Warren G. Gold,r KatherineA. Glew,'zand Leal G. Dickson,3Departmentof Botany Box 355325,UnversityoJ Washngton Seatte Washngton981955325 FunctionalInfluences of Cryptobiotic SurfaceCrustsin an Alpine Washington, TundraBasinof the OlympicMountains, U.S.A. Abstract L.r) ers oi cD probiotic organisnrs(lichens.mosses.funpi. rl8ae, cyanobacterialon the soil suriaccarc common lialu.cs ofundis turbed sites in cold dc\crt\. scnri arid gras\lands.and arctic and alpine connunities. Lillle is kiown aboul thc rclationship bet$een thesecrusts and lloscring plant communities in alpine ecosystems.This study conpared the soil enlironmcnl. associ ated plant tenperarure parren1\lrnd crus! atnospheric nitrogen fixation acrilit! in rn alpine site with t$o dillerent typcs ol' . f ) f r ' h . r i . , r u . r .l n . l o n i . , r es i r l r u ufrl u . 1 . When cornpafed1()the noncnr\tedsite.bolh t,,-pes ofcrusls $crc associalcdwith changesin soil iextLrre,increasedsoil organic mairef (52 rnd 31.17.).incrc:rsedl.rre sumncr soil roisture (56 and 4l9i/.). and increasedsoil niirogen and phosphorus.Soil ,tudace\ ard ne:u surfrce soils at midda) icrc cooler by 5 to 8'C under moss-domin.rtedcrust and 10 to l1'C cooler undcr fiuticose lichen dominrlcd cru\l asconrparedto noncrusted\ufaces. However lbliage lelnperalurcsoi aduh,Dr&g/a!i.r/.rrrisd/.? cu\hioDsdid rol diiler in |h.sc rhrcc \itcs. Cooler and moister sudrce conditions:rssocialedwith $e crusls n1a| inllucncc sccd ling enablishmenrand halc lc\s cffcct on adult plants with estrblishedroot systems.Despiregreacr soil nifogcn conccntrations in the t$o clittefentcrusl sires.lealnifogcn conccntrationwas 25 to.].1% lolver in leavesof pianls grolving wi(h crustscomparcd b the srLnespeciesgro$ing ir Lh. noncrustcdsiIe.Compeiition lbf nutfientsrt the crust sitesma) oifsetgreaternuricnl conccn traiions in soils. Kno*ledge of speciiic lunclional allributlrsofdifltrent crtptobiotic sudaceswiil be inponant ibr lhe develop ment of manrgenent and reslor tion planr in alpinc ecos\'stems. lntroduction Thin biologicalcruststhatcoverthe groundsurface are a common feature of pdstine areasin andhigh alpinetundra.cold dcsertshrub-steppe, (West 1990,St. Clair iatitudepolar ecosystems and Johansen 1993, Dickson 2000). These "cryptogamic" cryptobioticcrusls(alsoknown as "microbiotic" or crusts)\'arv in thicknessfrom just a fe$'millimete$ to more than a tew ccntim e t e r sT. h e l i r r \ ' r ' o m P o \ coJf v c r l i n g p r o p o r tionsoflichens.mosses,greeneLlgae, cyanobacteria, fungi. and diatomsdcpendinguponthe envlronCryptobiotic mentanddegreeof cmstdevelopmcnt. crusts feach their greatestdevelopmentin cold andolien seasonallydry locationswherethecover of vascularplantsis sparscto modemte.Com plcx plantcorur.runities ofpatchylow shrubs,lbrbs and grassesresidein thc cryptobioticmatrix. The Currert Address: Llni!cr\ily of washington. Bothell. Interd i s c i p l i n a r yA r I s & S c i e n c e \P f o g f r l m ,B o x 3 5 8 5 3 0 .1 8 1 1 5 C a r n p u sw a ! \ 8 . B o t h e l l \ \ : A . 9 8 0 1 1 ' 8 2 1 6 'Cu||enr Addres\: Biologr- Deprrhcnr. Univcrsit,vof Puge! Sound. 1500N. $'amef Slrcet. Trcomr. wA 9li.1l6 ' C u r f e n t A d d f e s sB : i o l o g yP r o g r a mU . n i v c r s i ! vo f \ v a s h i n g ton. Se..irde.\\A 9it 195 crusts are highly susceptibleto damageand desmrction liom physical disturbance.Thc impact of human tread can compressand dislodge sections of crust, u,ith recoveryproceedingvcry slowly.if it occursat all (Brotherson et al. 1983. B e l n a p1 9 9 3 ) . Despitetheirfragility andcommonoccurrence in variousecosystems, thefunctionalrolesofthese crusts have not been extcnsively studied.Much of the researchon cmstshasconcentratedon de(Shiclds1957,West1990,1991, scriptiveanalyses Grondin andJohansen1993,St. Clair et al. 1993) and investigationsof the physiology of crust or ganisms(MacGrcgorandJohnsoD 1971,R.vchefi and Skujins 1974,Brock 1975.Fritz-Shcridan 1988.Jeffrieset al. 1993,1994,Lennihanet al. The 1994)in cold deseftand arcticccosystems. majority of detailedinvestigationsof crustorganismshasbeendoncunderhighly controlledcon ditions in the laboratory.However,the int'luence of crustson soil watef balance(Brothersonand Rushforth 1983. Eldridge 1993), erosion (Brotherson et al. 1983),and seedlingestablish ment (Woodet al. 1982.Harris et al. 1987,Parker 1996)havebeenexamincdin the field in semiarid desertsand prairies.The impact ot crustson N o r t h $ ' e sSt c i e n c eV. o l . 7 5 ,N o . 3 . 2 0 0 1 O :001 b) llic N.dhnc{ S.trarii.A*o.i.rion All rehtrresetred 315 ecos,ystemnutrient cvcling has been limited to tield measurenenlsoftheir capacityfor nitrogen fixation(RychenandSkujins197.1, Wojciechowski and Heimbrook 198,1.Fritz-Sheridan 1988. Lennihanet al. 1994.Dickson2000) engendering considerable speculation(Wcst 1990,1991, Harper and Pendleton i993). The influence of r ironc r )p l o b i oil( c ru . l . , ' n t h et h e r n t aI lni c r u c n nent ()1\'ascularplantsgrowingwithin thesccrusts hasbeenstudiedonly recentlyin theHigh Arctic (Gold 1998). There is accumulatingevidencethat indicates cryptobiotic crusts plav an impofiant role in thc developmentandnaintenanceofthe vasculilrplant connrunitiesin certainhigh arctic polrr desert ecosystems. In this harshenvironmentsubstan tial development ol higherplantcommunitiesis typically restrictedto arcasof considerablecrust development. This is a complexresultof many effectsof the crvptobioticc[ust, includingthe prevention of soil surfacc drying. enhancement ofnineral nutrienl supplyandcycling (especially nitogen). alterationsof the surtacethennal environment for thc vascular plants. and a reductiol of the physicalstresses of soil movement associatcdwith freeze-thawaction(Gold andBliss 1995a,1995b,Gold 1998,Blissand Gold 1999. Dickson 2000). Like thesearctic locations.temperatealpinc ccosystemshlrve cool, short growing seasonsand poor nutrient availability.There is litde intbnnationabouttherolesofcrypbbiotic cruslsin alpineecosystems. in part. becauseof l , ' g i \ l i . u lL l i t l i c u l l i er\n d t h c i n ! o n . p i \ u o u \n ! r ture of cmst or-sanisms. Our broad objective was to study possiblc influencesof cryptobiotic crustson vascularplant communitiesand alpine ccosystemfirnctions.An alpinebasinin theBuckhomRangcof theOlympic Mountains.Washingtonwas choscnfor study becauseof its abundantand divcrse cryptobiotic groundcoverWe specificallycomparedthethermal cnvironment(soil and air tempcratures). plant tempcratures,and the nutrient statusof soils and plants in siteswith diflerent typesof crustsand a site without cl!sts. Thc potential1brcrust contribution to ecosystemnitrogcn was turther exam ined throughlab studicsof nitrogenase activity in the different surfacctypes (two typesof crusts and lack of crusts). 