Inhomogeneity of plastic flow in constrained deformation

Inhomogeneity of Plastic Flow in Constrained
Deformation
B. C. WONSIEWICZ AND G. Y. CHIN
C r y s t a l s of c o p p e r , Cu + 6 wt pct A1, and Ag + 4 wt pct Sn w e r e c o m p r e s s e d along [111] with
flow r e s t r i c t e d to [1i2]. A f t e r d e f o r m a t i o n , four d i f f e r e n t l y o r i e n t e d r e g i o n s w e r e o b s e r v e d .
T h e i r o r i g i n is e x p l a i n e d by the i n s t a b i l i t y of the (111)[112] o r i e n t a t i o n which can r o t a t e to
e i t h e r (112)[ i i 1] o r (110)[001] during the i m p o s e d shape change. The d i r e c t i o n of r o t a t i o n i s
d e t e r m i n e d by which of two i n i t i a l l y e q u a l l y f a v o r e d p a i r s of s l i p s y s t e m s o p e r a t e . Surface
f r i c t i o n p r o d u c e s s h e a r s t r e s s e s which f a v o r one p a i r o v e r the o t h e r (depending on the sign of
the s h e a r s t r e s s ) and thus one of the final o r i e n t a t i o n s . Since the sign of the f r i c t i o n a l s t r e s s
v a r i e s s y s t e m a t i c a l l y with p o s i t i o n in the d e f o r m i n g c r y s t a l , a s y s t e m a t i c v a r i a t i o n of o r i e n t a tion r e s u l t s . A n o t h e r o r i e n t a t i o n (001)[110] h a s a l s o been o b s e r v e d to b e h a v e s i m i l a r l y . D u r i n g
r o l l i n g , the f r i c t i o n a l f o r c e s d r a w i n g the c r y s t a l into the r o l l gap a r e a l s o e x p e c t e d to l e a d to
the d i v i s i o n of the c r y s t a l into two m i s o r i e n t e d r e g i o n s . The p r e d i c t i o n s a r e g e n e r a l i z e d to
include b c c m e t a l s of (1i2)[111] and (110)[001] o r i e n t a t i o n s . P r e v i o u s l y r e p o r t e d o b s e r v a t i o n s
of r o l l e d c r y s t a l s of FeNia, F e - 3 . 5 pct Si, and F e - 2 pct A1 a r e in a c c o r d with the p r e s e n t
analysis.
A s p a r t of a l a r g e r p r o g r a m to t e s t the a p p l i c a b i l i t y
of t h e o r i e s of p o l y c r y s t a l l i n e d e f o r m a t i o n , a n u m b e r of
fcc c r y s t a l s were s u b j e c t e d to plane s t r a i n c o m p r e s s i o n - - a c o m p r e s s i o n t e s t in which the e x p a n s i o n of the
c r y s t a l i s l i m i t e d to one d i r e c t i o n , in o u r c a s e by the
w a l l s of a channel. C r y s t a l s with (111) a s the c o m p r e s sion plane and [1i2] a s the e x t e n s i o n d i r e c t i o n b e h a v e d
in an unusual m a n n e r . A f t e r d e f o r m a t i o n , two d i s t i n c t
r e g i o n s could be seen on the c o m p r e s s i o n p l a n e . A
p h o t o g r a p h of a Cu-6 wt pct A1 c r y s t a l i s shown in
F i g . 1. U n d e r a m i c r o s c o p e , d i f f e r e n t s l i p m a r k i n g s
w e r e o b s e r v e d in each r e g i o n . On the r i g h t hand side
of F i g . 1, Region A, the c h e v r o n t r a c e s of the i n t e r s e c t i n g p l a n e s w e r e e v i d e n t , F i g . 2(a), while the left
s i d e , Region B, contained p a r a l l e l s l i p t r a c e s , F i g . 2 (b).
M o s t s u r p r i s i n g l y , X - r a y pole f i g u r e s , F i g . 3, r e v e a l e d that Region A had r o t a t e d n e a r l y to (112)[111],
while Region B a p p r o a c h e d (110)[001] in the opposite
d i r e c t i o n . The r e s u l t i n g m i s o r i e n t a t i o n b e t w e e n the
two r e g i o n s was thus about 55 deg. S i m i l a r o b s e r v a t i o n s
w e r e m a d e on (111)[112] c r y s t a l s of c o p p e r and Ag4 wt pct Sn.
