PALEOCEANOGRAPHY,VOL. 10, NO. 3, PAGES593-610,JUNE 1995 Sortablesilt and fine sedimentsize/composition slicing: Parametersfor palaeocurrent speedandpalaeoceanography I. N. McCave,B. Manighetti,andS. G. Robinson Department ofEarthSciences, University ofCambridge, Cambridge, England, UnitedKingdom Abstract.Finesediment size(< 63 Ixm)isbestmeasured bya sedimentation technique whichrecordsthewholesizedistribution. Repeatedsizemeasurement with intermediate steps ofremoval ofcomponents bydissolution, allows inference of thesize distribution of theremoved component aswellastheresidue.In thisway,thesizeof thebiogenic andlithogenic (noncarbonate) fractions canbedetermined. Observations of manysizedistributions suggest a minimum in grainsizefrequency curves at 8 to 10 Ixm.The dynamics of sediment erosion, deposition, andaggregate breakup suggest that finesediment behavior is dominantly cohesive below10-1xm grainsize,.andnoncohesive abovethat size. Thussilt coarserthan10 Ixmdisplays sizesortingin response to hydrodynamlc processes anditsproperties maybeusedto infercurrent speed.Siltthat isf'merthan10 Ixmbehaves in thesamewayasclay(< 2 !xm).Usefulparameters of the distribution are the10-63Ixmmeansizeandthepercentage 10-63Ixmin thefine fraction.We cannotusesizedistributions to distinguish the natureof the currents. Therefore, to inferwatermassadvection speeds (i.e.,themeankineticenergyof the flow,Ku),regions ofhigheddykinetic energy (KE)mustbeavoided. At thepresent, suchabyssal regions lie underthehighsurface KEof majorcurrent systems: Gulf Stream,Kuroshio, Agulhas, AntarcticCircmpolarCurrent,andBrazil/Falldand currents in theArgentheBasin.Thisis probably a satisfactory guidefor the Pleistocene. With regardto thecarbonate subfraction of thesizespectrum, sizemodes dueto bothcocco!iths andforamlnlferal fragments canbe recognized andanalyzed, withtheboundary betweenthemagainat about10 l•m. The fluxof lessthan10 l•m carbonate, at pelagicsitesabovethelysocline, is anothercandidate for a productivity indicator. Introduction Use of the distributionof sedimentcomponents as a functionof grainsizeand of sizeparametersfor the inferenceof currentstrengthhasbeencommonplace in marinegeologyfor sand-sizedmaterial. "Coarse-fraction"analyses (generallymaterial>63 or > 150 •m in diameter)are madeon selectedsizefractionsbecause the screeningprocedureresultsin greaterprecision (eliminationof size-dependant bias) and is easy to perform using sieves. This applies particularlyto shallowmarinesedimentsand otherswith an appreci- iNowat Department ofEnvironmental and Geographical Sciences, Manchester Metropolitan University,Manchester, UnitedKingdom. Copyright1995by the AmericanGeophysical Union. Paper number94PA03039. 0883-8305/95/94PA-03039510.00 ablesandfraction. For deep-seapelagicand hemipelagicsediments the sandfractionis mainlybiogenic(and is size-fractionated for isotopicwork). Lithogenic components are usuallyeitherice raftedor volcanicin origin. Proceduresand permissibleinferencesfor material of this size are well documented in standard textson sedimentology and marine geology. Here we explorenewwaysof obta_ining andinterpretingcompositional and size data from the fine fractionof deep-sea sediments. We use the terms "fine fraction" and "mud" to refer to the total material <63 !xm; "silt"for the fraction63 to 2 !xm;and "day"for <2 •m material. Severalattempts havebeenmadeto providegrainsize parametersthat respondto changesin current strength. Traditionaltexturaldiagrams(trianglesof Shepardand Folk) displaygrossaspectsof sortingbut not in a way that can be usedas an indexof current strength.In sand-sized sediments the characteristics of stratification andbedforms(ripples,dunes,etc.)maybe usedto estimatepalaeocurrent strength, minimumflow speeds canbe obtainedfromcriticalerosioncurves, and modesof transportand shearstresses canbe inferred 594 McCAVE ET AL: SORTABLE SILT AND PALEOCURRENT from the shape of size distributions[Southardand Boguchwal,1990;Miller et al., 1977;Middleton,1976; Bridge,1981].Deep-seacurrents arerarelyableto move quartzsandbut canin placesmoveforamsandto form dunes[e.g.,LonsdaleandMallair,1974],andappropriate criticalcur•eshavealsobeendeveloped for thismaterial [Miller and Komar, 1977]. Such occurrences involve significant removalof f'mersediments to leavea foram residue,with consequentlow accumulation rates and lackof stratigraphic resolution.Periodsof highcurrent speedmaythereforebe inferredfromsandsbutwiththe penaltyof low temporalresolution.Ideally,one needs semifiveparametersfrom continuously depositedfine sediments.As thesenormallyshowfew structures other than biological disturbance,size parameters are reqtfired. Considerable effort in this direction has been devotedby Ledbetterandhisassociates [Ledbetter, 1979, 1986;Johnsonet al., 1988; Haskell et al., 1991; Haskell Measurement SPEED of Fine Grain Sizes Broadly, methods of size measurementmay be dividedinto thosewhichyieldinformationon the whole size distribution and those for which the information comesfrom a sizewindowwith upperandlowerlimits. Wholesalemisunderstanding hasarisenfromattemptsto attribute significanceto differencesin parameters obtainedfor the samesedimentby differentmethods; for examplewhenthe meanor sortingfrom a Coulter Counteranalysis with a 2 to 40 •m windowis compared witha Sedigraph analysis whichhasa 0-63•m window. The CoulterCounterin thiscasedoesnot "see"the clay whichmaycomprisea significant part of the sizespectrum. The problemsare compounded bymanufacturers who makeunrealisticclaimsfor the analyticalrangeof their instruments (see alsoMcCaveand Syvitsla' [1991] and Syvitski[1991]). The bottomline is the following: (1) measurements usinga sedimentation principle(e.g., andJohnson,1993]. Their choseninstrumenthasbeen the Elzoneparticlecounter,and favoredparameterthe noncarbonate silt (4 or 5.6 to 63 or 70 •m) meansize. Comparisonof the late Glacial time trendsshownby Ledbetter andBalsam[1985]andHaskellet al. [1991]for regionsnot far aparton the U.S. EasternMargin shows a lack of congruence for inferredcurrentspeedtrends Size Am 1 • 10 • SEDIGRAI•h ,•, ;'" :.. i .•'.' ,,;.. :': •':l of the same water mass. It is not clear whether this is dueto the parameterchosenbeingrelativelyinsensitive, the influenceof nearbysources, a differencein the type of currentrecorded(eddyor meanflow), stratigraphic ntiscorrelation or a real spatialdifferencein meanflow speed. There is a needto examineall of thesefactors, includingtheparameterization of sizein relationto flow speed. One of the centralproblemsof inferringcurrents / 2o • 100 / -' g.,./ .'.: ' :'. :::: .%. A .:.ß 4'.' I' / ;1' '.•, ..• .:- .:.•, i! ::. :?. :':.' B 10 2o ::: ".'! ::: C •, ';'. ": !.:: 1o " from size is the influence of source. We seek to elimin- ate the effectsof sourcein differingways. One is to determinean externalinput functionand compare deviations of the sizetime-trendfromthatof theinput [Manighetti and McCave,this issue]. Another is to i determine the carbonate and noncarbonate size trends and look for commonbehavior[Wangand McCave, 1990;Robinsonand McCave,1994]. However,we argue below that mixing in the delivery systemsresultsin elimination of systematicsource effects on short timescales (orderof 100ka andless). Size Measurement :.,::,.:. 