng i s com pl etel y characteri zed by the pa ra meters: g ; ¡ , and U bg . The m agni tude of g i s deri ved i n the fol l owi ng way. W e deÙne ç as the pro duct of the m agneti c Ùeld wi dth of the resonance and the magneti c m oment di ˜erence of the Feshbach sta te and the conti nuum sta te. For l arg e val ues of ¡ , the b oson Ùeld bkk can b e adi aba ti cal l y eli m p i na ted fro m the theo ry, and then g = çU bg i s requi red i n order for the scatteri ng pro perti es to ha ve the correct dependence on m agneti c Ùeld . The essential p oi nt i s tha t thi s Ha mi l to nia n, founded on the m icro scopi c basis of resonance scatteri ng , i s wel l- b ehaved at al l detuni ngs ; even for the pa tho l ogi cal case of exact resonance. The di l uteness cri teri on is now gi ven by constra i nts whi ch requi re both the p otenti al ra nge and the spati a l extent of the Feshbach resonance sta te, to be m uch smal l er tha n the i nterpa rti cle spacing (e.g. 1). W e appl y thi s Ham i l to nia n to deri ve the self- consistent mean-Ùelds for gi ven therm o dyna m i c constra i nts by form ula ti ng a Hartree{ Fo ck{ Bo gol i ub o v theory . The m ean- Ùelds present incl ude the ferm i on numb er , the m ol ecule Ùeld ta ken to b e a classical Ùeld, and the pai ri ng- Ùeld . It i s wel l known tha t such a theo ry m ust b e renorm al i zed i n order to rem o ve the ul tra vi ol et di vergence whi ch ari ses fro m the i ncorp ora ti on of second- order vacuum contri buti ons. Thi s i mpl ies repl acing the physi cal pa ra meters i n the Ham i lto ni an, , and , by reno rm al i zed val ues so tha t observ abl esare i ndep endent of a hi gh m omentum cut- o˜ used i n the f orm ul ati on o f the e˜ecti ve Ùeld- theo ry [13]. In order to di agona l i zethe Ham i l tonia n, we construct Bo gol i ub o v qua siparti cles accordi ng to the general canoni cal tra nsform ati on [14] a cos e sin e sin cos (4 ) G i ven sing l e pa rti cl e energies, , where is the chem i cal potenti al , and the gap pa ra meter i n the qua sipa rti cl e spectrum , the two tra nsf orm ati on a ngl es are speciÙed as ta n and exp i . The corresp ondi ng qua siparti cle spectrum i s . D ro ppi ng term s of hi gher order tha n qua dra ti c i n the ferm i on op erato rs, gi ves the resul ti ng m any- b ody Ham i lto ni an (5 ) whi ch i s no w i n di agona l f orm . 394 S. Kokkel mans, M. H ol l and, R. Wal ser, M. C hi ofal o 4 . Th er m o d yn am i c so l u t io n s The next ta sk i s to cal cul ate the therm odyna mic soluti ons. Equi l i bri um p opul ati o ns for the qua sipa rti cles are gi ven by the Ferm i { Di ra c di stri buti on. The ferm i on num b er and pa i ri ng Ùeld are not onl y i nputs to the Ha mi l to ni an, but al so determ i ne the qua sipa rti cl e spectrum . Theref o re, they m ust b e self- consistent wi th the values deri ved by sum mi ng the rel evant equi l i bri um density m atri x el ements o ver al l wave num b ers. In pra cti ce, at a gi ven tem p erature, chem i cal p otenti al , and m ol ecule num b er ¢ m , thi s requi res an i tera ti ve m etho d to l ocate self- consistent val ues for f and p . The va lue of ¢ m i s cal cul ated by m inim izi ng the gra nd p otenti al ` G = À k b T ln at Ùxed tem pera ture and chem ical p otenti al , wi th denoti ng Bo l tzm ann' s consta nt. The parti ti on functi on T r exp i s found fro m Eq. (5 ). Thi s pro cedure i s m athem ati cal ly equi va lent to mi nim izi ng the Hel mho l tz free-energy at Ùxed tem p erature and density and corresponds uni quel y to the m axi mum entro py sol uti on. Thi s sol uti on ha s an associated pa rti cl e num b er, , ta ken at consta nt tem p erature and vol um e, whi ch m ust m atch the actua l pa rti cle density of the gas, so tha t the Ùnal step i s to adj ust the chemi cal potenti al unti l thi s condi ti on i s sati sÙed. The who l e pro cedure i s rep eated o ver a rang e of tem p eratures to determ ine the l o cus