An e x p l a n a t i o n i s o f f e r e d through an a n a l y s i s of
the s l i p s y s t e m s b a s e d on the t h e o r i e s of T a y l o r 1 and
of Bishop and Hill. 2 F o r a f r i c t i o n l e s s d e f o r m a t i o n ,
two d i s t i n c t c o m b i n a t i o n s of s l i p s y s t e m s a r e e q u a l l y
f a v o r e d at the i n i t i a l o r i e n t a t i o n . The p r e s e n c e of
f r i c t i o n in the e x p e r i m e n t , h o w e v e r , s e t s up s h e a r
s t r e s s e s that b i a s one of the c o m b i n a t i o n s depending
on the sign of the s h e a r . T h i s sign c h a n g e s f r o m one
p o r t i o n of the c r y s t a l to a n o t h e r and, a s a r e s u l t , the
c r y s t a l s e p a r a t e s into m a c r o s c o p i c a l l y d i s t i n c t r e g i o n s .
l e a s t amount of s l i p d T , a s s u m i n g that the c r i t i c a l
s h e a r s t r e s s T is the s a m e f o r a l l s y s t e m s . F o r plane
s t r a i n c o m p r e s s i o n of a (111)[1i2] c r y s t a l , s l i p i s e x p e c t e d on the ( i i l ) plane in both the [011] and [101]
d i r e c t i o n s , r e f e r r e d to a s the c o p l a n a r p a i r , c o m b i n e d
with s l i p in the [110] d i r e c t i o n on both the ( l i i ) and
(111) p l a n e s , the c o l i n e a r p a i r , F i g . 4. T h e s e r e s u l t s
w e r e o b t a i n e d p r e v i o u s l y 3'4 b y the m e t h o d of Bishop
and Hill, which has r e c e n t l y b e e n shown s to be c o m p l e t e l y e q u i v a l e n t to the T a y l o r t h e o r y .
T h i s o r i e n t a t i o n has b e e n a n a l y z e d in m o r e d e t a i l
by D i l l a m o r e , B u t l e r and G r e e n 6 and by us 7 f o r p l a n e s t r a i n d e f o r m a t i o n with no s h e a r s t r a i n s p e r m i t t e d ,
i.e., exx =-ezz,
Cyy = e y z = ~ z x = e x y = 0, such a s
m a y be e n c o u n t e r e d in a p o l y c r y s t a l l i n e a g g r e g a t e .
The (x, y , z) d i r e c t i o n s a r e taken a s the c o m p r e s s i o n
plane n o r m a l [ 111], the c o n s t r a i n t d i r e c t i o n [ i10] and
the e x t e n s i o n d i r e c t i o n [112], r e s p e c t i v e l y . In t h i s
ANALYSIS
F r o m the T a y l o r a n a l y s i s , s l i p i s e x p e c t e d on s y s t e m s which will p r o d u c e the d e s i r e d shape change
with the l e a s t a m o u n t of w o r k ~-d7 and, t h e r e f o r e , the
B. C. WONSIEWICZand G. Y. CHIN are Members of Technical
Staff, Bell Telephone Laboratories, Murray Hill, N. J.
Manuscript submitted June 30, 1969.
METALLURGICAL TRANSACTIONS
Fig. 1--View of the compression plane of a Cu-6 wt pct A1
crystal initially compressed on (111) with expansion limited
to [112]. Regions A and B are the result of inhomogeneous
deformation. Cx x = -0.48.
VOLUME 1, JANUARY 1970-57
c a s e , if t h e r e w e r e a c o n s t r a i n t ezx = 0, it c o u l d be
s a t i s f i e d only if b o t h the c o l i n e a r and c o p l a n a r p a i r s
o p e r a t e t o g e t h e r by d e f i n i t e a m o u n t s of s h e a r . A s
the c r y s t a l d e f o r m e d h o m o g e n e o u s l y , it w o u l d r o t a t e
toward and past (112)[1il], achieving a stable orientat i o n about 8 d e g f r o m (112). H o w e v e r , in the p r e s e n t
e x p e r i m e n t a l s e t u p , t h e r e i s no c o n s t r a i n t o n ezx o r
eyz. The c r y s t a l i s t h e n p e r m i t t e d to d e f o r m by e i t h e r
p a i r of s l i p s y s t e m s a l o n e . As the f o l l o w i n g a n a l y s i s
s h o w s , t h e s e two p a i r s a r e m u t u a l l y e x c l u s i v e in that
the o p e r a t i o n of one r a i s e s i t s r e s o l v e d s h e a r s t r e s s
r e l a t i v e to the o t h e r .