316 Gold. Glew.and Dickson Methods Study Area The alpincbasinof Buckhom Mountain in the O l l r n p i iM o u n t a i n w ' . i l \ h i n g r u ni .., r u n i q u e atcr of alpinetundraat 1982m elevation(47" 62'N. 123' 07' W). The gradualcentralslopesof the basin,underlainby both sedimentaryand basaltic rock, aredeminatedby a cover of cryptobiotic crustsandscatteredalpiDeplants(e.g..Afllenr.rri.i rcsea-Arerutriu sp.,Caret sp.- D o uglasittlaevigata. Lttzula sp.. Phlox hentlersortii-Salft nivali.s, Snelowskia cuht:in ?).Although the presentsurface soil and rock appear relatively stable. the undulating landscapesuggcstspast solifluction (Glew l998.1. Threesurfacetypeswere describedandinves tigated at separatelocationsin the basin (Figure l). The ''noncrusted" surlace site had a surface of coarse-grainedmineral substratewith widely scattered vascularplants.This siteoccupieda gentle concavitvwith late-lyingsnow.Much ofthe lower basin slopeswere dominatedby a thin (< 2 cn, surfacelayer of mossesand foliose lichens over a very coane nincral substrate(the"crustedsite"). The vascuiarplant community wasdominatedby Sdli.r nivalis. Just above theselower slopcs.the nid-basin slopeswere charactcrized by a relatively thick (3 10 cm) surfacemat of fruticose lichens(thc"lichen 'site dominatedby cetrarioid lichens)with vascularspeciessuchasCcraparrrla rotundiJblia.and a numbcr of graminoids ( e.g., Ca rex p lne o t epltttLa, F esttrctt s(dinont autq, TrisetLltnspicatL!m)and composites(e.g.. Seaecio lugens,SolidagomuLtirqdiata).Vasculxrplant nomenclaturefbllows that in Buckingham et al. ( r99s). Temperature Reat onshps Temperatures were continuouslymodtorcd in thc crustedand noncrustedsitesthrough pofiions of the 1995growing seasonwith fine wire (.07 mrr diameter) thermocouplesand an clcctronic datalogger(CampbellScientilicCo.. Logan.UT). This tempemturemonitoringincludedair temp e r a t u r ea.l 5 c m h e i g h rt r e t l e c l i n a gi r r e r n p c r . r turesexpedencedat the height of thesclow stature alpineplants),sudacetemperatures,and soil temperatures at 5 cm depth.At temperatures werc nreasured at eachsiteby oncsingle-ended, shieldcd Figure L Buckiom cirque froln rhe summir of Buclihom \{ountain. The localion of the rhree reseriih sjtes are indicated.rs n . , n - r - ' L e dl.i r h e n .J - . r c n r ' r i d . u d - . ( . . were thennocouple.Surfaceandsoil temperatures collected as mean valuesof three thermocouple junctionswired in parallelandplacedat leastl0 cn-Iapart. Thirty instantaneousleadings of surface tcmperatures(each reading evenly spaced by I rn in a,Xm by 5 m grid) weretakenat thrce tines duringthe day (0800, 1200and 1800)for three days during the study pedod in eachsite to of the surfacetemverify the representaliveness peraturesrecordedby the datalogger.Thesetemperatureswere measuredby a themocouple in serted within 0.3 cm of the surface. Leaf ol four Dnriql't'irr/.4 I lq.r/.i $ere temperirlures also monitored (mean tenrperatureof 3 leaves/ in cushionusing prrallel-wiredthermocouples) cach of tbe crustedand noncrustedsites.At all threesites,surfacetemperaturesandI). /aerl8.ltul (sensorjnsenedI cm rnto cushiontemperaturcs cushion) werc also monitored lbr that period using rubbel encasedthennistorsand Hoboo elec(OnsetComputerCorp..Boume, tronicdataloggers MA.). ,1samplesper sitc. Soil from 5 cm depthwas collected in sealedtins. transpoftedimmediately to the laboratory,weighed. dried (80'C for 48 h), and reu,eighed.Theseoollectionsoccurredatier a period of at least one wcek $,itiout precipitation. Soil moisturc content was expressedon a dry weightbasis. Soil Characterlzatlon u ere Soilnitrugenrnd pho-phoru.corl(enltalionr per upsite liom thc on four samplcs measurcd per 5 cm of soil. Soil samples$erc oven dried, Gravimetdc soil water content was measuredin the middlcofthe growingseason(August19)on Soil texture was measurcdon 5 replicate samplesf'rornthe upper5 cm ofsoil immediately below the cryptogamiclayer (ifpresent).Samples were dried as above and mcchanicallysievedttt tiactions of gravel (> 2 mrr). sand(.05 to 2 mm). and silt plus clay (< .05 mm). Soil organicmattercontentwasestimatedftom in a nuftle measurcs accomplished loss-on-ignition fumace. Four samplesfrorn each site were oven dried as above.weighed,placcdinto a lurnace at 450"Ctbr 6 hours,and rewcighed.Organicmatter contentwlrsestimatedasthe proponion oldry weight lost on ignition in the furnace. NutrentAnayses CryptobioticSurfaceCrustsin Alpine Tundm 317 digestedwith a modified Kjeldhal procedure (ParkinsonandAllcn I 975), andcolorimelrically assessed on an autoanalyzerfor total N and P by thc CollegeofForest ResourcesAnalytical Labo ratory at the University of Washington,Seattle. This proceduremeasurestotal phosphoms and lntlogen of organicand inorganicammoniumforms ("Kjeldhal-N").asnitlate-Nis not included. Net nitrogenmineralizationraleswereestimated by examiningthe changcoforganic nitrogeninto il'rorganicfoms in soil coresenclosedin poly ethylenebagsandburiedh sir/ (Eno 1960.Marion andBlack )987,Jonasson et al. 1993).Fivebags of soil wcre buried at eitchsite July 19 andparallel soil subsamples taken1br analysisof inirial nutnentconditions.Theseinitial sampleswere divided in half, with onehalftiozen and the other halfoven dried asabove.The oven dried samples were analyzcdas above for Kjeldhal-N. The frozcn soil wassubsequently thaFed,air-d edat20.C in the presenccof indicatingsilicagel. and subjected to a 2M KCI exrractionu'ith agitation1br I hr. This extract was colodmetrically analyzed as above lbr estimatcsof 'available" inorganic soil ammoniunr and nitrate. Organic N was ca1culatcd by subtractionof soil KCI