5 , of Fine Sediment Components It is possible,by repeatedsize measurement of a samplewithremovalof components, to inferthecompo- 9 7 5 3 Size phi nent size distributions. Size measurementitself, how- Figure1. Examples of sizedistributions measured by different instruments [fromSinger etal.,1988, Agrawal et ever,is surprisingly widelymisunderstood. a/., 1991] McCAVIE ET AL: SORTABLE SILT AND PALEOCURRENT SPEED 595 pipettemethod,Sedigraph)are capableof sensing the total amountof material presentand giviaga fairly Size Distributionsof Components accuratemeasurement of the 1 to 100 Ixmsizedistribu- The size distributionof compositionally distinct partsof the sediment canbe obtainedby determining tion (butbewareof montmorillonite [Stein,1985]);(2) electricalsensing zonecounters(Coulter,Elzone)give an accuratemeasurementin the 0.5 to 100 Ixm range, buttheydonotseeanything outsidethechosen window (e.g.,1 to 40 Ixm,2 to 80 p.m),in particulartheymiss someof the clay;(3) laserdiffractionsizers(Malvern, CILAS, Horiba,Fritsch,Coulter,Sympatek) givea fairly accuraterepresentation of the size distributionfor materialoverabout5 p.mbut againdo not "see"all the clay(Figure1). We haveusedtheSedigraph in thisworkbecause it givesthewholesizespectrum withsatisfactory resolution above1 Ixm[Jones etal., 1988;Coakley & Syvitsld, 1991]. Althoughseveral instruments giveoutputascumulative curves,we prefer to differentiatetheseto obtainthe frequency curves,(n.b.,a cumulative curveon log-log the size distribution of the sediment before and after removal of the componentand determinationof its amount. The mostobviousone is carbonate.Simply, the total free fractionis size analyzed,carbonateis removedgentlyif daysaxeto be analyzed later(e.g.,by sodiumacetateor EDTA), andtheamountof carbonate C (where1> C > 0) isdetermined ona subsample. The size distribution of the residue is then determined. The sizedistribution of thecarbonate is givenbythedifferencebetween thesizedistribution of thetotalminus(l- C) timesthesizedistribution of theresidue (Figure2). Formally,in unit massof sediment, definingthe size distribution function f(dp)asf(dp)= dm/ddp, where drn isthemass ofparticles between size dpand(dp+ ddp), then, axescan concealmostsignificantaspectsof grain-size f(d•)o = f(an)r - (1-c•(an)• wherethe subscripts C, T andR denotethe carbonate data). One methodof analyzingcomponents is to andnoncarbonate residue,T= dissectthefrequency curveintoits component distribu- fraction,totalsediment flowchartfor tionsand to seewhethertheyhavedistinctivecomposi- (C +R)= 1. Figure3 givesthe analytical requiredto generatethesedata. tion or other propertiesloser, 1972;vanAndel, 1973]. the operations Modern computerprograms[e.g.,Sheridanet al., 1987; PeakFit,1990]allowthisto be doneinteractively. The Inferenceof Current Speedfrom Particle Size Many sizeanalyses of contourites madewith different instruments on samplesfrom severalplacesshowa minimum in the size distribution be•een 20 104• • - 20 about 8 and 10 Ixm[Driscoll et al., 1985; McCave, 1985; Wang •d McCave, 1990;Massd,1993]. We will review •e erosionaland depositionalbehaviorof fine sediments and the nature of deep-seacurrentsto examinethe possiblesignificance of •s sizebreakand determine what parametersfor palaeocurrentinferencehave a goodexperimentaland theoreticalbasis. 0/25 Sorting 2O 10 •,B I 2 Sedimentsortingoccursprincipallyduringresuspe •nsionor depositionby processes of aggregate breakup andparticleselectionaccording to settling'velocity and stress. Sortingtak,• pla• throughdifferingrat,• of sedimenttra_n•port, so that originallyunsorted •ure 10 ,um 63 100 is converted downstrem into narrower distribu- tions;residuethat is s•eely moved at all, andsuccessFigure 2. Size frequen cydistributions ofcomponents of ive •ures dominatedby tr•port as bed load and a samplecontaining 65.8%CaCOa.(top) Totalsediment, thenassuspended load. Thereis a substantial regionof (middle) noncarbonate fraction, Coottom)carbonate overlapbetweenthese populations. The controlling fraction. Each of the componentsize distributionsis variablesare the criticalerosionstress(%) whichenters rescaled to 100% of the fraction. On each curve the into manyformulationsof bed-loadsedimenttransport percentage lessthan2 Ixmis indicated.Verticalaxisis rate,thecriticalsuspension stress(%) which,contraryto frequency in percentper • unit. the supposition of McCaveandSwift[1976]andMcCave 596 McCAVE ET AL: SORTABLE SILT AND PALEOCURRENT SPEED SAMPLE CORES I (approx 10cm 3)j SUBSAMPLE[, . Approx 0.5g! IWEIGHI IWBGHi IF RESIDUE CONTAINS > >5% Biosiliceous (Estimated from Co. Fract 1 PRETREATMENT(Wet) Digestorganicmatter (HeO• / boil/ wash) GASOMETRIC CALCIMETRY (3N Hcl Soln) aJ3dSmear Slide examination) [FREEZE DRYJ ß Ultrasonicdispersion; Overnightagitationin 0.1% Calgon solution WASH/CENTRIFUGE/I IIC.arbonate Conte FREEZE-DRY/WEIGH J , Bulk Sediment nt!l REMOVE BIO-OPA• (2NNaOHSolution I [WET Sl/• (63Hm) SUBS. •MPLEL ••,•n'•'• Piperr, ,-•0.5g at85øCfor5-8hrs)l 1 DISPERSE in0.1M SMEAR SLIDE:[ JCo Erect %caco,II Calgon solution, MICROSCOPICl I co.,.t(For-)II AGITATE for12hr•I EXAM,INATION I ,, Bulk Sediment %Terrigenous Content; DERIVE: I GAsOMETRIC .......... %Biosiliceous , CALCIMETRY FineFraction !FurtherCo.Fract. (3N Hcl Soln) Composition 'Studies (Foram 'counts, Stable ,[ ::isotope ratios, >5%Bio-Opal Fine Fra•ion IN RESIDUE %Carbonate; !Cd/Ca ratios,etc)i Bulk Fine Fraction DERIVE: Particle-Size Coarse Fract. %Carbonate Distribution REMOVE CaCO3: Slow digestion in 1MAcetic acidsoln WASH; (ForamCarb) CENTRIFUGE FREEZE-DRY WEIGH ' -•DRY/• lEIGH[ '"•'"'/.•" '1Toothpick / %Coars; Fractionll IDRYA IDRY ,/•VEIGH.I JSUBSAMPLE• 1, REMOVE BIO-OPAL 1(2MNeeCO3Soln. let85øCfor5 hours) IDRY./V?EIGH l TRIPLE WASH (neutralisepH) CENTRIFUGE DERIVE: Biosiliceous Fraction >63urn (Radiolarians) , REMOVE Bio-Opal 1 ß(2MNa2CO 3SolnI at85•Cfor5 hrs) I I•ine F•actiøn 11 ......... %Biosiliceous/I (Diatoms, Sponge ]1 Spicules, Rad,Frags)l DERIVE:FF %Terrieo.: I : DISPERSE in0.1 MI Calgon solution, AGITATE for12 hrs Carbonate %t .... #2I' IF Bio-Opal <5% : ISEDIGRAPH DERIVE: <10/Jm .... (= Coccoltths) , , ' Y Y ¾ ..........>.'Fraction (eg.XRD,i ß :XRF, Wet Chem) , , Fine-Fraction Size Distribution Fraction Size Distribution IDERIVE: Carbonate (or Biogenic) ..... tlFine Non-C{rbonate (or Lithogenic) I Figure3. Analyticalflow chartfor size/composition slicing. bedformscomprisevarioustypesof siltytipples [Rees, 1968;Mantz, 1978;Hollisterand McCave, 1984]. The suspensionthat occurs as a result of bedform and biogenicroughnesshoweverwill narrow this bedload betweenXoand%, particlemotionwill be asbedload region. During depositionsomegrainsand aggregates [Dade et al., 1992]. Grain-bedcontactbedformsand are sortedby being trapped in the viscoussublayer, associated bedloadsortingmechanisms will occur. The whileothersof smallersettling velocity w•, in generalof [1984],may be greater than the erosionstressfor free noncohesive silts,accordingto Dade et al. [1992],and the criticaldeposition stress('r,•).In general,'r,•< % < 'rs for noncohesive material. In the transportregion McCAVE ET AL: SORTABLE SILT AND PALEOCURRENT SPEED 597 w• < 0.64u. [Allen,1971],whereu. istheshearvelocity, gates,and erosionas involvingtheirrupture. The sea bedgenerally hasa looselayerof materialproduced by are not, and are transportedfurtherdomcurrent. biologicalaction,weaklyboundto the substrate.The Critical Erosion field erosion threshold Conditions data of Drake and Caccione [1986]fromthenorthernCalifornian shelffallwithinand Well-sorted fine sediments behave in a non-cohesive justabovethenoncohesive envelope