With the (x, y, z) d i r e c t i o n s d e f i n e d a s a b o v e , the
r e s o l v e d s h e a r s t r e s s on e a c h of the f o u r s y s t e m s can
be c a l c u l a t e d a s f o l l o w s :
sion stress axx, plus possible constraining stresses
Oyy and axy to i n s u r e eyy = 0 and exy = O. The l a t t e r c o n s t r a i n t r e q u i r e s e q u a l o p e r a t i o n of both m e m b e r s of e a c h p a i r of s y s t e m s . F r o m E q s . [1] the r e s o l v e d s h e a r s t r e s s on b o t h m e m b e r s i s e q u a l only if
axy = O. With azz and the s h e a r s t r e s s e s e q u a l to
z e r o , the c r i t i c a l r e s o l v e d s h e a r s t r e s s "rc i s r e a c h e d
s i m u l t a n e o u s l y on a l l f o u r s y s t e m s w h e n (Xxx =-1.54-6Zc,
Z
\
T(~il)[011] = - 0 . 2 7 2 a x x + 0.272azz + 0.470~y z
Coplanar
pair
+ 0.674azx - 0.166axy
T (111)[101] = - 0 . 2 7 2 v x x + 0 . 2 7 2 a z z - 0 . 4 7 0 a y z
+ 0"674~zx + 0"166axy
[1]
T ( l i i ) [ l l 0 ] = - 0 . 2 7 2 ~ x x + 0 . 2 7 2 ~ z z + 0.470Oyz
Cotinear
pair
I
- 0 . 1 9 4 a z x - 0.666axy
/
T ( ~ l i ) [ l l 0 ] = _ 0 . 2 7 2 ~ x x + 0.272az z _ 0.470~y z
-
0.194(Xzx + 0.666Oxy
The i n f l u e n c e of e a c h s t r e s s c a n be s e e n f r o m the
e q u a t i o n . F i r s t , if f r i c t i o n i s n e g l e c t e d , the only
s t r e s s e s a c t i n g on the c r y s t a l a r e the a p p l i e d c o m p r e s -
(a)
(a)
5
Io
2o
40
0v,)
8o
(b)
(b)
Fig. 2--Photomicrographs of Regions A and B of Fig. 1. Magnification 390 times. (a) Region A. The chevron t r a c e s c o r respond to slip on intersecting planes of the colinear pair,
see Fig. 4. (b) Region B. P a r a l l e l slip traces correspond to
slip on the coplanar pair.
58-VOLUME 1, JANUARY 1970
Fig. 3--{111} X - r a y pole figures of the Regions A an d_B
shown in Fig. 1. Circles indicate the original (l11)[112]_orientation. (a) Crystal has rotated about 20 deg to (112)[111]
orientation, filled triangles. Note the presence of the twin
orientation, open triangles. (b) Crystal has rotated about 35
deg to (110)[001]. No twinning is evident.
METALLURGICAL TRANSACTIONS
tt2
i n d e p e n d e n t of Cryy w i t h i n the r a n g e -x/6-~-c < Oyy < 0.*
*It can be shown that at Oyy = 0, yieldingoccurson the (11 l) [ 101] and (11 l)
[011] systemsin addition to the four in Eqs. [1]. At ayy = -V"6 "rc,yielding
occurs on the (l~l) [01~] and (ll]) [10]'] systemsin addition to the four.
T h u s , the c o n s t r a i n i n g s t r e s s g y y c a n n o t be l a r g e r
t h a n ~ of the a p p l i e d s t r e s s .