extractable ammonium fiom the Kjeldhal-N value.The buried bags of soil werc collected on Septembcr5 and subjcctedto the sameanalvscs. Plant tissuenitrogenconcentrationswere analyzed for greenleavesof six Douglasiq laerigdta plants and threeMlrLtartia obtusiloboin eachol the duec sitesand tbr f\ve Phkn hendersonii pltnts in eachofthe lichenandcrustedsites.Freshgreen leaftissuewascollectcdonAugust l9 andtranspofied to the laboratoryfor oven-drying at 70'C fbr 48 h. Dried plant matter was digested and anaJyzedfor N concentrationasdescribedabove fol soils. C r u r ta n dI i c h e nl u l r i e n te o n c ( n t r a l i o n \ \sc r e alsomeasured liom samplescollectedAugust 19. Tu'o ofthc most common crust associationswere chosenfronrthecmstedsite,bothwith a substantial bryophytebase.differing principally in the doninant crustoselichen component.The nlost com moncrustcontaineda lichenwithjust squalrules ofthe genusCladoniaandthe othercollectedcmst containedthe wh ite-colorccllichen Ochroleichiu (L.) Massal..At the lichensite,three tqtsaliensis common fi'uticoselichen spccieswere collected: Cetraria ericetorut Opiz.,F Iavocet ruriu t uculatct 318 Gold. Glerv,and Dickson (Belladi) Kiirnefelt& Thell. and F nivulis (L.) Klfncf'elt& Thell. (Clew 1997.I 998).The lauer two specieswere collectcdtogetherand nutrient (oncenlrillion\are thus |cporte,-lli,r composire samplesof thosctwo lichens. Nitrogen Fixation Eighteenintact samplesof crust (40 cm21werc ercisedliom threedistinctsubarcas(6 sarrples per subarea)of the crusted site on Septcmber5 and tmnsported immediately to thc labomtory. Thesc subareaswcre defined by a visual assess ment of the concentrationof a foliose lichen. Peltigera rufescens(Weis) Humb. (kno$'n to bc capablc of nitrogen flxation) in the crusl mate rial. A closely-reiated.species,Peltigerauphthosa ( L . r \ \ i l l d . . h a sb e e n' h o u n t o h e a r c r ) i r n l u r tant sourceof nitrogen input to birch lbrests in northemFinland (Kallio et al. 1976).The NoPehigerct(NP) crust conlained no to very little Peltigerc. whereasthe Moderate-Pe/rigerz(MP) and,High-Peltigerd (HP) crustscontainedmoderatc and considcrableamountsof the lichen re spectively.These samplcswere initially held at 3'C in the dark for 4lJ h and subsequenrlytrans fencd to a growth chambertbr three days of acclimationprior to experinentation.Growth cham berconditionsweresetfor 16h daysand8 h nights with air temperaturesof 25 / 5'C (day / nighg and irradiancesof 1000/ 0 !rmol/m:/s PPFD, resultingin 35 /5'C crusttemperatures. Crustswerc maintainedat maximunr hydration and high humidity by partial plastic enclosuresand rcgulaLr rristing with distilledwater On ScpternberI l, the nitrogenfixationcapabilityof thescsrmples was measuredby the cetylenc reduction tech nique(Stewanet al. 1967).The nitLrgenase cnzyme. which facilitatesnitrogenfixation. also catalyzesthe rcduction of acetyleDeto ethylenc. Thus.the conversionofacetyleneto ethylenccao be uscd as a lleasure of thc relative activity of the nitrogenaseenzyme,and hencethe potential mte of nitrogcn fixation. Each cmst sanple was tdmmedto 38.5cmr and enclosedin a glassjar into which 20 ml of acctylenewas injected.The jars were then incubatedfor 5 h in a grou'th cabinetat 25'C air tenpemture(35oCcrusttempcrature) and 600 Fmol/mr/s PPFD irradiancc.After thc incubationperiod.4.0 ml sanplesofjar -qas wele removedarrdanalyzedon a gas chromatop rdphfor cth)lenecon(enlratronI,,llo\\ingr pro cedureusedby Chapinet trl.( l99l ). Calcularions and 1l9c/c than the crustedand noncrustedsites respeclively. Soil Kjeldhal-nitrogen and phosphorusconcentrationsvaried among tlle three sites (Table 2) in parallel with organic mattcr contcnt (Tablc I ). Lichcn site soils had 9l c/rand l.:{906/cgreater Kjeldhal N and 707r and 4757o greater P than crustedand noncrustedsoilsrespectively.Pattcms ol extractablesoil inorganicnitrogenfollowed those of tot l N, but thc diffcrenceswere considerably smaller.Soilsfrom the lichensitehad55 and 154% greatcrconcentrationsof KCl-extractablenitro gen than the crustedand l]oncrustedsitesrespecrateswcrc low tively. Soil net N-mineralization and did not dilfer statisticallyamongthe sites (P=.07).thoughthereu'asa trendtowardhigher rrrcr in the hchen rite lhl]n the oth<r t\\o 'ile\ (Table2). of nitrogenfixrtion ratcs wcre done asdescribed by Chapinet al. (1991).Each crustsrmple was carefully scparatedinto P r-uferccr.r,other cryptogams.and soil/debristbllowing the acetylene reductionassay.The living componeotswereoven dried and weighed. Results SoilEnvironment The soilsofthis alpinebasinarcgenerallycoarse tertured. with little silt and clay (Table 1). The noncrusted site,which hada distinctgravclysurtace,hada higherproportionolgravel sizedpar ticles than the crusted site other two sites.The noncrustedsite alsohad a smal1,bul significantly greater,silt andclay contentthaneitherthecrusted or lichcn sitcs.Accordingly, the sandcontent of soils was lessat the noncrustedsitethan the other two sltes. ps Ternperature Relationsh On ;l rcprcscntaliveclear,waIm day (September 2, 1995) air temperaturesat 5 cm were similar above crusted and noncrustedsufaces through most of the day,reachinga maximumof about 25'C in the late aftemoon (Figure 2). Soil surlace temperaturesreachcdmaximaof 34.5'C and 38.3'C in the late aftemoon at the crusted and The mean of 30 noncrustedsitesrespectively. instantaneoussurf'acereadingsat each site was Soil organicmattercontentand moisturewere much less in the noncrustedsite than in either sitewith a continuous biologicalcover(TableI.). ofcrypLichensitesoils,with a greaterthickness toganrs.and higher vascularplant density had 527oand314%greaterorganicmallcr contentthan the crustcd and noncrustedsites respectively. Followilg the patternof organic matter contcnt. soil moisturewasgreaterin the lichen siteby 56clr. TABLE L Soil gra|inetric \\'aier content (H.O) ofganic mafter (ONI). and lc\rurc tir thc 3 sitesin Buckhorn cirque on August 19. 1995. Means afe presentedI 1 SE. Dillerenr lcttcrs indicatc signiticani differences(P<0.05) among sites b] Kru,ikal-$'al1isnonparametricANO\A and Tukcy's rultiple nreancomparisons. -t H.O \onc.u!Ied Cruncd Lichen 1 1 . . 1 1 0a. 6 69.5t 3.8c .ii Gravel ?.,ON,I t 7 . 