definedbyMilleret havea meansize mannerdownto about10 Ixmdiameter. Belowthissize, al. [1977](Figure4). Thesesediments modeat 25 Ixm, and contain particlesstart to becomecohesivepartly becauseclay of 18 Ixm,a pronounced minerals,withtheirchargeirabalances, enterthe compo- -15% day. The authorsconcludethat the Shields thresholderosioncurveappliesto natural sitionalspectrum[Weaver, 1989 p. 10; McCave, 1985, noncohesive Figure 20]. Also, below this order of size, van der clayeysilts.We believethesedifferentlinesof evidence showingthat belowabout10-lxm cohesion Waals forcesbecomesignificantin particle adhesion converge, role, and that coarsersized [Russel,1980]. For equalsizedquartzparticlesat 50-nm startsto play a significant particleswill experience sortingduringpickup,dependseparation,the ratio of van der Waals attraction to particleweightis 0.2 for 10 •m, and 20 for 1 Ixm diam- ant on primaryparticlesize. eter. A 50-nmseparationtakesinto accountreal rough particlebehaviorratherthanidealspherebehaviourfor which 5rim would be more appropriate[Jamesand Williams,1982;Dade and Nowell, 1991]. The critical erosion behavior of quartz in seawatershowsthat cohesion starts to dominate for sizes less than about 10 Critical DepositionConditions Measurements of criticaldeposition stressbySelfet al. [1989] givetheapproximate relation ,• = 10ad(inSI units),thus depositionof 10-•m particlesoccursat Ixm[Unsold,1982] (Figure4). Silt flakesof > 10 stresses < 0.010Pa (shearvelocityu. < 0.32cms'•). have a thresholdshearvelocitybelow that of equant Thesevalues,obtainedin a radial laminarflow cell, are grains of similar size, regardlessof whether a linear ratherlessthanthe criticaldeposition stresses takenby dimensionor a volme equivalentdiameter is used McCaveand Swift[1976]to be approximately equalto [Mantz,1977]. The viewdevelopedbyKrone[1962]and erosionstressof particleswiththesamesettlingvelocity, Partheniades [1965]of theerosion process for cohesive andwhichyield- 0.045Pa (u, = 0.67cms'•) for 10-1xm of materialrecognises thebedasbeingmadeup of aggre- silt, or 0.015to 0.03 Pa via the analyticalexpression 5 I / x r a / bhay,our I1•! • I neSI I 10 100 000 grain size, d ,urn Figure4. Criticalbed shearstress% for erosionof quartzshowing the onsetof a cohesion effectat about 10 Ixm,after Unsold[1982]. The datain the clayrange were taken from various authors and contoured for voids ratio. "MMK data limits" refers to the limits of available high-quality dataevaluated byMilleret al. [1977]."C + D California"is the mean and rangeof in situ critical erosionstressfor clayeysilt measuredby Caccioneand Drake [1986]. Dade et al. [1992]. The trend of thesecurves,however is the same.Thisrangeof shearstresses (0.01-0.045Pa) is a little lower than that indicatedby Hunt's [1986] experimentsfor the breakup of montmorilloniteand illite flocs due to shear,namely0.04 to 0.16 Pa. For shear stressesless than the critical breakup value, aggregates are likelyto remainintactin the highshear regionof the viscoussublayer, but at highervaluesthey are likelyto be brokenup, and deposition will occuras primaryparticles. The implicationis that mostaggregateslessthan about 10 Ixm in diameterwill survive duringdeposition fromcurrents,but abovethatsizethey areincreasingly likelyto be disaggregated in theviscous sublayer. Hydrodynamlcprocesses of sortingin the viscoussublayerwill thustend to act on primaryparticlesfor sizesgreaterthan 10 Ixm.There is alsosome primarydepositionof muchlarger aggregates (marine snow)on theseafloor.Thesearesubjectto degradation and,in current-swept areas,resuspension anddeposition of their survivingcomponents [Lampitt,1985]. Thusbotherosionalanddepositional considerations indicatethat primarydisaggregated particlesizesshould be related to the fluid shear environment when the particlesare largerthanabout10-lxm.The dataare not sopreciseasto specify10 Ixmexactly, andtheregion8 Ixm(= 7 phi) to 11 Ixm(6.5 phi) maybe considered a transition regionfor thisbehaviour, but for the sakeof 598 McCAVE ET AL: SORTABLE SILT AND PALEOCURRENT SPEED 1976] and hydrography[Georgi,1981; Weatherlyand Kelley,1985].The available data,however,donotallow a relationship to be derivedbetweensiltmeansizeand Size Distributions Under Modern Ocean Currents long-termmeancurrentvelocity.Indeed,simplyusing andmean Sedimentsfrom the continentalmargins of the meanscalarspeedwouldnot be appropriate of theeffectiveness easternUnitedStates,NovaScotianRise,andArgentine velocityevenlessso. Somemeasure currents,thosewith flow speedsyielding Basin have been examinedby Bulfinchand Ledbetter of competent shearvelocity u,, _>0.7cms'• (equival[1984],Dtiscoll et el. [1985] and Ledbetterand Klaus a criticalerosion definiteness (andotheranthropomorphic reasons) we will use 10 Ixm. [1987]. In the casesof the easternUnited Statesand Argentine Basin, the noncarbonatesilt-mean size approachof Ledbetter showsa general relationship betweencoursersiltmeanandthe pathof deepwestern boundarycurrentsasdefinedby turbidity[Eittreimet el., ent to geostrophic velocityover 15 to 21 cm s'l, [Weatherly, 1984]),would need to be extractedfrom records of current meters set at 50 to 100 m above the bed.Such a measure might be(u,- u,•)•tforu, > u,•, wheret is the fractionof a year that a givenu, acts. ',: ..:::::.:.:.::.:.i..¾.o "•' .' '•' '::•PLb•%6 •'•,,•}• •'FLOW TO E 4000 "" •'.X. •' •'/'.." aTO• '..-.'.-.';'.;.;' .'•.. 5000 -• • km 1•0 • • • • 42 ø. 2000- • • 3500 X 3000 J • 41 ø - I I I I 40 ø • 1-7 4000- %X ';;.. ' N' '•--- i I I I 39 •to•r 1980 m// "::"" ":• 4O00 Suspended sed•me•; 42 ø 41 ø 4 3• - C 18.8 • E5.75 • 8.0 3•0 ' 4200 DEPTH I I 41500 5000 (m) Figure5. Distributionof (a) measured meancurrentvelocity[Hogget el., 1986],Co) suspended sediment concentration ppbby volume[McCave, 1983]and(c) siltmeansize [Bulfinchand Ledbetter,1984]acrossthe Nova ScoffartRisebetween60ø and 65øW. M½CAVE ET AL: SORTABLE SILT AND PALEOCURREI• SPEED 599 the laboratoryerosionand depositionstresses (Figure 4). (Geostrophic velocities are relatedto shearvelocity by Ug = 30u.to 22u.depending on dragcoefficient [Weatherly, 1984]). Thus experimentaldata indicatea criticalerosionshearvelocityof =0.70 cm/sfor 16 silt, which is dose to the 0.68 cm/s deduced for the HEBBLE sitebyMcCave[1988]from the data of Gross andWilliams [1988], andisproduced byU• of 15to20 cm s'•. The coarsesilt sizeparameters recordthe effectiveness (durationx work rate) of currentsfaster than this. Nature of the Currents That Sort Deep-SeaSediment lO lOO We mustnowenquireaboutthe dynamicaloriginof the currentsresponsible for resuspension of sediments, for withoutresuspension therewill be little sorting.We Figure 6. Size distributionsof sedimentfrom the Nova ScotianRise measuredby Coulter Counter[McCave, needto knowthissothatwe mayhavea securebasisfor interpretationof the propertiesof sorted sediments. 1985],showing(a) dominanceof a 4-1•mmode and a Severalidea!i?.ed casesof currenttime seriesmay be weak 10-1•mmodeunder slowcurrentsat 4000 m water imagined (Figure 8). In Figure8a the flow speedis depth,(b) bimodalstructureat 4800m depositedafter constantly above critical for a certainsize,resultingin moderatecurrentsof 5-10cm/s,and(c) well developed erosion of that material and a residue of coarser sedi16-g•mmode at 4800m depositedafter strongcurrents ment. A currentthat neverreachescritical(Figure8b) cm/s). ,um grain size 18 The data for the Nova Scotian Rise were obtained bothby Elzonecounterandexpressed assiltmeansize [Bulfinchand Ledbetter,1984]and by classicalpipette methoddisplayedas frequencycurves[Dtiscollet al., 1985]. The curveswere clearlybitnodalwith a coarse siltmodeat about16 !