U n d e r t h e s e s t r e s s e s , the c r y s t a l is l i k e l y to d e f o r m
i n h o m o g e n e o u s l y . If only the c o l i n e a r p a i r o p e r a t e s
l o c a l l y , the c o m p r e s s i o n a x i s w i l l b e r o t a t e d a w a y f r o m
[111] t o w a r d [001], F i g . 4. T h e r e s o l v e d s h e a r s t r e s s
w o u l d t h e n i n c r e a s e on the a c t i v e s y s t e m s w h i l e d e c r e a s i n g on the c o p l a n a r p a i r . H e n c e , o n l y the c o l i n e a r p a i r w o u l d c o n t i n u e to o p e r a t e and the r o t a t i o n
w o u l d p e r s i s t until [112] i s r e a c h e d . At t h a t o r i e n t a t i o n , two a d d i t i o n a l s l i p s y s t e m s w o u l d o p e r a t e , n a m e l y
( i ] i ) [ 0 ] 1 ] + (111)[101]. The o p e r a t i o n of the f o u r s y s t e m s would r e s u l t in a s t a b l e o r i e n t a t i o n at (112)[1]1],
w h i c h i s 19.5 d e g f r o m the s t a r t i n g o r i e n t a t i o n . N o t e
the d i f f e r e n c e f r o m the f u l l y c o n s t r a i n e d c a s e . 6
L i k e w i s e , if only the c o p l a n a r p a i r s h o u l d o p e r a t e
at the i n i t i a l o r i e n t a t i o n , the c o m p r e s s i o n a x i s w i l l be
r o t a t e d in the o p p o s i t e d i r e c t i o n t o w a r d [110], F i g . 4.
The s h e a r s t r e s s would t h e n i n c r e a s e on the a c t i v e c o p l a n a r p a i r w h i l e d e c r e a s i n g on the i n a c t i v e c o l i n e a r
p a i r . H e n c e , the c o p l a n a r p a i r w i l l c o n t i n u e to o p e r a t e ,
l e a d i n g to a f i n a l o r i e n t a t i o n (110)[001], 35 d e g f r o m
the s t a r t i n g o r i e n t a t i o n . T h e f i n a l o r i e n t a t i o n is s t a b l e
a s a r e s u l t of s l i p on the c o p l a n a r p a i r and two a d d i t i o n a l s y s t e m s , (]11)[01i] + ( ] i 1 ) [ 1 0 i ] . *
Fig. ff--Stereographic projection for the (111}[112] orientation. Slip is favored on the (111) plane (its negative (111) is
illustrated) in both the [101] and [011] directions (coplanar
pair) and on both the ( l i i ) and ( i l i ) planes in the [110] direction (colinear pair).
*The (110) [001] orientationis stable with respect to rotation about the [310]
transverse axis. It has been observedthat at large deformation, it becomesunstable
with respect to rotation around [ 110], leadingtoward a final (11 O) [112] + (11O)
[1T2] orientation.
In the a b s e n c e of f r i c t i o n , t h e n , the (111)[112] o r i e n t a t i o n i s i n h e r e n t l y u n s t a b l e , with the p o s s i b i l i t y of
s e p a r a t i o n into l o c a l r e g i o n s with f i n a l o r i e n t a t i o n s
( 1 1 2 ) [ 1 i l ] a n d (110)[001]. T h u s , the g r o s s f e a t u r e s of
the o b s e r v a t i o n s of F i g s . 1 t h r o u g h 3 a r e e x p l a i n e d .
On the o t h e r hand, the s e p a r a t i o n of the c r y s t a l into the
two m a c r o s c o p i c r e g i o n s can be t r a c e d to the p e r t u r b ing i n f l u e n c e of f r i c t i o n . A l t h o u g h f r i c t i o n w a s m i n i m i z e d by c o a t i n g the s a m p l e and d i e s with a t e f l o n
s p r a y , it was s u f f i c i e n t to a f f e c t the o r i e n t a t i o n i n s t a b i l i t y . Since Crxx i s the l a r g e r s t r e s s , the f r i c t i o n
f o r c e s a r e e x p e c t e d to be g r e a t e s t on the c o m p r e s s i o n p l a n e , g e n e r a t i n g a (rzx t e r m .
C o n s u l t i n g F i g . 5, the r i g h t - h a n d p o r t i o n of the c r y s tal i s d i s p l a c e d to the r i g h t d u r i n g c o m p r e s s i o n . T h e
f r i c t i o n a l f o r c e s which r e s i s t the d i s p l a c e m e n t a r e
d i r e c t e d to the l e f t a l o n g the - z d i r e c t i o n . T h e r e s u l t i n g s h e a r s t r e s s ~z~ i s n e g a t i v e on the u p p e r
f a c e , p o s i t i o n 1, a n d p o s i t i v e on the l o w e r f a c e , p o s i tion 4. S i n c e the l e f t p o r t i o n i s d i s p l a c e d in the oppos i t e d i r e c t i o n , s h e a r s t r e s s e s d e v e l o p e d on the two
f a c e s a r e the r e v e r s e of the r i g h t p o r t i o n . R e g i o n A
[lII]
[]
x
J[--]~.