3r l . r a 1 8 . 0 1 1b. 7 22.,116.7 ab 6 . 5r 0 . 2 a r 7 . 7 1 1 .b2 1 6 . 9 1 1 .c9 t: Sand % Sih + Clay 5 6 . 2 1 1 .a0 1J0.0 t 3.6b 76.5r 6.5b 6 . 5 11 . 7a 2 . 0 1 0 . b2 Llt0.tb TABLE L Concentradois oI sojl Kjcldhal nitrogen (N) and phosphorus(P), Kcfertr.rctable anmonium (NH,) plus nilratc (NO.). and net niuogcn lnincralizaiion rate,i for three re\errch sites in Buclhom cirque. Means (n =.1 5)arc prc \ented t SE. Dillcrcnl lcttcrs indicatesignificant(l'<0.05 )differencesamongsites$ithir eachnutrienl conponcnt b) eirherANOVA or Krulkal wallis nonpafametricANO\A rnd Tukey's muhiple mcJn lumpuLi .un\ 7 N Noncrustcd Crustcd l-ichen 0 . l l t 0 . 0 1a 0 . 8 7 1 0 . 0b2 L66 :i 0.05c NH + NO. i[e/s) 0 . 0 8 1 0 . 0.1r 0.:7i 0.01b 0.,+6t 0.05c 5 . 0 1 0 . a6 E . l : t0 . 5b 1 2 . 7 1 0 c. 8 Ner N-Mineralization (US/Sdry soil/d) 0 . 1 8 1 0 . 0a2 0.17 1 0 . 0 1a 0 . 1 5 1 0 . 0a3 CryptobioticSurfaceCrustsin Alpine Tundra 319 o . +5 cm NoncrustedSite crusredsite 10 0 600 1200 1800 2400 Time of Day F i g u r c 2 . D i u r n a l c o u r s e so f r e n p e r a n r r e sm c a s u r e di n crusledandnoncrusledsiteson September:, 1995. N{eanhourly values arc indic:rtedfiom readings recordedc!er! 10 seconds.Su.lace rcnpefarure lalues e meansoft$o sensofsand D. l.r(1(ril.1 leal tcmpcraturesafe averagc\.dues offour cush i o n s( l l e a v c \m e a s u r e p d e r c u s h i o n ) . A i ar n ds o i l tenperaiures !'aluesare fiom singtc sensors. always less than 0.6'C dilferent fronr the mean hourly surfacevalue recordedby the datalogger fbr all threesitesat midday (datanot shown).The rangeof tempcraturevadation among the 30 instantancoussurfacereadingsat eachsite wasless than Ll'C at midday.The smallvariability among thesetempenture rcadings and the close cone spondenccof theil mean to the dataloggermean supportsthe use of the dataloggcrsudace tem320 Gold, Glew.and Dickson peraturesas representativeof surtircetenperature conditionswithin cachsite.Sudacctempera tureswercgreaterby2.2to 6.5'C in the noncrusted site than in the crusted sitc through most of the day (Figure 2). The crusted surfacc lagged behind the noncrustedsite in the rate of its midday temperaturerisc, with the maximun difference in sites of 6.5'C reachedduring thc period of midday surfacewarning. Thcse site differences were alsopronouncedat shallowsoil dcpths,\\'ith late aftemoon tcmperaturesfrorn 6.5 to 7.0'C greaterin the noncmstedsite. Midday leaf tenperaturesof D. lcer,lgctacushionsu'ere only slightly lessin the crustedsitethanthe noncrusted site (l 2'C). Over the entire measurementperiod. midday surfaceand soil temperatureswerc 5 to 8 and 5 to 6.5'C greater,respecrively,at the n o n c r u . l e\di t el h J nI h c . r u . t e d. i l c d u r i n F. u n n ) days(datanot shown).Thesedifferencesdisapp c u r e de n t i r e l li n c l o u t l lL u n d i r i o n . . Thc ground surfaceofthe site coveredby fnr ticoselichens(the "lichen" sitc) wasnuch cooler thanthe surfaceofthe noncrustedsiteduring both thedayandnight with clearskyconditions(middle ,1daysof periodshown in Figure 3). This surface cooling providedby a biological cover was much gleater for the lichen site than the crusted site. The diflerences in surfacetemperaturesat midday betweenthe lichen and noncrustedsiteswere around 10-l l cC on sunny days as comparedto the 5-8'C difference between the crusted and noncrustedsites(Figure 2). Hou'ever,as with the crusted-noncmsted sitc comparison.D. /cellgara cushlon temperaturesat the lichen site $,erc not different through nost of the day from cushions at the noncrustedsite. The cushionsdid experi ence a moderatelylower nighttime temperature (l 3'C) at the lichen sitethan the noncrustedsire follou'ingsunnydays. Nitrogen Fixation Significantnitrogenaseactivity was displayedbv a numberofcrust samplesin the Iaboratory(Table 3). Averagenirogcn fixation acrivityin the NP and LP crusts was minor, though some samples had mederaterates(> 20 pmol C2H2/rnr/h). Crust sampleswith considerable amountsofP nrfescear (HP) displayedvariable.but quite substantialrates of acetylenereduction. The large variability in acetylene reductionratesperunit sufaceareacould not be attributedto vaqringamountsofP ruf! rcens in the crusts(Figure4). In general,higherrates 40 Surtace 30 20 fl ui; a) o , ^ Dougtasiataevisata f LJ i:il:|."r3,fj.j". 20 t0 l,\,p \h]\I\v [/l \i 30 3l 3 August Septernber Frgurc 3. Dail) inslanlaneoussurtaceandD. ld.r,lSdrdcushiontemperaturesin lhe lichcn and noncrLrs!edsitcs, TABLE 3. Eth)lene production rates of crust sampleson a ground suface areabasis(Ltmol/mr/hl.Means(n = 5-6) are expressed1SE. Different letlers indi catesignificant differences(P<0.05)amongcrust types by Kruskal Wallis nonparamctic ANOVA a I d T u l ( \ ' . _ u l rf l e m . - n c o m p i n . . n , Ethylene Production (umoYn:,4r) CruslTlpe High-Pchisera M e a n1 S E Range I i . l 1 , 1 . 5a 9 . 2 1 3 . 3a 225.1 5 8 8 . 6b 1 . 22 5 . 7 2 . 32 l . 0 2 7 . l 5 3 5I. ofnitrogenaseactivity werecorelated with crusts that containedlargeramountsofP rulescet\,6Lrt there was no signilicant linear conelalion. I aa{ a n a i r-n . l- I. i..-h a. -n N . . i.t r. ^- .J e ' r Leaf nitrogenconcentrations of D. loeyigata. Minuartia obtusiloba.andPhktt hertdersonii(.0.92.57c)weregenerallywithin the lowerportionof the rangeoftypical leafN concentrationsfor vascular plants (Table.1).In both speciesexamincd at the noncrustcdsite,leaf N ooncentrationswere higher than the other two sites.despitcthe lower CryptobioticSurfaceCrustsin Alpine Tundra 321 Discussion E 100 200 tr! 500 1000 Pehigera tufescens 1500 1000 Dry Weight (mg) Figure 4. Thc rclalionship belween ethylene pfoductrcn of Lor. and High-Peht6'e,.rcrust samplesandthc dry \leight ofPlrr,,qel'd /'rlerc€n.rin the crust sample. A lincar regrcssion!vasno! signilicanr ()r = 0.13 x + 6 . 8 5 ;r r = 0 . 3 3 ;/ ' = 0 . 0 6 7 1 . TABLE,I. Concentrarionsof leaf nirrogen (t dfy weight) fbr lhree species at the thfee fe\earch sites in Buckhom cirque. N{eansO = 3-6) are presented I SE. Diflerenl letters indicale significanl (P<0.1i5) dillerences among sites withir each spcciesb! cither ANOVA and Tuke,"-'smuldple mean comparisonsor Sludcnls ! lcn, ND indi catesno data availablc. Douglutia Luerigata Noncruslcd 1.6t 0.09a Crusted 0.910.0.1 c l.ichcn 1 . 