of therm odyna m ic equi l i bri um p oi nts. For l arg e p ositi ve detuni ngs, where the m ol ecule Ùeld coul d b e el im i nated fro m the theo ry enti rel y, regul ar BCS theo ry emerges. For thi s case, when the scatteri ng l ength is negati ve the b ehavi our of the cri ti cal tem p erature on i s gi ven by the usual exponenti al l aw [5]. In thi s pa p er, we use ferm i oni c K ato ms as an exam pl e of the a ppl i cati on of thi s theo ry . The va lues of our i ntera cti on pa ra meters and 657 K are obta i ned fro m [15]. W e Ùx the to ta l density to b e cm , a typi cal experi m enta l val ue expected for thi s quantum degenera te gas i n an opti cal tra p. W e set the detuni ng to b e , so tha t the qua si-b ound state i s detuned sli ghtl y abo ve the ato m i c resonance. For a tem p erature a bo ve , the grand potenti al surf ace i s shaped l i ke a b owl , and the value of whi ch m i ni m izes the grand p otenti al i s , associated wi th the self- consistent sol uti on . For , the gra nd po tenti al surf ace i s shaped l i ke a Mexi can ha t, and i ts m i ni mum i s gi ven by wi th a no n- zero ampl itude and an undeterm i ned pha se. The superÛuid pha se tra nsiti on theref ore l eads to a sponta neousl y bro ken sym metry . The val ue of can b e cl earl y found fro m Fi gs. 4 and 5, where we show the chem ical p otenti al , the m ol ecular density , a nd the gap as a functi on of tem p erature. W e Ùnd fo r our para m eter set f or K and al most zero detuni ng a rem ark abl y hi gh val ue fo r the cri ti cal tem pera ture , i .e. 0 6 K. Furtherm ore, we Ùnd a weak dependence of on the density , so tha t the val ue o f has m ore-or- l ess the sam e density b ehavi or as . W hen we i ncrease the detuni ng to (thi s corresponds to a magneti c Ùeld detuni ng of 0.5 G s away fro m the Feshbach resonance), the val ue o f dro ps to appro xi matel y . Resonance Super Ûuidi t y i n a Quant um Degenerate Fer mi Gas Fig. 4. C hemical p otential as a function 395 of temp erature for the system of resonance pairing (solid line). T he second order phase transition occurs at T c clear cusp is visibl e. T he dashed line show s the chemical p otential ¤ 0: 5T F , w here a of a non- interacting F ermi gas. Fig. 5. T he temp erature at the phase transition the molecular Ùeld. T his amplitude in the region T < Tc. F or T = 0, is also visibl e from the amplitud e of is non- zero only w hen the broken symmetry of the total gas sample. T he inset show s the b ehavi our of the gap  critical temp erature Tc exists the molecules form a Bose condensed fraction of 1.5% can b e related to the value of the gap at T = = U p 0. À g¢m . T he For comparison, in sup erconducto rs the analogous gap is simply the bindin g energy of a fermion pair. The system of 4 0 K ato m s, equal l y di stri buted am ong the two l owest hyp erÙne sta tes, i s a go od candi date for demonstra ti ng the superÛuid pha se tra nsiti on. It not onl y exhi bi ts a Feshbach resona nce, but al so, the i nel asti c bi na ry col l i sio n events are energeti cal l y forbi dden. Three- b ody i ntera cti ons are hi ghl y suppressed, since the asym pto ti c three- b ody wa ve functi on shoul d consist of a pro duct of three s -wa ve two -b ody scatteri ng wa ve functi ons. In a three- b ody i ntera cti on, two - particl es are al ways i n the same i ni ti al hyp erÙne sta te, and theref ore the correspondi ng s -wa ve sta te i s forbi dden. The onl y three- bo dy rel axa ti on coul d come 396 S. Kokkel mans, M. H ol l and, R. Wal ser, M. C hi ofal o fro m asym pto ti c p - wa ves, but these ha ve very l i ttl e contri buti on at the l ow tem p eratures considered. Al tho ug h the deta i l ed three- b ody col li sion pro bl em i s an i ntri cate one, thi s asym pto ti c sta ti sti cal e˜ect shoul d l ead to a l arg e suppression of the vi bra ti ona l rel axati on of quasi- bound m ol ecules. Current exp eri m ental techni ques for ul tra cold