~
<
~I[-]~
[] -7
~__ [ ]
iD
-
Qy
>z
[TT2]
qE3~
Fig. 5--Schematic of the constrained side, y face. The f r i c tional forces on the x face, represented by the half arrows,
produce a s t r e s s crz x that changes sign with position. At (1)
and (3) azx is negative while at (2) and (4) Crzx is positive.
Regions A and B of Fig. 1 through 3 correspond to the portions of compression (x) face, located directly above positions (1) and (2), respectively.
Fig. 6--Composite photomicrograph of the y face of (111)[112] Ag-4 wt pct Sn crystal. Note the division into four regions s i m i lar to Fig. 5. Similar observations were made on copper and Cu-6 wt pct A1 crystals, exx = -0.55. Magnification 6 times.
METALLURGICAL TRANSACTIONS
VOLUME 1, JANUARY 1970-59
of the c r y s t a l , Fig. 1, c o r r e s p o n d s to the c o m p r e s s i o n
plane d i r e c t l y above position 1 of Fig. 5 where n e g a tive azx p r e v a i l s , and Region B c o r r e s p o n d s to the
c o m p r e s s i o n plane d i r e c t l y above position 2 where
positive c~zx p r e v a i l s . A c c o r d i n g to Eqs. [1], the
negative azx of Region A would lower the s h e a r
s t r e s s on the c o p l a n a r p a i r while i n c r e a s i n g that on
the c o l i n e a r p a i r . T h u s , slip on the c o l i n e a r s y s t e m s
would be favored and it i s the t r a c e of these p l a n e s
which form the c h e v r o n m a r k i n g typical of Region A.
A s i m i l a r a r g u m e n t a p p l i e s for Region B where cop l a n a r slip is favored and o b s e r v e d in the p a r a l l e l
t r a c e s of Fig. 2(b). The a r g u m e n t does not depend on
the magnitude of ~zx but only on its d i f f e r e n t i a l effect in Eqs. [1]. As seen f r o m Fig. 5, the c r y s t a l
should divide into four s y m m e t r i c a l blocks with r e gions 1 and 3 at (112) and 2 and 4 at (110). A c o m posite photograph of the y face, Fig. 6~ i l l u s t r a t e s
the four r e g i o n s .
The f r i c t i o n on the side face l e a d s to some m i n o r
c o m p l i c a t i o n s . As pointed out p r e v i o u s l y , the lower
n o r m a l s t r e s s ayy is expected to r e s u l t in lower
f r i c t i o n a l s t r e s s e s Oy z and Crxy on this plane. Since
the c r y s t a l s were thin s l a b s , i n i t i a l d i m e n s i o n s about
3 by 6.5 by 8 m m , the d i s p l a c e m e n t s o c c u r m a i n l y
in the z d i r e c t i o n and so I(ryzl >>lC~xyL Cryz tends to inc r e a s e the s h e a r s t r e s s on one s y s t e m of each p a i r ,
see Eqs. [1]. F o r e x a m p l e , if the plane of Fig. 5 is
taken a s (110), ay z is negative at location 1, thus
f a v o r i n g slip on (i11)[110] over (1ii)[110]. Location
3 with positive Oyz, would f a v o r the other c o l i n e a r
40
- (11o)
[ool]
30
20
5:
0
o
ill::
LI-
@ - Cu + 6 w / o
~-Aq+4
10
A,(
w/oSn
(D
LIJ
IJ.I
rr
(,.9
W
Q
I
-.25
X
I
-.50
I
-.75
The l a t t i c e rotation due to slip can be c a l c u l a t e d dir e c t l y f r o m a knowledge of the a m o u n t of s h e a r on each
s y s t e m . As stated p r e v i o u s l y , slip on the c o l i n e a r
p a i r , favored in Region A, r e s u l t s in a r o t a t i o n toward
(112)[1il] while the c o p l a n a r p a i r f a v o r e d in Region B
r o t a t e s the c r y s t a l to (110)[001]. The c a l c u l a t e d r o t a t i o n s for the two r e g i o n s a r e shown in Fig. 7, together
with the e x p e r i m e n t a l v a l u e s obtained f r o m pole
f i g u r e s . The a g r e e m e n t i s quite good.