2 1 0 . 0 b5 l,tintnrtitj jbtusilL)bu 2 . 5 I 0 . 0 9a l.l t 0.09b 1 . 7 1 0 . 0 b9 ND L4 + 0.06a 1 . 6 1 0 . 0 a8 valuesof soil N at that noncrustedsite (Table2). The leaf N concentrationof plants from crusted and lichen siteswere generallysimilar,exceptfor a lower value in the crustcdsite plants of D. lae gatq. Nitrogcnconcentrations of sorneofthe dominant fruticoselichen speciesat the lichen site (C er icelo rultl xnd a composite sampleof E cr. rlata + F. nirdlis) wcrc typically low as has beenreported for suchlichens,nnging from 0.28 to 0.65%. Cmst nitrogen conccntrationswere higher than values fbr the fiuticose lichens and similar for both typesof crusts(1.3 and 1.,1%)collectedfrom the crustedsite.Both crust typeswere dominated by bryophytes (mosses).with one containilg a Iichen of the gents Clatlonia and the other containingthe lichenOchroleichiaupuLLiensis. 322 Gold, Glew, and Dickson Sudace biological crusts are conspicuouscom ponentsof communitiesin a variety of semi-arid and cool ecosystems(West 1990, St. Clair and Johansen1993).The natureofthesecryptobiotic 'urfree: dcpcnd.greirll)on the 'peciescornpo sition of the non-flowering plant elements.For instance,the relative balanceof mossesand lichenscan modify the influenceof a crust on soil moisturcbalance(BrothersonandRushforth1983). Dark-colored,thin cruststhat increaseabsorption of solar radiation can increasesudacetempera tures (Gold 1998) though this may be quite dit'terent tbr crustsdominated by light colored organisms(Kershaw 1985). Furrher,the presence of nitrogen-fixing cyanobacteriain such crusts can greatly increasenitrogcn input to a biological community (Wojciechowskiand Heimbrook 1984,Kershaw1985,Fritz-Sheridan 1988,Dickson 2000). Despite the common presence of c r y p t o b i o t ircu r { a c e i.n u l p i n el u n d r ac o m m u n i ties,detailedstudiesofcrust tunction and impact have only taken place in cold desert(West 1990, 1991)and arctjc(Gold and Bliss 1995a.1995b Gold 1998,Dickson 2000) regions.This study demonstratesthat the presenceof cryptobiotic . u r l a c e sr r e l s s o c i a l e u d i t h r l r i a l i o ni n a n u m ber of factors of the soil environment in alpine tundra. CrustsandtheSoI N,4oisture Environment The timing, patternsand availabilityofsoil moisture have fundamentalinfluenceson the compositionandproductivityof alpinecornmunities(Isard 1986,Billings1988,Walkeretal. 1993).Thepresence of cryptobiotic crusts in this alpine basin \\"ereassociated$,ith a number of soil propenies that influence soil moisture. Soils that occurred under cryptobiotic surtaceshad less coa$e tex tured particles and greater organic matter. both o l u h i c h u o u l d s e n e l o i n c r e a : el h e m o i \ l u r e holding capacityof the soil againstdrainage. Furthemore, the cooler surfacetemperaturesassociatedwith both typesof cryptobiotlc crustsin this alpine basin would serveto lower evaporative soil water loss.Our limited measuresindicatedsoil moisturewas greaterfor crust-covcred soilsthansoils underbarrenmineralsurfaces.The degreeto which crustprcsenceis directly responsible for soil moisture variation (as opposedto being simply associated with it) could only be deteminedby nranipulativefield expcriments. Anv increases in soil moisturecausedby cryptobiotic surtacesshouldfacilitateplant colonizationand development,resultingin feedbacksto further nrodif,vthe soil environrnent. continuedevaporationofrhis moisturcmi-shtoffset any increasein radiantenergyabsorptionby the dark-colored crusts. Crusts andtheSoilThermal Envronrnent Thc moditlcationof soil and surfacetemperatures by cryptobiotic crustshasdirect inplications fof flou,cring plant survival and pertbrmance,particularly in the cool environmentof an alpine 1ocation. Root growth and nutrient uptake are restrictedin cold soils (Chapin 1983).High soil surtacetempcraturescan also posc considerable problen.nfor alpineplants.Surfaceitndplant tempemturesabove 40'C are not unusualin alpine locations on warm. sunny days in the summer. Evenwhenthesclernperatures arenothigh enough to be immediatelv lethal they can place direct phvsiologicalstresson plantsas well aslncreasing plantwaterloss(Kcirncr1999). In this alpinc basin both types ofcryptobiotic crustswere associated with cooler surt'acesoil conditionsduring the daytinte.Instantaneous surface tempcraturesreachednearl1,40'C at the noncrusted site.while surfacemaximaof 30 and 35'C were recorded tbr the lichen and crusted sitesrespectively.This surfacetempenturereduction $'ith crustsis thc oppositeof effectsscenin thc High Arctic (76'N), *here a thin, dark-colored cryptobioticsurfacecausedsuface tempera ture maxina to bc up to l2'C highcr than noncrustedsurfaces(Gold 1998).In the High Arctic. the thin, dark surfacesincreasedabsorption of sdar radiation comparedto the lighFcolored mineral soil surfaces.ln contrast.the lichendominatedsurfacesof this alpine basin were coveredbv a Ioosematrix ofboth light- and darkcoloredfruticoselichensin relativelyIoosethermal contactwith the undellyingsoil surlace,keep ing the soil surlacerelativelycool.Coolersurfaces (andIesswind) werelikely responsiblc for maintainingmoistersoilsin the lichensitc.Enhanced soil moisture late in the summerprovides a further icedback to cooling thc soil surfaceas that moisture elaporates from the soil. The heavily moss-dominated crustcdsitealsohadcoolcrsurfacesthan the noncrustcdsite despitethe darker ' u r l a . ' e\ ' o l o rT . h e h r d r o p h i l i im o . s m r r r i r n t r ) effcctivelyretainsoil moistureover most of lhe slrnmcr (Brothersonand Rushtbrth1983).The Although thc noncrustedsoil surfacercached potentially stressfulhigh tempcratures(>35'C). thecanopytemperatures ofadultplants\r'eremuch lower. more closelycoupledu'ith air tenlperature thanthosesudacetcmperatures. Foliagetempera ture of matureplants in the High Arclic was also unatlectedby the changesin surfacetemperature broughtaboutby thepresence ofcrvptobioticcrusts (Gold 1998).Transpirationalandconvectivecool i n p i n h i g hr r c t i . a n dJ I p i n ee n v i r o n m e nsl .e r \ e to keep well-rooted adult plants from reaching thehigh temperatures experienced by thesunounding