•m and a claymodebelow2 !•m. The heightof the '* 16-1•mmodeandthe siltmeansize increasedtowards the lower part of the rise where turbidity,hydrographic and currentmeterdataindicate strongercurrents [Weatherlyand Kelley, 1982, 1985; McCave, 1983;Richardsonet al., 1981;Hogget al., 1986; Ezerand Weatherly, 1991](Figure5). Detailedanalyses by CoulterCounterat the HEBBLE site on the Nova 16 coarse mode size .,um 14 12 10 indicates the size-sorted behavior of the silt coarser than 2•0per' cent •lay5Jo 8 fine mode 6 peak height 4 r % 2 ScotJan Rise showed a bimodal size structure in the window1.6 !•m to 80 !•m with modesat 3-4 !•m and 1217 !•m (Figure6) [McCave,1985].The 3-4 !•m fine silt modeis positively correlatedwithpercentage of clayand is thoughtto be an instrumentally truncatedremnantof the main clay peak below2 !•m. The coarsemodeis inverselycorrelatedwith % clay (Figure 7). This r , I 2•oper'cent clay5o 16 coarse mode size 14 .,um 12 n 10 = 21 •) 12 15%18 I I i coarse mode peak height about10 !•m in diameter,versusthe tinsortedcohesive Figure 7. Correlationsbetween parametersof size behaviorof the f'mesilt and day, and lendscredenceto the notion of sortable, noncohesivebehavior of the distributions fromtheNovaScotianRiseshowing sorting coarsesiltfraction. However,we cannotyet obtaina in the siltrange(seeFigure5b for meaningof fine and quantitative relationship betweensedimentary parame- coarsemodes).(a) coarsesiltmodeis coarserwithless ters and measuredcurrentspeeds. Nevertheless, the clay,(b) thereis morefinesiltmodewithmoreclay,(c) related. rangeof measured erodinganddepositing velocities on coarsemodesizeandpeakheightarepositively the Nova ScotianRise is consistent with applicabilityof Figureis afterMcCave[1985]. 600 McCAVE ET AL: SORTABLE A' KM high SILT AND PALEOCURRENT KE zero SPEED LedbetterandKlaus[1987]certainlyfollowsthe residual flow. Tidal andinertialmotionsare averaged outpriorto • mod zero low mod Uc' OUDO high estimation ofdeviations fromthemeanin calculating K•. Howeverthereare settingswherethe internaltide is of significant magnitudeand providesthe necessary addition to the mean to push the speedbeyondcritical erosionconditions (Figure8), (thedirectbaroclinic tidal currentdueto seasurfaceslopeis small,1 or 2 cms'• at most). The internaltide is intensifiedin regionswhere the localbottomslope(c•) matchesthat of the charac- I.)•_Uc-•t-zero o •, time Figure 8. Idealized time seriesof currents. The time axiscouldrepresenta scaleof daysor months. teristic.Thisis mostsimplygivenby o• = N• sin%•+ ff cos2e• [Thorpe and White,1988],in whichthe frequenciesare , for the internal tide, f for inertia (Coriolis) andN forbuoyancy, givenby3F = (g/0)(0% /&), wherep is the in situ densityand % the usual will produceno effect,eventhoughit hasa fastermean thana variablecurrent(Figure8c) whichoccasionally densityparameter. The key variablesare the bottom slope and the potentialdensitygradient. Work on exceeds critical. This is the common case of a current Porcupine Bank has shown internal tidal control of with an underlyingmean and an added source of resuspension at two depths[DicksonandMcCave,1986; variability.Finally,Figure8d represents the situationof Thorpe and White, 1988].At the deeplevels(1800-2800 zero (or verysmall)meancurrentandlargevariability m), currents near the bed exceed15 cm s'• for 1.8 to such that currents in several directions are able to move 4.1% of the time [Thorpe, 1987]. The tidal casesillussedimentbut with zero net transport.The important casesare clearlyshownin Figures8c and8d. The key tratedin Figure9 are from regionswith sedimentary featuresof currentorigin;foraminiferalsanddunesat questionis whether the inferenceto be drawn from a change in sortedsediment is of a change in theunderly- thefootof HattonDrift (Figure9a);mudwavesontop ing flow(meankineticenergyKu) or a changein the of HattonDrift (Figure9b);andfurrowsontheSaharan Rise (Figure 9c). At the sand dune site the flow variability (eddykineticenergyK•. 15cms'• mostofthetimeandisexpected tobe The originsof the mean flow are mainlydeep exceeds geostrophic currentsdrivenby temperature andsalinity erosional(for silt),whereasthe flow on top of Hatton for differences[Pondand Pickard,1983;Warren,1981]. Drift is, in thisveryshortrecord,alwayssubcritical Thereis alsoa stronginfluence of themagnitude of the erosionbut has sufficientstressto resultin sorting slopealongwhichgeostrophic currentsflow. A steeper duringdeposition. In recentyearsthe pronouncedeffectsof eddy bed slopesupports a locallysteeperisopycnal gradient as"benthic andfastercurrent,[Bowden, 1960;McCave,1982].Thus energyontheseabedhavebeenrecognized [Hollister andMcCave,1984;GrossandWilliams, on steepscarpsveryfastcurrentsareinferredgeostrop- storms" variabilityof the deepflow hicallyand measuredby currentmeters[e.g.,Warren, 1991]. In these,long-period 1973;Bird et al., 1982]. In someregionsof significant showsshortepisodesof intensesedimentresuspension eddyactivitya deepmeanflowmaybe drivenbyeddies (Figure9d). Stormshavebeen examinedin anydetail [Hollandand Rhines,1980], and Hogg et al. [1986] onlyon the NovaScotianRise wheretheyare westward directedbursts'ofenergyresultingfrom Rossbywavesuggest thatthe deepflowovertheNovaScotianRiseis like motionswhich are probably forced by the Gulf drivenin thi.qway.Thereis embedded withinthiseddyStream [Welshet al., 1991]. The motionsare coherent drivenflowa deepwestern boundary current(DWBC) throughout the water colnmnfrom top to bottom, a of Norwegian Sea OverflowWater and a deepercold filamentof AntarcticBottomWater [Weatherly and Kelley,1985]. Thus,eventhe meanflow of a DWBC, in feature also seen in the eddies near the Kuroshio Extension, wheretheabyssal K• isabout100cm• s'• less specialsettings, maynot be entirelydueto geostrophy. thanbeneaththe Gulf Stream[Schmitz,1984a,b]. This meansthatregionsof highabyssal K• The settingontheNovaScoffanRiseisjustto thenorth verticalcoherence underlie high surface K• which is mapped by satellites of the meanpositionof the Gulf Streamandunderthe path of warm-coreringsshedfrom it. The idealized usingvariabilityof seasurfaceelevation[Zlotnickiet al., 1989]or slope[Sandwelland Zhang, 1989;Shumet al., time seriesof Figure8d is thusratherunrealisticin that 1990]. regionsof higheddyenergyare likelyto havea mean Purely on the basisof sedimentary propertieswe flowdrivenbyeddies.The ArgentineBasinmaywellbe cannot distinguish whether a change in size is dueto an a placewherethe eddy and mean-flowenergyboth contributeto sedimentsorting,but theirrelativecontri- increasein the meanspeedor an increasein the vaributionscannot-bgidentified. The net size trend of abilityof speed. On the otherhand,one canidentify McCAVE ET AL: SORTABLE 2O •. I SILT AND _ PALEOCURRENT ! SPEED I 601 -. 15 10 f2 3130m Hatton Drift . 2O 1= I I,u = om$-' A C 5 o 3O • 3976 m 1week "I Saharan _1 Rise • . 