The rotation is a c c o m p a n i e d by a l a r g e change in
the yield s t r e s s . Region B which r o t a t e s toward
(110)[001] b e c o m e s m o r e f a v o r a b l y o r i e n t e d f o r slip
and its yield s t r e n g t h t h e o r e t i c a l l y d r o p s s t e a d i l y to
x/6z c at (110). The yield s t r e s s for Region A is expected to r e m a i n r e l a t i v e l y c o n s t a n t at about 1.5xF6-7c.
The o b s e r v e d s t r e n g t h of the composite c r y s t a l i s
roughly the a v e r a g e of the s t r e n g t h s of the two o r i e n t a t i o n s . A m o r e detailed a n a l y s i s of the s t r e s s e s will
be p r e s e n t e d in a s e p a r a t e p a p e r . ~
An i n t e r e s t i n g d e v e l o p m e n t o c c u r r e d in the low
s t a c k i n g fault e n e r g y m a t e r i a l s , Cu + 6 wt pct A1 and
Ag + 4 wt pct Sn), as the o r i e n t a t i o n of Region A app r o a c h e d (112). A twin o r i e n t a t i o n b a s e d on (111)
twinning was detected in.pole figure o b s e r v a t i o n s , Fig.
3, and t w i n - l i k e b a n d s along the (111) t r a c e could be
seen m e t a l l o g r a p h i c a l l y . No such twins were detected
in Region B. The o b s e r v a t i o n s a r e c o n s i s t e n t with the
modified T a y l o r a n a l y s i s of Chin, Hosford, and Mendorf, 9 who pointed out that t w i n n i n g i s not expected in
the o r i e n t a t i o n range (111)[]]2] to (110)[001]. Howe v e r , a s the o r i e n t a t i o n r o t a t e s from (111)[[i2] toward
( 1 1 2 ) [ [ i l ] , twinning on the (111)[ii2] twin s y s t e m b e c o m e s favored in a c c o r d a n c e with o b s e r v a t i o n s of
Region A.
THE (001)[il0] ORIENTATION
-
[~;z] Oi;)
Fig. 7--Rotation of the compression Rlane normal x vs compressive strain exx. Rotation about [110] axis toward [110] is
taken as positive, see Fig. 4. Solid line indicates the rotation
expected from theory. Symbols indicate the orientation estimated from the center intensity maxima of pole figure taken
after deformation to the strain exx.
60-VOLUME l, JANUARY 1970
LATTICE ROTATION AND ITS CONSEQUENCE ON
MECHANICAL STRENGTH AND TWINNING
-(111) [liZ]
-10
-20
s y s t e m , (111)[ 110]. O b s e r v a t i o n s n e a r the c o n t r a i n e d
face of the c r y s t a l c o n f i r m e d the p r e d i c t i o n s . On the
top s u r f a c e away from this face, e y z is r e d u c e d and
the c h e v r o n m a r k i n g of both t r a c e s b e c a m e e q u a l l y
v i s i b l e . A s i m i l a r a r g u m e n t can be made for Region
B, l o c a t i o n s 2 and 4, where one c o p l a n a r s y s t e m i s
favored. However, since both s y s t e m s s h a r e the same
plane, the slip t r a c e s would be i d e n t i c a l in e i t h e r c a s e .
T h u s , the role of f r i c t i o n is to provide a v e h i c l e for
the m a s s i v e s e p a r a t i o n of two a l r e a d y " u n s t a b l e " r e gions.
The f r i c t i o n - r e l a t e d p h e n o m e n o n i s g e n e r a l a n d
other o r i e n t a t i o n s a r e expected to be s i m i l a r l y affected. An e x a m p l e is the (001)[1i0] o r i e n t a t i o n , r e lated to (111)[ii2] by a 54.7-deg r o t a t i o n about the
[i10] t r a n s v e r s e d i r e c t i o n . H e r e , i n i t i a l l y two cop l a n a r slip s y s t e m p a i r s a r e equally favored:
(iii)[0il] + (iii)[i01] and (11i)[101] + (11i)[011]. The
f o r m e r i s b i a s e d by a positive ezx and the l a t t e r by
a negative ezx. T h u s , the c r y s t a l i s expected to b r e a k
up into two r e g i o n s with four p o s i t i o n s s i m i l a r to those
of Fig. 6. A n a l y s i s shows that the end o r i e n t a t i o n s as
a r e s u l t of slip on the two p a i r s a r e (112)[i1~] and
(]12)[111], r e s p e c t i v e l y . The p r e d i c t e d f e a t u r e s have
b e e n o b s e r v e d by us.