noncrustedsurfaces.The data in this study were recordedfbllowing a pcriod of significant rainfall that providedmoisture10sustaintranspiration and its oonsequentcooling of plant lcaf temperatures.During sustaineddrought pcriods (conrnon in Pacific Nofthwest summcrs) adult planttemperaturcs may beginto approachelevated sudace temperaturcsmore closely. ln any case. youngplantsinthis environment wouldlikely be much more sensitiveto modificationsin surface lcmperaturcs thanadultplants(Bell andBliss 1980, Chamberset al. 1990). Young plants are much smaller and consequentlyare much more ther mally coupled to the surrounding surlace temperaturcs(Cold 1998).Futhennore,with their limited root development, seedlingslack accessto water.reducingthepotcntialfor evapomtivecool ing. Heatanddesiccationarentajor nortality factorsfor alpineseedlings(Krimer 1999).The lower surfacetemperaturemaxima ofalpine sitesassociatedwith crust surlacesshouldreduceseedling mortality (from desiccationand thernal sffess). while not being of such a Iargemagnitudeto in hibit plant perfbrmancedue to low temperatures. Thesedataindicatethat onceplantsreachan adult size, there is little efl'ectof crusls on plant tenrperature. Crustsand Ecosystem Nitrogen Dynamics In our study the presenceof crusts is associated with greatertotalniffogenandavailable(inorganic.; nitrogenin the soil. Nitrogen availabilitvand dynamicshave profound inlluences on community shuclurcandecosystem processes in theRocky Mountainalpine(Bowman1992,Theodoseer al. 1996.TheodoscandBowman 1997.Steltzerand Cryptobiuic SudaceCrusts in Alpine Tundra 323 Bouman 1998).Potentialecosystemnitrogen inputsfiom nitrogenfixrtion in cryptobieticcrusts havebeenestimatedto range1'romsubstantial to predominantin cold descn(Rychcnet al. 1978. West 1990. 1991,Evansand Ehlcringcr1993). arcric (stutz 1977. Liengen and olsen 1997, Dickson 2000). subalpine(Fritz Sheridan1988) andalpine(Wo.jciechowski andHeimbrook 198,1) areas(see Kershaw 1985 for overvie*). These cstimates\\'erelargely derivedfron ratesof crust niffogenaseactivity (acet)lene rcduction). although EvansandEhleringer(1993)usedstableisotope (rsN) of soil material.The large varianal1,scs ability in acetylenereductiondatawithin sitesfrom this alpinebasjnpreventedus fiom makingmeaningful quantjtativeestimatesof the potential nitrogencontributionby thesecruststo thegcosystem. It is evident that substantitrlamountsof nitrogen are being fixed by lichens and cyanobacteriain some areasof the crust. and the high spatialvariability suggeststhat resultingefItcts on soil nitrogen availability will be patchy within thc tundra. In additionto directnitrogeninputs,crustscould nroditynitrogencyclin-uby changingratesofnitrogen transti)rnrationin the soil. Ratesof nitrogenmineralization, nitrit'icittion, anddenitrification aremediatedby soil microorganismsandare consequentlysensitiveto temperatureand molsturc conditions.Data from this studyindicatethat net nitrogen mincralizaLion(the amount of N covertedtrom organicN kr inorganictbrms minus the amounttakenup b,vsoil microorganisms) u r r r r o tr i g n i l ' r c r n t liln f l u e n e ebd5 c r y p t o g a m i c cover It is possiblethat the cooler surlacetemperaturcsofthc cryptogamicsitesoffsettheil nore favorablemoisturcconditions fbr mineralization. resulting in mineralization rates simiiar to noncrusted sites. Lelf nitrogen c o n e e n l r u l i oonl. m ! l n )\ p e \i e \ incrcascin soilswith greaternitrogenavailability (Chapin1980).However,in this alpinebasin, r ' r l p t h i , r t i i . i t c s u i t h B r e a t esr o i l n i t r o g e na r c with plrntshavinglowerleafnitrogen associated concentrations.Greater plant. cryptogam, and microbial nass at the two crust sitesmay result in grcater competition for soil nitlogen, leading to lower tissuenitrogen concentrations.Altema- 32,1 Gold. Glew,andDickson tively,lower tissuenitrogenhasbeenreportedwith fefiilization studiesunderconditionswhereother factorsgoveming photosynthesis(e.9.,temperaturc. moisture) are enhancedand carbon accumulation dilutes tissueritrogen (Jonassonet al. 1999). Nlanagement lmplicat ons Crytptobiotic crusts are generallyconsideredto be fragile and slow to recoverfbllow disturbance (Johansen and St. Clair 1986.Harriset al. 1987, St. Clair and Johansen1993,Evans and Belnap 1999).Cryptobioticcrustsoccurir many alpine aleasand thesecrustsareparticularly vulnerable to destructionby off'-trailtravel in popularalpine hiking and climbing destinations(Bell and Bliss 1973,Grabher 1982).Thus far, assessments of recreationaldamagein alpine areas(Schreiner 1974,Edwardsi 980,Cole andTrull 1992.Cole planshavefocusedmostly 1995)andmanagement on (impacts to, preservationof. and restoration of) vascularplantsratherthan cryptobiotic components. Krowledgeol theluncLional imponrnce of thesecrustsis vital to assessthe broader.ecosystemlevelimpactof potentialdisturbanoes to alpine areas.This study and others suggestimpactscouldincludechanges in soilthermal.moisture, andnutritionalpropefiies.soil stability,biogeochemicalprocesses.and the potential fbr communityinvasionby alienweedyspecies(Harris et al. 1987.Parker 1996).Further detailedinfor mation is necessaryfor land managelsto assess potentiirlconsequences of cross-countrytraveland possiblemanagementaltematives. Acknowledgements This study was supportedby a grant tiom the researchcommitteeof the Mazamas(Portland,Or egon).Pennissionto usethe field sitewasgmnted by the U.S. ForestService.The tield assistance of Julia Gold and laboratoryassistanceof Nikki Amato,JudithHillis, Ron SIetten.andBrian Witte is gratefully acknowledged.The encouragement, advice and review of this study by Larry Bliss, Ji m E r a n s l.n d J o s c p A h m m i r l t iu c r ci n . t r u m e n tal.The thoughtfulcommentsof two anonymous r e ri e u e r sl c d l o m r n y i m p r o v e m e n t . . LiteratureCited B e l l , K . L . . a n dL . C . B l i s s . 1 9 1 3 A . l p i n e d i s t u r b a n csel u d i c s . Olympic Nadonal Park, U.S.A. Biological Consefvation 5i25 12. B e l l . K . L . , a n dI - . C .B l i s s .1 9 8 0 .P l a n lr e p r o d u c t i o inn a h i g h arctic cnvironnent.,{rctic xndAlpineResearch l2:l10. Bclnap.J. 1991.Recolery ntes of cryptobioiiccmsts:rnoculent usc and asscssmentnelhods. Great Basin \_aturalist 5 3r 6 9 9 5 . Billings, WlD. 1988.Alpine vegetalion.Pagcs391 4201,rM.C. Bafbour and\\'.D. Billings (ediiors).Nonh Anrerican Tenestrial Vegetation.Cambridge Lrniversity Press. Cailbridge, UK. Bliss, L.C., and $'.G. Gold. 1999.