2O ,_1 u. lO o ¾ 1.5•, - locally resuspended e - ._o E1.0 I • = advected peak 0.5 v• - - 22/10/• 5 29/10 Figure9. Timeseriesof deepoceancurrents measured nearbed. Internaltideson (a) a strongmeanflowand (b) a weakmeanflow(bothon HattonDrift fromMcCaveet al. [1980]),(c) a moderate meanflowovera furrowed bed[Lonsdale, 1982],(d) twoanda half weeksrecordof a stormat theHEBBLE siteontheNovaScotian Risewith(e) turbidity recordshowing mainstormon 27 October. Note tidal signalalsopresentin Figure9d, from Grossand Williams[1991]. thoseoceanic regions wherestrong meanflowandthose [1985]showsthat there is a goodrelationshipbetween wherestrong eddyvariability islikelyto occur[Dickson, modalsizeand peakheightso eitherwoulddo, but size 1983].In someregions bothsignals arefoundandthese wouldbe preferableasit is relatedto flowspeedexperiwill presentdifficultiesin interpretation of sediment. mentally.These are both rather sensitiveto analytical Clearly,animportantstrategy for theinference of flow method,so we have selectedthe mean size of the 10-63 speeds bearing onpalaeocirculation istosample regions Ixmfractionwhichis more robust. Ledbetter's4-63 Ixm wheretheeddyK• is likelyto havebeenlowandmean siltmeanincludespart of the spectrumwhichis sensitive Ku relativelyhigh. Placesto avoid are the North to currentsortingand part whichis not (Figure7). AmericanBasinnorthof about30øN,the Argentine Ledbetter[1986]showsthatthemeanresponds positively Basin, theNorthPacific neartheKuroshio, theAgulhas to measured currents in Verna Channel. We think it offSouth AfricaandmostoftheAntarctic Circumpolarwiseto cut out the 4-10 Ixm part of the sizespectrum Current[Shumet al., 1990].Thisshouldholdgoodfor which tends to make the parameterless precisely the Pliocene andPleistocene wheremeridional plate responsive because it behaves in theopposite wayto the displacements are notmorethana fewhundredkilomet- 10-63 Ixm fraction(Figures7a and 7b). Note that ers,but for earliertimes,difficultieswill be encountered. Ledbetter's[1986] Figure 2 givesU = 183.4 - 30•, relatingmeanspeedin centimeters per secondto • size, Current Related Sediment Parameters a relationship with a muchsteeperslopethan that expected froma graphofcriticalconditions [Milleretal., Thebestcurrent-related parameters areprobably 1977],whichis U = 48 - 4.5•. If thedeposition rateoff'mermaterial(< 10 Ixm)is modalor meansizeof the 10-63•m fraction.McCave 602 McCAVE ET AL: SORTABLE SILT AND PALEOCURRENT diminishedunder faster currents,because,on average, finer particlesare found in aggregates of lower settling velocity[Migniot,1968],and largerfastersettlingaggregateswhich might otherwisebe depositedare weaker and tend to break up, then one wouldexpectthe ratio of 10-63 •m material to total fine fractionto increase with current speed.A useful index could thus be a percentage-based enrichmentfactor usingthe ratio of 10-63•m material to the total fine fraction. This index is very dependanton locationin relation to sediment focusing(e.g.,on a slopeor at the bottomof a slope). Deeper areas or depressionssimplytend to receive more f'meswlnnowedfrom areas higher up, due to gravitationalsettling. Two areas may have similar currentspeedsandthiswill be reflectedin similartrends in coarse silt mean, but each will have a different percentage of fine silt and claydependanton its topographicsetting.Nevertheless, if onewishesto compare time-trendsat a singlepointwherethe topography has remainedfairly constantover the sampledperiod,the percent> 10 •m is useful.It doesnotbehavein exactly > 10um Non-Carbonate Silt' Mean Grain Size vPercentage -1 I 0.85 0I I I 1I the sameway as the coarsesilt size as the long time seriesof Figure10 shows.The amplitudeof the coarse silt sizeand percentage> 10 Ixmis stronglycoherentat the major orbitalfrequencies,but the percentagepeak leads(occurs before)thesizepeakbyabout17ka at the 125ka periodand 1.7ka at the precession periods.The part of the recordillustrated(1.2 to 0.85Ma) is dominated by precessionand tilt forcing, for which the temporallagsare not important,but we cannotexplain the 17ka lagin the eccentricity band,unlessit is related to a precession effect. With compositional slicinga percentage basedindex can be made for terrigenousand carbonatemateriM combined[Robinsonand McCave,1994]. This givesa way of eliminatingcompetinginfluenceson sediment texture,namelyto record the commonvarianceof the sizeof the carbonateand terrigenousfractions.It was suggested by WangandMcCave[1990]thatonlycurrents can act to producemore or lesssimilar effectson the > 10 Ixmbiogenicandlithogenicfractions(Figure11). The interglacial samples from HattonDrift showa clear Amplitudein > 10umNoncarbonateSilt MeanGrainSize CoherentwithAmplitudein % > 10umNoncarbonateSilt •18 O :• (S.iD. Units) Stage I SPEED 125-95 23 41 ß 19 (Periods,ky) 0.15 BW 0.9 ß . .::: .....ß 0,10 .. 0.95 0.05 Q- 1.0 ß E BAND T 1.0 <( 1.05 • 0.5 ', ß 1,1 ...........i:.'..i" o.o ... .. ............ ...'•2::- ;.. ...... ---•'-•2• +90 . ."'12::'.,. 1.15 o ... ...... • -90 :.. -180 ß ß ß ß ß ß ß 1.2 • MeanParticle Size 100-%CaCO3 ....... Percentage 0.0 0.01 0.02 0.03 0,04 0.05 0.06 0.07 Frequency(cycles/ky) Figure10. (left) Time seriesof coarsesiltmeansizeandpercentage expressed in variance units,and (right) frequencyspectrumof the coherentamplitudeof the two time series (DSDP Site 610A, Feni Drift). 0.08 McCAVE ET AL: SORTABLE SILT AND PALEOCURRENT HATTON 9 a) 8 7 6 5 phi phi 9 4 •' 8 6 5 4 I I I I 552A glacial carbonate'. c) 552A inte glacial carbonate 20 I totalCaCO3 > 75% total CaCO3 < 25% Foram 0 \J 30 ' %/phi b) 603 DRIFT 301 • • •i • • • %/phi SPEED • 10 • i • x um • i 0 100 I ' I d) 552A interglacial terrigenous I um I I 100 I 552A glacial terrigenous I Typical unsorted 20•...1 Fragments _•. •'.. _•.e•"' /•. \. I • IRD - dominated spectra 10- 0 cohesive silt •'••'J I'sortable' silt .. 1 10 100 10 100 Figure11.Average sizedistributions ofinterglacial andglacial samples forcarbonate and terrigenous components fromDSDPSite552AonHattonDriftfromWangandMcCave [1990]. Notethepronounced > 10-•xm mode inbothinterglacial components, coccolith size peaks, andlackofthese intheglacial samples. Solidanddashed linesdistinguish setsof four-sample averages fromglacialandinterglacial periods. correspondence of botha sizemodeandenrichment of sediment size. There are several modes of sediment deliverywhichmay vary on glacialto interglacialand other time scales. We must focuson the deliveryof sediments to depthsat whichthedeepcirculation affects them. This deliveryis largelyby gravitational processes not obviouswhether this should increase or decrease (turbiditycurrentsand debrisflows)but alsovia wind andshelfedgeand sloperesuspension by internaltides withincreasing currentspeed,probablydecrease. with subsequent rain-outfrom intermediatenepheloid An Aside:Wind Speed-Related SedimentParameters layers. It is oftenassumedthat turbiditycurrentsare more frequentat low standsof sealevel,yet the availall of the following;triggeringat times Par/an [1974]formulatedan atmospheric dust abledatasuggest winnowing modelin whichparticles f'merthan7 ixmare of sealevelchange,triggeringby 23 ka climaticchanges, from glacialto Holocene scavenged by rain with no sizedependence (i.e., an and uniformhigh-frequency aggregation process ofparticles withraindrops), whereas [Weaveret al., 1992;Weltjeand deBoer,1993;SchOnfeld largersizesfall out by gravitational settlingdepending and Kudrass,1991]. The massfailuresyieldinglarge turbiditycurrentsand debrisflowsinvolvefailureof ten on d2. This size limit is comparablewith the 10 chosenhere for singleparticledeposition underwater. to several tens of meters of sediment on the slope Parkin related the slope of the cumulativeweight [Embleyand Jacobi,1977],therebymixingthe products cycles[Weaverand Thomspercentage sizedistribution to