gases do not pro duce sampl es whi ch are spati al l y uni form . An opti cal di p ol e tra p m ay b e needed to conÙne the hi gh Ùeld seeking ato ms, and the condi ti ons for the sup erÛuid pha se tra nsi ti on wo ul d be sati sÙed Ùrst i n the tra p center where the densi ty i s hi ghest. The presence of the quasi-b ound m ol ecules m ay b e a very useful aspect all owing di rect observ ati on of the pha se tra nsiti on thro ug h i magi ng the mol ecular Ùeld. In concl usion, we ha ve shown tha t resona nce pa i ri ng i n an al kal i gas yi elds a qua ntum Ûuid tha t can underg o a superÛuid pha se tra nsiti on at a tem p erature compa ra bl e to the Ferm i tem perature. Thi s extra ordi na ry pro p erty pl aces thi s system i n a reg im e whi ch li es i n b etween BCS- l ike sup erconducto rs, a nd b osoni c system s whi ch may underg o BEC. Since the tra nsiti on tem p erature i s larg er tha n the lo west tem p eratures alrea dy achi eved i n a degenerate Ferm i gas, i t shoul d b e p ossibl e to study thi s new typ e of qua ntum m atter and to qua nti tati vely com pa re wi th our predi cti ons. Ac kn owl ed gm en t s W e tha nk J. Co oper, E. Cornel l , D . Ji n, C. W i eman, and B. D eMa rco for very sti m ula ti ng di scussions. Supp ort i s ackno wledg ed for M. H. fro m the Na ti onal Science Founda ti o n, for S.K. fro m the U. S. Departm ent of Energ y, O£ ce of Ba sic Energ y Sciences vi a the Chem i cal Sciences, G eosciences and Bi osciences D i vi sion, for M. C. fro m the INFM and SNS, Pi sa (Ita l y), and for R .W. fro m the Austri an Aca dem y of Sciences. R ef er en ces [1 ] M. H . A nderson, J .R. Ensher, M. R. Matthew s, C .E. Wieman, E. A . C ornell, Sc i ence 269 , 198 (1995) ; K .B. Da vis, M. -O. Mew es, M. R. Andrew s, N .J . v an Druten, D. S. Durf ee, D. M. K urn, W. K etterle, Phys. R ev. L ett. 75, 3969 (1995); C.C . Bradley , C .A . Sackett, J .J . T ollett, R. G. H ulet, Ph y s. R ev. L ett . 75, 1687 (1995); 79, 1170(E) (1997). [2 ] B. DeMarco, D. S. J in, Sc ience 285, 1703 (1999); A .G. T ruscott, K .E. Strecker, W. I. McA lexander, G.B. Partridge, R. G. H ulet, Sci ence 29 1, 2570 (2001); F. Schreck, L. K hayko vich, K .L. C orw in, G. F errari, T . Bourdel, J . C ubizoll es, C. Salomon, 080403 (2001). [3 ] J. Bardeen, L. N . C oop er, J .R. Schrie˜er, 1175 (1957); J .R. Schrie˜er, , Perseus Bo oks, Reading (Massachusetts) 1999. [4] See M. Randeria and ref erences therein in , Eds. A . Gri £n, D. W. Snoke, S. Stringari, C ambridge U n. Press, C ambridge 1995. Resonance Super Ûuidi t y i n a Quant um Degenerate Fer mi Gas [5] A .G. Rev . J. D Let t. 397 Leggett, J. Ph y s. ( Pari s) C 7, 19 (1980); M. H oubiers, H .T .C . Sto of, Ph ys. A 59, 1556 (1999); G. Bruun, Y . C astin, R. Dum, K . Burnett, Eur. Ph ys. 7, 433 (1999); H. H eiselb erg, C .J. Pethick, H . Smith, L. V iverit, Ph ys. R ev. 85, 2418 (2000). [6] M. H olland, S.J .J .M. F. K okkelmans, M. L. Chiof alo, R. W alser, Ph y s. Rev. L ett. 87, 120406 (2001). [7] J. Ranninger, S. Robaszkiew i cz, Ph ysi ca B 53, 468 (1985); R. F riedb erg, T .D. Lee, Ph ys. R ev. B 6745 (1989). [8 ] F. A . v an A beelen, B. J . V erhaar, A .J . Mo erdi j k, 4377 (1997); E. R. I. A braham, W. I. McA lexander, J .M. Gerton, R. G. H ulet, R. Cote, A . Dalgarno, R3299 (1997). [9] H .T .C. Sto of, M. H oubiers, C.A . Sackett, R. G. H ulet, (1996); R. C omb escot, 3766 (1999). 10 [10] H . F eshbach, 357 (1958); E. T iesinga, B. J. Verhaar, H .T .C . Sto of, 4114 (1993); S. Inouye, M. R. A ndrew s, J . Stenger, H .-J . Miesner, D. M. Stamp er-K urn, W. K etterle, 151 (1998). [11] E. T immermans, (1999). P. T ommasini, M. H ussein, A . K erman, [12] M. H olland, J . Park, R. Walser, 199 1915 (2001). [13] S.J .J .M. F. K okkelmans, R. W alser, M. C hiof alo, J . Milstein , M. Holland, to be publi shed. [14] N .N . Bogoliub o v, 843 (1958). [15] J.L. Bohn, 6 (1958); 053409 (2000). 794 (1958); J . V alatin,
© Copyright 2024 Paperzz