\hscular plant reproduc tion, establishment, andgro\\'thandfteeffects ofcryp toganic crusts u ithin a polar desertecosvstem,De ! o n I s l a n d , N . \ \ ' . T . , C a n a d a .C a n a d i a nJ o u r n a lo f B o t a n ! 7 7 r 6 2 36 3 6 . B o $ m a n ,W . D . 1 9 9 1 .I n p u t sa n d s h r a g c o f n i l r r ' g e ni n $ i n ter sno$,packin an alpinc ccosystcm.Arclic and Al p i n eR e s e a r c h 2,1:ll I 215. B rock. T.D. I 975. Effect of water potcntial on a Mi. rr..)/zrlr (C,vanoph]'ceae) from a dcscr! c Lsl Joumal of Ph) cologtll:ll6 320. Bfotherson.J.D.. and S.R. Rushforth.1983.Inilucnccof cr,"-p togamic crusts on moisrure relarionshifs of soils in Navajo NatioDal N{onument.Arizom. Great Basin N aturalisl ,13:7178. Brotherson,J.D.. S.R. Rushlbrth. and J.R. Joharsen. 1983. EfTectsof long lenn grazingon cr)plogam crust covel in Na\aio \ational N{onument,Afizona. Joumal of Rangc Managenenl 36:579-581. Buckingham. N.E., E.C. Scbreiner.T.N. Kaye. J.E. Burgef. and E.L. Tisch. | 995. Flora of the Olympic Penninsula. Northwest lnterpretjveAssociation.Scatlle \\A. Chalnbers, J.C., J.A. l\'lacNfahon,and R.W Brown. 1990. Alpine seedlirg establishDrent:the influence of dis-l r I b r n i ( I ) p e .E . u l r d ) : l l 2 1 - l r I L C h a p i r , D . N { . ,L . C . B l i s s ,a n d L . J . B l e d s o e .1 9 9 1 .E n v i r o n meDtalregulation ofnitrogen fixation in a high arctic l o w l a n d e c o s y \ t e m .C a n a d i a nJ o u r n a l o f t s o t a n _ v 69:2111-2155. Chapin. F.S.. . 1980.The mireral Dutrition of wild plants. Annual Revicrv of Ecology and Sys|emadcs11:233' 260. C h a p i n .F . S . .1 1 l . 1 9 8 3 .D i r c c t a n d i n d i r c c le f l e c t so l t e m peralure on arcric plants. Polar Biology 2:,1752. Cole, D.N. 1995. Expcrimcnlal lrampling oI vegctation. L Relationship betwccn trampling intcnsil,"-and legera lion response.Jounralof Applied Ecology321203214. C o l e , D . N . , a n d S . J .T r u l l . 1 9 9 2 .Q u a n t i f , v i n|ge g c t a t i o nr c sponseto recreationaldisturbanceln the Nofih Cascadcs.Washington.North\!est Scierce 66:229-136. Dickson. L.C. 2|J0LJ.Conslrainrs to nitrogen lixatioD by clanobacledalcrustsina polar desenecos)stem.Arcdc. Antarclic and Alpine Research3l:'1(l,15. tsdwards.O.N{. |980. Thcaipinc vegeudon ol Nlount R.inief NationalPa : struclure.developmentandconsraint\. l h D D r . . e n . , r i . rI ' - r ! i r . i , \ n f \ a , h r n e r ^ n . S . 1 r l . . \\'ashington. E l d r i d e e .D . J . 1 9 9 3 .C r y p o g a m s .! a s c u l a rp l u n r s .a n d s o i l h,""drological relalions:sone pfelimin.rry fesultsfrom the semiarid \loodland! of cancm Aunralia. creat B a s i nN a t u r a l i s5t 3 : . 1 8 - 5 8 . Eno. C.F. 1960.Nitrate productio. in thc ilcld by ircub.rtirg thc soil in pobethylene bags.Soil ScienceSociet) of ,A.nericaProceedmgs2'1:277-279. E v a n s ,R - D . .a n dJ . R .E h l e r i n g e r1. 9 9 3 . A b r c a l j n l h c n i t r o gen c,vcleofandlandsl E\idcncc lron 5r'N of \oil!. O e c o l o g i r9 , 1 : 3 1 . 1 ' 3 1 7 . E v a n s ,R . D . . a n d J . B e l n a p .1 9 9 9 .l - o n g t c n n c o n s c q u c n c c s ()1dinurbance on nilrogen dr-naDics in an xrid eco s y s t e mE . c o l o g y8 0 : 1 5 0 1 6 0 . Fri!7 Shcridan.R.P 1988.Physiologicalecolog,r-ofnitrogen fixirg blue-greenalgal crusts in the upper subalpinc life zone.Journal oI Phycolog\ 2,1:302109. Gle\\'. K.A. 1991.Do vascularplanl communitie! inlluence thc slruclureof alpinelichencommunities:)Page\ I 7719.11, R. Turk and R. Zorer (editorr). Progrc\s and Problcms in Lichcnolog) in the NiDeries IAL 3. BibliothecaLichenoloeica.J. Cramer.Berlin.Ccrmany. Gleq. K.A. |998. Disribudon and diversil,"-of alpine Iichens: biotic and abioric lactors influencing alpjne lichcn corllnunities in the noftheasrOllmpic and No(h Cas cade mountalns. Ph.D. Disscrlatioll. L;ri!ersir,,- of \ \ i , h i r g o r . S c J r l c .w r , h i n : l ' , n . Cold, W:G. 1998.The influenceofcr]ptogamic crustson thc thermal en\'lronment and lcmpcratutc rel.rlions of p l a n l s i n a h i g h a r c t i cp o l a r d e s e r t ,D e | o n I s l a n d , N . W . l . . C a D a d aA. r c l i c a n dA l p i n c R c s e a r c h 30:108120. Gold. $'.G., and L.C. B liss. 1995a.The naturc of walcr limi tations for plants in a high arclic polar desei.Pages l:19 155/r T. Callaghan(ediror).Global Changeand Arctic Terestrial Ecosystems.EcostsremsResearch Repoft 10.Directorate-General Sciencc.Rcscarchrnd Dclclopmcntl European Comnission Publications. Lnxembourg. Gold. W.C.. andL.C. Bliss. 1995b.['aler limitationsandplant community developmentin a high arctic polardcserr. E c o l o g y7 6 : 1 5 5 8 I 5 6 8 . Grabherr.C. 1982.Thc impacr of tranpling bl rouristson a high ahitude grasslandin the TyroleanAlps. Austria. Vegetatio 48:209-217. C;rondin.A.8.. and J.R. JohaNen. 1993. Micfobial spatial hetefogeneit] in microbiotic cru*s in Colorado Nl tional Nlonumenl. L Alg.te. Great Basin Nrturalist 53:2.1-30. Harper. K.f.. and R.L. Pendlcton. 1993.Cl,"-anobacteria and cyanolichcns:can they enh.rnceavailability ofessential minerals 1br higher plantsl Great Basin Nalural ist 53:59-72. H a r d s .E . , I t . N . N 4 a c ka. n d M . S . B .K u . 1 9 8 7 .D e a l ho l c | ) - p togamsunderthe ash from \,lounl Sr. Helens.Anrci c a n J o u m a lo f B o l a n ) l' :. l : 1 2 . 1 91 2 5 3 . Cryptobiotic Surtlce Crustsin Alpine Tundra 325 1!ard.S.A. 1986.Factofs influcncing \oil moisture and plant communit\' dlnribudon on Ni\iot Ridge Froni liidgc. C o l o r a d o .U S A . A r c t i c a n d A l p i n e l t e s e a r c hI 8 r 8 3 96. J c i i i . s . D . L . . S . O . L i n k . a n d J . N i . K l o p n t e k .1 9 9 3 .C r f b o n dioxide fluxc! of crr"ploganic crusts. L Responscto r e s . r t u r a t i mN. e $ P h y t o l o g i s 1 t 2 5 : 1 6 31 7 3 . J e f t e r i e sD . . L . , J . \ { . K l o p a t e k .a n d S O . L i n k . 1 9 9 . 