the wind"vigour" Uz in of severalglacial-interglacial whichz is the heightto whichthe dustis initiallymixed on, 1993]. Basalerosionby turbidity-currents will also in the atmosphere andU is themeanmigration velocity producea mixture,andit is hardto seehowanyresediof the depositing air massacrossthe sea. This gave mentationmechanismcan deliver a pure glacial or plausible estimates of glacialwindsoffWestAfrica. interglacialsignature. Fluvial deliverydirect to the mid-latePleistocene Provenance shelfedgeoccursonlyat the rninlmaof sealevel(120to 130 m lowering,e.g. in stage2, part of stage6, etc.) Corliss etal. [1986]madetheunsupported assertion whichrepresentonly a smallproportionof the whole that there will be an influenceof changingsediment glacialperiod [Shackleton, 1987]. For the rest of the provenance throughtheglacial-interglacial cyclewhich time, sea level loweringof lessthan '• 90 m puts the affects the inference of water mass velocities from shorelinesomeway back from the edgeon the middle the coarseterrigenous and carbonatesilt relativeto thosefromtheglacial(Figure11). Themass accumulationfluxof 10-63•xmcarbonate andterrigenous sedimentcanalsobe derived,givenan agemodel,but it is 604 McCAVE ET AL: SORTABLE SILT AND P ALEOCURRENT SPEED 28 1A _ 20 ........... _ 8 K "AABW" _ 0 5000 10000 15000 20000 25000 30000 Age (cal years) 28 E 26 I •IBYD <IA.• •L .....I . I ' 'FI/t 22 20 -- 18 t .... 1610 5000 I 10000 15000 20000 I 25000 -I 30000 Age (cal years) Figure 12. Changein the coarsesilt mean size at two current-affected sitesin the NE Atlanticcompared withthesizeof theinputfunction froma nearby pelagic siterelatively unaffected bycurrents.Thetimescaleisin calender yearsandthetimesofthelastglacial maximum, terminations IA andIB andtheYoungerDryasareshown for reference [after Manighetti andMcCave,thisissue). of the shelf. The point is that materialis deliveredto in the glacials,at leastin the trade wind belt [Parkin, the deep sea via resuspension processes, not direct 1974].Thereisno clearreasonfor supposing thatwinddelivery,most of the time. The sea level miniran do resultin somerapid supplyof continentaldetritusto the deep-seacirculation,as demonstrated by maximain red/pink colorationof sedimentsbeneaththe Western wave erosion of the outer shelf at low sea level stand will yield a suspension with a coarsersilt (> 10 •m) meanthaninternalwaveerosionat highsealevelstand. TheinputfunctionofManigheta' andMcCave[thisissue], Boundary Undercurrent originating from Upper spanning the last30 ka of pelagic(includingice rafted) Palaeozoic redbedsof theCanadianMaritimeProvinces, depositionon the East ThuleanRise showsan increase duringglacialstages[Hollister andHeezen,1972]. On in the coarsesilt meansizeof about3 •m in the last7 glaciated margins directdelivery byiceoccurs to thetop ka (Figure12). Althoughthemassfluxmaybe greater of theslope,andfromiceraftingto theslopeanddeep in the glacial,the materialdoesnot havea coarsersilt seabeyond[Fillon,1985;Boulton,1990]. Ice-rafting size. We wouldnotwishto generalize fromthisprofile increasesNorth Atlantic sedimentation rates from about to other regions,but arguethat there is no a priori 2 cm/ka[Balsom& McCoy,1987]to 3 to 4 cm/kaat reasonwhythe sedimentavailableto be transported by mostonaverage[Manigheta' & McCave,thisissue], much deep-seacurrentsshouldshowsystematic short-term lessthantheenhancement thatcanoccurunderdeep shiftson timescales of 100 ka or lesswhichmightbe currentsystems on sedimentdrifts(up to 25 cm/ka). confusedwith a current-controlled origin. On much Therearebriefperiodsof veryrapidice-rafted despos- longertimescales, majortectonicandclimaticchanges ition (Heinrichlayers)in whichdirectdeliverydomi- will influencedifferencesin deliveredsize through nates[Bondet al., 1992]. Samplingschemes need to changes in mountainelevation andstreamgradientand recognize theexistence of suchlayersfor sedimentolog-weatheringstyleand intensity. ical andstratigraphic analysis. It is not obviousthattheseprocesses woulddeliver Size-Composition Slicing a coarser mixturein thecoarse siltrangeduringglacials. The earlier section on inference of size distributions A coarsebaseto turbiditcunitswouldbe expected, but the currents startoff by erodingthefinetop of earlier of components meansthat we can now subdividethe turbidites.Windsdo appearto delivera coarsermixture terrigenous andcarbonate fractions.That is to saywe McCAVE ET AL: SORTABLE SILT AND PALEOCURRENT SPEED 605 Table 1. SizeDifferentiatedComponents of Deep-SeaSediments Coarse Fraction Fine Fraction Clay, Composition <2 txm clayminerals Lithogenic Fe/Mn oxides/ hydroxides Silt Sand, 2-10 txm 10-63txm >63 txm quartz,feldspar, quartz,feldspar, rock fragments(IRD) mica, clayminerals mica,glassshards quartz,feldspar, glassshards,pumice Biogenic small coccoliths Carbonate Silica (Gephyrocapsa spp), coccolithfragments diatomfragments coccoliths(except foram.fragments Gephyrocapsa spp.) (andlarvae) foraminifera, detrital carbonate (m•) spongespicules diatomfragments diatoms, radiolaria radiolarianfragments candeterminetheproportions andsizecharacteristics of differentparts of the spectrum.The significance of a 10-•m boundaryhas been urged in relation to the terrigenous fraction. Thissizeis alsoa usefulboundary in carbonatesediments,becausevery few Pleistocene coccoliths havea settlingvelocity(Stokesian) equivalent size greater than 10 txm[Okada and Mcintyre,1977]. Abovethe lysocline,carbonate< 10 txmis dominantly coccoliths.Below the lysoclinethere may also be a componentof very small foram fragments. In North AtlanticHeinrichlayersthereis an appreciableamount procluctus, but it showsthat somedistinctions can be rapidlymadevia modalpeakheightswhichotherwise wouldrequirea lot of counting.Plottingthe downcore peakheightratiosfor Sites552Aand610Ain the upper Pliocene,Jones[1988] found a synchronous shift in relativespeciesabundances whichmaybe relatedto a circulationor productivitychange. Usingthe percentage of free (coccolith)carbonate in conjunction with an agemodelpermitsderivationof havesufficientopal to makethe effortworthwhile. Adoptionof a 10 •m boundaryallowsus to pick four sizerangesfor materialusingcommonlyaccepted classes (< 2, 2-10,10-63,> 63•m), thatis clay,freesilt, ice volume. The 10 to 63 txm carbonatematerial is mainlyfragments andlarvaeof foraminifera.In glacial sedimentsthere is sometimessignificantcarbonatesilt continuous massaccumulationrateswhich,at a shallow site like 610 (2500 m), are relatedto productivity. of free Palaeozic carbonateand Cretaceouschalk, so Spectralanalysisof theseby Robinsonand McCave vigilanceis required. In theorythe componentsubtrac- [1994]showsvery clear coherence with the modelof tion methodcouldyield the sizedistributionof carbon- orbitallyforcedicevolumefluctuations of Shackleton et ate, opal, and terrigenousfractions. However the al. [1990]at 41 and23 ka (Figure14). Thereis a very compounded errorsof sizeand componentdetermina- slightphaselag of 2 to 3 ka withproductivity following tionmeanthatit is notpossibleto determinereliablythe ice volumepeaks. The coccolithproductivityis not sizedistributionof a component of lessthan 10% of the strongly drivenby the 100ka glacial-interglacial cycle, whole. Most of the sediments we have dealt with do not andit is not alwaysassociated withwarmperiodsof low coarsesilt, and sand. Within the sand fraction it is a simplematter to physicallyseparatesubsamples using sieves.Thesesizerangeshavefairly dear (thoughnot exclusive) identities(Table 1). An exampleof what canbe donethroughrecognition of components is shownin Figure 13 wheretwo peaks in the size spectrumcan be associatedwith differentcoccolithspecies.Figure11 alsoshowstwo coccolithsizepeaksin the < 10-•m fraction. Because of the overlapin the sizeof species it hasbeennecessary to lump Reticulofenestra minuta and Dictycoccites (suchasin the ice-raftingpulsesdocumented byAndrews and Tedesco[1992]),but normallythe material consistsof foram fragments. This material is also sortable, and allows derivation of a parallel current strengthindex(the meansizeof the > 10-1xmcarbonate silt) to go alongsidethat based on the terrigenous fraction. Thiswill clearlybe suspect nearor belowthe lysoclineand even above that level this size should alwaysbe considered alongside the noncarbonate silt size. Datafromcoarsefractionanalysis maybecombined with information from the fine fraction. For example, 606 McCAVIE ET AL: SORTABLE SILT AND PALEOCURRENT SPEED 2 5O size 10 ! ,um 63 i 100 I A _ 4O ß 610A Feni 3O %/• 20 552A Hatton 0 . 