METALLURGICALTRANSACTIONS
DISC USSION
Sheet r o l l i n g offers an i n t e r e s t i n g e x t e n s i o n of the
p r e s e n t a n a l y s i s . The l i t e r a t u r e c o n t a i n s s e v e r a l obs e r v a t i o n s of lattice r o t a t i o n s d u r i n g r o l l i n g of single
c r y s t a l s that a r e r e m a r k a b l y s i m i l a r to the plane
s t r a i n c o m p r e s s i o n r e s u l t s r e p o r t e d h e r e . T h i s is
not unexpected since r o l l i n g and plane s t r a i n c o m p r e s s i o n a r e b a s i c a l l y s i m i l a r , although r o l l i n g is
much m o r e complex. The d e t a i l s of the d e f o r m a t i o n
depend upon s e v e r a l v a r i a b l e s such as the size of the
r o l l s r e l a t i v e to c r y s t a l t h i c k n e s s , r e d u c t i o n p e r p a s s ,
and so forth. As a s i m p l i f i c a t i o n , the f r i c t i o n a l f o r c e s
drawing the c r y s t a l into the r o l l gap produce s h e a r
s t r e s s e s of opposite sign on the top and bottom s u r face of the c r y s t a l . If the i n i t i a l c r y s t a l o r i e n t a t i o n
were unstable, such a s (111)[112], the f r i c t i o n can r e sult in the c r y s t a l s e p a r a t i n g about the m i d - t h i c k n e s s
plane into r e g i o n s of differing o r i e n t a t i o n , (110)[001]
and (112)[111]. Hatherly and Brown 1~have rolled a
(111)[112] copper c r y s t a l and o b s e r v e d l a y e r s e p a r a tions with o r i e n t a t i o n s close to the p r e d i c t e d . T h e s e
a u t h o r s a l s o suggest s u r f a c e f r i c t i o n as a cause of the
separation.
Likewise, for a c r y s t a l r o l l e d in the (001)[110] o r i e n t a t i o n , it is expected to b r e a k up into two l a y e r s ;
one l a y e r d e f o r m i n g by ( i i i ) [ 0 i t ] + (iii)[i01] s l i p and
the other by (111)[101] + (111)[011] s l i p . T h i s b e h a v i o r
was o b s e r v e d by Chikazumi, Suzuki, and Iwata n in a
r o l l e d FeNi3 c r y s t a l .
The o r i e n t a t i o n s c o n s i d e r e d h e r e , with [110] a s the
t r a n s v e r s e d i r e c t i o n , have t h e i r i n t e r e s t i n g c o u n t e r p a r t s in c r y s t a l s of bcc s t r u c t u r e . If {110}(111) slip
is c o n s i d e r e d , the i n d i c e s of the slip plane and slip
d i r e c t i o n a r e m e r e l y i n t e r c h a n g e d f r o m the fcc case.
The same slip s y s t e m s a r e thus expected. H o w e v e r ,
the s e n s e of lattice rotation is r e v e r s e d . It may be
a n a l y z e d that for the bcc c a s e , the (1i2)[ 111] o r i e n t a tion is unstable and is expected to rotate to e i t h e r
(001)[110] or (1il)[112] depending on the sign of f r i c tion. These end o r i e n t a t i o n s were o b s e r v e d by Dunn
and Koh ~2 on a F e - 3 . 5 pct Si c r y s t a l , by Hu and Cline 13
on a F e - 2 pct A1 c r y s t a l , and by Taoka, F u r u b a y a s h i ,
and Takeuchi ~4 on a Fe-3 pct Si c r y s t a l . The l a t t e r
a u t h o r s a l s o advanced a f r i c t i o n a l a r g u m e n t s i m i l a r
to ours,
In e a r l i e r work, Dunn ~5 r e p o r t e d that an (011)[ 100]
F e - 3 . 5 pct Si c r y s t a l s p l i t s up into two l a y e r s of diff e r e n t o r i e n t a t i o n s . By analogy with the case of
(100)[011] fcc r o l l i n g , we would expect this o r i e n t a t i o n
METALLURGICAL TRANSACTIONS
to rotate toward (111)[211] and (i11)[211] in s e p a r a t e
r e g i o n s . T h e s e a r e the r o t a t i o n s o b s e r v e d by Dunn.