1A. c c t y lenereductionof cryptogamiccruslslron a blackbrush communiry asrclatcd lo resaturtttionand dehydration. S o i l U i o l o g ) a n d B i o c h e m i s t r y2 4 : l l 0 l | 1 0 5 . J o h a n s e . .J . R . . a n d L . L . S r . C l a i r . 1 9 8 6 .C r l p t o g a m i cs o i l c r u s t sr: e c o v e f yf r o m g r a z i n g . c e r C a n p F l o t d S t a t e Park. titah. Crcar Brsin Natur.rlist.16:612-6,10. Jonasson,S.. NI. Ha!strom. M. Jensen.and T.\: Clallaghan. I991.In situ mincralizalionofnitrogen andphosphorus oi rrclic soils alier penurbadonssinrulatingclimare c h a n g eO . e c o l o g i a9 5 r 1 7 91 8 6 . J o n a s s o nS. . . A . N 1 i c h c l s e L nK . . S c h m i d t .a n d E . V .N i c l s c n . 1999. RcspNses ir lnicrobe\ and planrs 1()changed tcrlperature, nutfient and lighl rcgimes in rhe ardic. E c o l o g ) 8 0 : 1 E 2 8l 8 , l l . K a l l i o . S . . P K a l l i o . a r d \ f L R a \ k u . 1 9 7 6 .E c o l o g l -o f D i rogen fixation in /,r,/t1se,udplr*osa (L.) Willd. In nonhem Finland.ReponsofKelo SubarcticRcscarch S l a r i o nl 3 : 1 6 - 2 2 . Kershalv,K.A. 19E5.PhysiologicalEcologv of Lichens. Can b r i d g cU n i ! . P r e s s C . a m b r i d g eL K . Komcr. Cl. 1999.Alpine Plant Life: Fu.clional Plant Ecology of High Nlounlain Ecos)nens. Springef-Verlag. Berlin. L e . n i h a n .R . . D . M . C h a p i n ,a n dL . G . D i c k s o n .1 9 9 , 1N. i r r o , gen fi\ation and pholos,,-nthesis ir high arctic forms ol Nostoc cotnnunt. Canadian Journal ol Bolan)7l:910-9.15. L i e n g e nT . . . a n dR . A . O l s e n 1 9 9 7 N . i n o g e nf i r a t i o n b ! l r e e li!ing c)anobaderia from differcnt coa\ral siles ir a high arclic tundra. Spillbcrgcn. ,A.rclicand Alpine Re\earch l9:,170 177. Mac(;regor.A. N. .rndD.E. Johnson.I 97 L CapaciiyoI dcserl : g.r1cfusr\ Io fir atinosphcric trogeD.Soil Science Societ\ ol America Prcceedings35:E.138,11. t { a l i o n , G . N { . ,a n dC . H . t s l a c k .I 9 8 7 .T h e e i i e c t o f t i n e a n d tempcraturcoll Dillogen mineraliTationrn arcfic lun dir soils. Soit Science Socicty of Amedca Joum.rl 5 l : 1 5 0 1 1- 5 0 8 . Parkef.LM. I 996. tscologicall actors afiectmg ratesof popu latjon growd and sprerd in a_\rl|!J r.i?.rrirr. an ll1 lasive e\otic \hrub. Ph.D. Disset:rtion. Unilersitt of \vashinglon. Sertrle.\\'rshington. P a r k i n s o nJ. . A . , a n d S . E .A l l e n . 1 9 7 5 A w e t o r i d a t i o np r o cedurcsuilablcibr detemination of nitrogenandrnin cral nutrientsir bidogical material.Con1municalion\ i n S o i l S c i e n c ea n d P l a n !A n a h s i \ 6 : 1 1 1 . R)cheft. R.C.. andJ. Skujins. | 97.+.Nilr ogen lixation by bluegreen algac lichcn cruns ir the Grear tsasin Dcscr!. Soil ScienceSociet! ofAnrerica Procccdingsl8:768112. Received2I Decernber1999 AcceptedJbr publicatiotr 25 Junuatl 2001 326 Gold, Glew.and Dickson R y c h c f l .R . . J . S k u j i n s .D . S o r c n s c na. n d D . P o r c e l l a .1 9 7 E . \ i , ' . i n r \ . r r r . 1 \ ) l r . r e r . . , n J f e e - l i \ :p r . r o o r g a n i s m si . d c \ c s . P a g e s2 0 - 3 0 1 , N . E .W c s la r d J . J . S k u j i n s ( e d i r o r s )N i t r o S e ni n D c s c r l E c o s \ ' n e m s Dowder. Hutchinson and Ross Publisher\. Stroudsburg.Pcnnsllvania. Schrciner.E.G. 197.1.\'esetation dlnamics anLlhumannam p l i n g i n t h r c c s u b a l p i n ec o m m u n i t i e so f O l y m p i c National Park. \'ashingto.. \'r.S. Thesis. Uni\,efsit) of Washington,Scaltlc.Wrshingion. Shields.L.M. lcl57. Algal and lichen floras in rclalion l|) ni trogcncon|enl ofceftain volcanic and aridltrnge soil\. E c o l o g , "3-8 : 6 6 1 - 6 6 3 . S t . C l . r i r L . L . a n d J . R .J o h a n s e n1. 9 9 3 .I n t r o d u c t i o nt o t h e s l m p o \ i u n o n s o i l c f u \ t c o m m u n i t i c sC . realBr\in N a t u r a l i s5t l : l , 1 . S L C l a i r . I - . 1 , .J. . R J o h a n s e na,n d S . R . I t u s h f o n h .1 9 9 3 .L i chensof soil crust comn1unilicsir the Intermountain Afea ofthc \\'cstcm United States.a;feat Uasi. Nalu r a l i s t5 3 r 5 1 2 . SleltTcr.H.. and \\'.D. Bo$lnan. 1998.Dillcrcnti.rl influence ofplant \pecieson loil nirogen transfb nations$ithin ,17.1. moist mcado$ alpine tundm. Ecos,vstcm!1:.16,1 S r c w a ( \ \ i D . P . G . P F i l T g e r a l da. n d R . H . B u r f i s . 1 9 6 1 .I i r situ studicson nilrogen lixation using thc accl,,-lene rcductiontechnique.Proceedings of d1eNation.rlAcad e m ) o f S c i e n c e sU. . S . A .5 8 : 2 0 1 I - 1 0 7 8 . Stutz. R.C. 1971. Biological nitrogen firation in hjgh arctic s o i l s ,T r u e l o v eL o w l a n d .P a g e s3 0 2 3 1 , l 1 " L . C . B l i s s (edi|or), Truelo\e Louland. Dc!|)lr Island, Canda: AHigh Arciic Ecosyncn Uni\ ersiryof AlbertaPless. Edrlonron, Can:rda. Theodose.T., C.H. Jaeger111. W:D. Bowlnan,rnd J.Cl.Schardl. 1 9 9 6 .U p t l l k ea n d a l l o c a i i o no f J N i n a l p i r e p l a n t s : inplications for rhe i poflance of compeririveabil ity in prcdicting community strxcturc in r stressful cn\'ironmenl.Oiko\ 75:59-66. Thcodose.T.. and \\lD. tsowman. 1991.Nutrient a\,ailabil it\,. pllrnt abundancc.and speciesdive|sit,vjn two al p i n et u n d r ac o n m u n i t i e s E . c o l o g i 7 8 r 1 8 6 11 8 7 2 . Walker. D.A.. J.C. Halfpennv. Nl.D. $'alker. and C.A. Wessnran.1993.LoDg-terln \tudies of snor !eger.rr i o n i n t e r a c l i o n sB. i o s c i c n c c , + l : 2 8 7 , 3 0 1 . [/est. N.E. 1990.Struclurc and function of microph)tic soil crLrslsin wildland eco\vstem of arid 1|)seDri-aridre gi|)lls.Ad\,rnce\ in EcologicalResearch20:179 223. W e n , N . E . 1 9 9 1 .N u t r i e n !c . - c i i n gi r s o i l s o f s e m i n r i da r d a r i d r e g i o n sP . a g e s1 9 5 - 3 3 2/ , . 1 . JS. k u j i n s( e d i t u ) . Semiuid Lands and l)cscrls: Soil Resourceand Rcc lamatio.. Marcel Dellet Inc. Ne$ York. $bjciechowski, \f.F. and Ni.E. ttcinbrook. 198.1.Dinjtrogcn fixaiion in alpjnc lundra Niwot Ridge, Froit R.rnge. C o l o r a d oA. r c t i c a n d A l p i n eR c l c a r c h1 6 : l - 1 0 . Wood. M.K.. R.E. Eckert Jr.. W.H. Blackburn.and F.F. Peterson.I982. 1nflucnccoi crusting soil suriacc\ |)lr emergenceand cnablishlnent of crestcd\lheatgmss. squirrcluil, thurber needlegrass.and iburwing salt bush. JournalofRange M:m.Lgemenr35i282 287.
© Copyright 2025 Paperzz