0 I 9 I 8 7 size, I 5 6 I 4 (D B ß •.o 0.5 o0 /al I I I I I I 2 as singleparticlesto hydrodynamicforceson erosion and depositionbecauseof the breakageof aggregates and is thereforesize-sortedaccordingto shearstress. Thus the size of the > 10-•m silt is a usefulcurrent strengthindicator. Becausedepositionof coarser materialunderfastercurrentsalsoinvolves suppression of deposition of freersediments, thepercentage of > 10•m siltin the freefraction(< 63 •m) is alsoanindicator of current strengthat a point, but variabilityof sediment focussing posesproblemswhencomparing time seriesof percentagedata from differenttopographic settings. There is no good reasonto believethat there are systematicshort-term changesin delivered silt size relatedto provenanteon time scales< 100ka. Mixing of sedimentduringturbiditycurrent,debrisflow and sloperesuspension deliveryto the siteof deepcurrent sortingmeansthat systematicchangesare not to be expected. For somesitesfar from continentalmargin input, definitionof a pelagicinput functionfrom sites relativelyunaffected by currentsgivesa basisfor assessment of relativechangesin currentspeed. In general the increaseover generalpelagicsedimentation rates causedby current-controlled focusingis muchgreater than that causedby ice-rafting,otherthanin Heinrich events. 3 Thesesedimentpaxmetersare not capableof resolving whetherthe currents responsible for sorting Figure13. (a) Sizedistribution of Pliocene carbonate- havea smallmeanandlargevariability or largemean rich(94%)sample fromFeniDrift (DSDPSite610A/17- andsmallvariability. Forinference of theflowspeeds /3/78)showing modesat 9.3• (1.60•m) and7.4• (5.9 ofwatermasses thelattersituation isrequired.Forthe p,m)whichrepresent R.minutaplusD.productus and lateQuaternary at leastwe suggest thatthedistribution C.pelagicus respectively. The comparable samplefrom ofeddykinetic energy wassimilar tothepresent (though Modal height (7.6•) / Modal height (9.3(:1:)) Hatton Drift (DSDP Site 522A/11/1/6)alsoshowsa strong foramfragment modeat4.7•. Co)Closerelationshipbetween modalpeakheightratioandabundance ratio of speciescountedin smearslide[fromJones, 988]. withsomelatitudinalcompression in the Gulf Stream area),andthatplaces to avoidcanbeassessed using the products of satellitealtimetry.ThesearetheN. AmericanBasinnorthof 30ø,ArgentineBasin,Kuroshio area, Agulhas retroflection andAntarcticCircumpolar Current. Steepening of the density gradient 0or r/Oz can also result in local intensification of internal tidal terrigenous sandis an excellent indicatorof icerafting currents, andthiscontributes another interpretive pitfall andexpressing its abundance in variance unitsprovides to be examined caxefully. a basisfor subtracting ice-raftingeffectsfromtimeseries The sizeof compositionally distinctcomponents of of silt abundancein order to try and eliminateprovchanceartifacts.In the samewaymoreforamfragments are expectedin the siltfractionwhenforamabundance is greatest,and subtractionof foram variancehelps isolatecurrenteffects. This operationcan be carried out on either percentages or massaccumulation rates and is illustratedfor Feni Drift (DSDP Site 610) by Robinsonand McCave [1994]. aftera component hasbeenremoved by dissolution. Thisallowsestimation of sizepaxameters of carbonate separate fromterrigenous material, andinprinciple opal Conclusions The coarsecarbonatesilt fraction is also currentsorted a sedimentcan be inferred from the differencebetween the total size distribution and the size of the residue if sedimentscontain sufficientbiosiliceousmaterial for precise determination (morethan10to 15%).Thefree carbonate is dominated by coccoliths below10 •m and foramfragments or larvaein the fraction10 to 631xm. and,whencombined withtheindexbased onterrigenous We conclude thatfinesediment shows increasingly silt,givesa morerobustcurrentspeedindex.Coccolith noncohesive behaviorabove10•m and cohesive below carbonate massaccumulation rateisprincipally related thatsize. Thesiltcoarser than10•m responds largely to productivityfor pelagicsitesabovethe lysocline McCAVE ET AL: SORTABLE SILT AND PALEOCURRENT SPEED •)le O Log MAR (g/cm2/kyr) aage -0.6 0 0.6 0.5 3 ....', 100 2 41 \' , 23 -'"""!'"', 607 19 Periods (k'yr) ," 0.6 .• ',, . / ICE VOLUME 0.7 .,- n' 0.8 < o.g •o • E T •,1.0 O 0 P1 P2 ...:....• • 0.5 1.o COCCOLITH -..i .......... i...... :....... !.... +90 -90 -180 1.2 Coccolith (<10um) CarbonateMAR o.o o.o• o:o2 o:o• 0.04 o.• Frequency (cycles/ky) o.'oe 0.07 Figure 14. (left)Earlytomid-Pleistocene variation incoccolith (< 10txmCaCO3)mass accumulation rate(loggcm'2ka'•) expressed invariance units ofthetimeseries. Spectrum oflogMAR,icevolume model andthecoherehey between them.Pronounced coherehey atobliquity andprecession frequencies isapparent witha small phase lag[fromRobinson andMcCave,1994]DSDPSite610,FeniDrift. (though clearlystrongcurrents wouldrendersuchan Allen, J.R.L., A theoreticaland experimental studyof inferenceunsound). Thesetechniques are somewhat laborious(Figure climbing-ripple cross-lamination, witha fieldapplicationto the Uppsolaesker,Geogr.Ann., 53A, 157- 3), but it is possible to process 50 to 100samples per 187, 1971. week and thus obtainhigherresolutionquantitative Andrews,J.T., andK. Tedesco,Detritalcarbonate-rich sediments, northwestern LabradorSea:Implications sedimentological datathanhithertofor longtimeseries for ice-sheet dynamics andicebergrafting(Heinrin whichboth currentand productivity-related effects ich)events in theNorthAtlantic,Geology, 20,1087maybe important. 1090, 1992. Acknowledgments. We thankGillianForemanand Nell Pickard for laboratoryassistance, Eric Browne, Dave Martel, andPravinPatel for assistance in interfacing and programming the Sedigraph, KarenJonesfor Balsam, W.L., andF.W.McCoy,Atlanticsediments: glacial/interglacial comparisons, Paleoceanography, 2, her work on coccolithsizesand counts,JeremyYoung and Jan Backman for advice on coccolith sizes, and BrianDade, Mike LedbetterandBrianHaskellfor their reviewof the manuscript.We thankthe NERC of U.K. 531-542, 1987. Bird,A.A., G.L. Weatherly,andM. Wirebush, A study of the bottomboundarylayer over the eastward scarpof the BermudaRise,J. Geophys, Res.,87, 7941-7954, 1982. Bond, G., H. Heinrich,S. Huon, W.S. Broecker,L. for grantsGST/02/426 (McCave,Elderfield,Shackleton, Labeyrie,J. Andrews,J. McManus,S. Clasen,K. Manighetti)for BOFS,and GST/02/436(McCaveand Tedesco, R. Jantschink, C.Sirnet, andK. MieczyslaRobinson) for DSP/ODPcorework. Cambridge Earth wa,Evidence formassive discharges oficebergs into Sciences 3715. BOFS Publication 207. References Agrawal, Y.C., I.N.McCave, and J.B. Riley, Laser diffrac- theglacial northern Atlantic, Nature, 360,245-249, 1992. Boulton, G.S.,Sedimentary andsealevelchanges during glacial cycles andtheircontrol onglacimarine facies architecture, in Glacimarine Environments: Processes tion size analysis,in Principles, McthodsandApplication of ParticleSize Analysis,edited by J.P.M. Syvitski,pp.119-128,CambridgeUniversityPress, andSediments, editedbyJ.A.Dowdeswell andJ.D. Scourse, Geol.Soc.LondonSpec.Publ.,53, 15-52, New York, 1991. 