It should be pointed out that f r i c t i o n can help to
s e p a r a t e m i s o r i e n t e d m a t e r i a l into m a c r o s c o p i c r e gions only if an o r i e n t a t i o n is i n h e r e n t l y u n s t a b l e . If
the o r i e n t a t i o n i s s t a b l e , the effect of f r i c t i o n is m e r e l y
to displace the o r i e n t a t i o n somewhat away f r o m its
stable point, but not to b r e a k up the c r y s t a l into g r o s s l y
misoriented regions.
F i n a l l y , although the T a y l o r - B i s h o p - H i l l a n a l y s e s
a r e b a s e d on homogeneous d e f o r m a t i o n , they r e m a i n
e s s e n t i a l l y v a l i d for i n h o m o g e n e o u s d e f o r m a t i o n .
As d e f o r m a t i o n p r o c e e d s and lattice rotation o c c u r s ,
however, the p o s s i b i l i t y of i n s t a b i l i t y m u s t be cons i d e r e d . If the c r y s t a l does s e p a r a t e into r e g i o n s of
differing o r i e n t a t i o n , the a n a l y s i s m u s t obviously be
b a s e d on the c u r r e n t r a t h e r than the i n i t i a l o r i e n t a t i o n ,
with each r e g i o n t r e a t e d as a s e p a r a t e , h o m o g e n e o u s l y
d e f o r m i n g body. 8
ACKNOWLEDGMENTS
It is a p l e a s u r e to acknowledge the a s s i s t a n c e of
Mr. R. R. Hart in these e x p e r i m e n t s . Helpful d i s c u s s i o n s were held with T. D. D u d d e r a r . T. D. Schlabach
and J. H. W e r n i c k kindly r e v i e w e d the m a n u s c r i p t .
RE FERENCES
1. G. I. Taylor: J. Inst. Metals, 1938, vol. 62, pp. 307-24; Stephen Timoshenko,
69th Anniversary Volume, pp. 218-24, The Macmillan Co., New York, 1938.
2. J. F. W. Bishop and R. Hill: Phil. Mag., 1951, vol. 42, pp. 414-27, 1298-1307.
3. G. Y. Chin, E. A. Nesbitt, and A. J. Williams: Acta Met., 1966, vol. 14, pp.
467-76.
4. W. F. Hosford: Acta Met., 1966, vol. 14, pp. 1085-94.
5. G. Y. Chin and W. L. Mammel: Trans. TMS-AIME, 1969, vol. 245, pp. 121114.
6. I. L. Di/lamore, E. Butler, and D. Green: Metal Sci. J., 1968, vol. 2, pp. 16167.
7. B. C. Wonsiewicz and G. Y. Chin: Bell Telephone Laboratories, Murray Hi/l,
N.J., 1969.
8. B. C. Wonsiewicz and G. Y. Chin: Bell Telephone Laboratories, Murray Hill,
N.J., 1969.
9. G. Y. Chin, W. F. Hosford, and D. R. Mendorf: Proe. Roy. Soc., 1969, vol.
A309, pp. 433-56.
10. M. Hatherly and K. Brown: University of New South Wales, Kensington, N.S.W.,
Australia, 1969.
11. S. Cnikazumi, K. Suzuki, and H. Iwata: J. Phys. Soc., Japan, 1957, vol. 12, pp.
1259-76.
12. P. K. Koh and C. G. Dunn: AIME Trans., 1955, vol. 203, pp. 401-6.
13. H. Hu and R. S. Cline: Trans. TMS-AIME, 1962, vol. 224, pp. 784-97.
14. T. Taoka, E. Furubayashi, and S. Takeuchi: Trans. Nat. Res. Inst. Metals
(Japan), 1967, vol. 9, pp. 158-85.
15. C G. Dunn: AIME Trans., 1946, vol. 167, pp. 373-94.
VOLUME l , J A N U A R Y 1 9 7 0 - 6 1