1990. 608 McCAVE ET AL: SORTABLE SILT AND PALEOCURRENT SPEED westernSouthAtlantic,Deep-SeaRes.,PartA 28, Bowden,K.F., The dynamicsof flow on a submarine 959-979, 1981. ridge, Tellus,12, 418-426,1960. Gross, T.F., and A.J. Williams, A deep-seasediment Bridge, J.S., Hydraulic interpretationof grain-size transportstorm,Nature,331, 518-521,1988. distributions usinga physicalmodelfor bedload transport,J'.Sediment. Petrol.,51, 1109-1124, 1981. Gross, T.F., and A.J. Williams, Characterizationof Bulltach, D.L., and M.T. Ledbetter, Deep western deep-seastorms,Mar. Geol., 99, 281-301,1991. boundaryundercurrentdelineatedby sediment Haskell, B.J., and T.C. Johnson, Surface sediment texture at base of North American continentalrise, responseto deep water circulationon the Blake Geo. Mar. Lett., 3, 31-36, 1984. Outer Ridge,WesternNorth Atlantic:palaeoceanographicimplications,Sediment.Geol., 82, 133-144, Coakley, J.P.,andJ.P.M.Syvitski, SediGraph techniques, 1993. in Principles,Methodsand Applicationof Particle Haskell, B.J., T.C. Johnson,and W.J. Showers,FluctuSizeAnalysis,edited by J.P.M. Syvitski,pp. 129ations in deepwesternNorth Atlanticcirculationon 142,Cambridge UniversityPress,New York, 1991. Corliss,B.H., D.G. Martinson, and T. Keffer, Late Quaternarydeep-ocean circulation,Geol.Soc.Am. Bull., 97, 1106-1121, 1986. Dade, W.B., and A.R.M. Nowell,Movingmudsin the marine environment, in Coastal Sediments '91 Proceedings SpecialtyConferencepp. 54-71,American Societyof Civil Engineers,New York, 1991. Dade, W.B., A.R.M. Nowell, and P.A. Jumars,Predictingerosionresistance of muds,Mar. Geol.,105,285- the Blake Outer Ridge duringthe lastdeglaciation, Paleoceanography, 6, 21-31, 1991. Hogg, N.G., R.S. Pickart, R.M. Hendry, and W.J. Smethie,The NorthernRecirculation Gyre of the Gulf Stream,DeepSeaRes.,33, 1139-1165, 1986. Holland,W.R., andP.B.Rhines,An example of eddyinducedoceancirculation, J. Phys.Oceanogr., 10, 1010-1031, 1980. Hollister,C.D., and B.C. Heezen,Geologiceffectsof 297, 1992. oceanbottomcurrents:WesternNorth Atlantic,in Dickson,R.R., Globalsummaries andintercomparisons: Studiesin PhysicalOceanography, vol.2, editedby Flow statisticsfrom long-termcurrentmetermoorA.L. Gordon,pp. 37-66,Gordonand Breach,New ings,in Eddiesin Marine Science,edited by A.R. York, 1972. Robinson,pp. 278-353,Springer-Verlag, New York, Hollister,C.D. and I.N. McCave,Sedimentation under 1983. deep-seastorms,Nature,309, 220-225,1984. Dickson,R.R., and I.N. McCave,Nepheloidlayerson Hunt,J.R.,Particleaggregate breakupbyfitfidshear,in thecontinental slopewestof Porcupine Bank,Deep EstuatineCohesive Sediment Dynamics, editedby Sea Res., 33, 791-818, 1986. A.J.Mehta,pp.85-109,Springer-Verlag, NewYork, 1986. Drake, D.E., andD.A. Cacchione,Field observations of bed shear stressand sedimentresuspension on James,A.E., and D.J.A. Williams, Flocculationand continental shelves, AlaskaandCalifornia, Coht. rheologyof kaolinite/quartz suspensions, Rheol. ShelfRes., 6, 415-429, 1986. Acta, 21, 176-183,1982. Driscoll, M.L., B.E. Tucholke, and I.N. McCave, JohnsonT.C., E.L. Lynch, W.J. Showers,and N.C. Seafloor zonation in sediment texture on the Nova Palczuk, Pleistocene fluctuations in the western ScotJanLower Continent• Rise,Mar. Geol., 66, 2541, 1985. boundary undercurrent on the BlakeOuterRidge, Eittreim,S.,E.M. Thorndike,andL. Sullivan, Turbidity distribution in the AtlanticOcean,DeepSeaRes., 23, 1115-1127, 1976. Embley,R.W., and R.D. Jacobi,Distributionand morphologyof large submarineslidesand slumpson Atlantic continentalmargins,Mar. Geotechnol., 2, 205-228, 1977. Ezer, T., and G.L. Weatherly,Small-scale spatialstructure and long-termvariabilityof near-bottomlayers in the HEBBLE area,Mar. Geol.,99, 319-328,1991. Fillon,R.H., NorthwestLabradorSeastratigraphy, sand inputandpaleoceanography duringthe last160,000 years, in QuaternaryEnvironments:the Eastern CanadianArctic, Baffin Bay and WestGreenland, edited by J.T. Andrews,pp. 210-247,Allen and Unwin, Winchester,Mass., 1985. Georgi,D.T., Circulationof bottomwatersin the south- Paleoceanography, 3, 191-207,1988. Jones,K.P.N. Studiesof frae-grained, deep-seasediments,Ph.D. thesis,248 pp.,Urdv.of Cambridge, Cambridge,Engl., 1988. Jones,K.P.N., I.N. McCave, and P.D. Patel,A computer-interfaced SediGraph for modalsizeanalysis offine-grained sediment, Sedimentology, 35,163-172, 1988. Krone, R.B.,Flume studies ofthetransport ofsediment in estuarialshoalingprocesses, report,110 pp., Hydraul.Eng. and Sanit.Eng. Res.Lab. Univ. of Calif.,Berkeley,1962. Lainpitt,R.S.,Evidencefor the seasonal deposition of detritusto the deep-sea floorandits subsequent resuspension, DeepSeaRes.,32, 885-897,1985. Ledbetter, M.T., Fluctuations of Antarctic Bottom Waterin theVernaChannelduringthelast160,000 years,Mar. Geol., 33, 71-89, 1979. McCAVE ET AL: SORTABLE SILT AND PALEOCURRENT Ledbetter,M.T., A late Pleistocenetime-seriesofbottom- currentspeedin the Verna Channel,Palaeogeogr. Palaeoclimatol.Palaeoecol.,53, 97-105, 1986. Ledbetter,M.T., andW.L. Balsam,Paleoceanography of the Deep WesternBoundaryUndercurrenton the North Americancontinentalmarginfor the past 25,000yr, Geology,13, 181-184,1985. Ledbetter, M.T., and A. Klaus, Influence of bottom currentson sedimenttextureandsea-floormorphologyin the ArgentineBasin,in Geologyand Geochemistryof AbyssalPlains,editedby P.P. Weaver andJ. Thomson,Geol.Soc.LondonSpec.Publ.,31, 23-31, 1987. Lonsdale,P., SedimentDrifts of the NorthwestAtlantic SPEED 609 methodsof geologicalparticle size analysis,in Principles,Methodsand Applicationof ParticleSize Analysis,edited by J.P.M. Syvitski,pp. 3-21, CambridgeUniversityPress,New York, 1991. McCave, I.N., P.F. Lonsdale, C.D. Hollister, and W.D. Gardner,Sedimenttransportover the Hatton and Gardar contourire drifts, J. Sediment.Petrol., 50, 1049-1062, 1980. Middleton, G.V., Hydraulicinterpretationof sandsize distributions,J. Geol., 84, 405-426,1976. Migniot,C., Etude despropri6t6sphysiques de diff6rentss6diments tr6sfins et de leur comportement sousdesactionshydrodynamiques, HouilleBlanche, 7, 591-620, 1968. and their relationshipto the observedabyssal Miller,M.C., andP.D.Komar,Thedevelopment of sedicurrents,Bull. Inst. Geol.BassinAquitaine,31, 141149, 1982. Lonsdale,P., and B. Malfait, Abyssal dunes of foraminlferal sandon the CarnegieRidge,Geol. ment threshold curves for unusual environments (Mars) and for inadequatelystudied materials (foramsands),Sedimentology, 24, 709-721,1977. Miller M.C., I.N. McCave,and P.D. Komar,Threshold of sediment motion under unidirectional currents. Soc.Am. Bull., 85, 1697-1712,1974. Manighetti,B., and I.N. McCave,Late glacialand Holocene palaeocurrentsaround South Rockall Bank,northeastern Ariantic, Paleoceanography, this Sedimentology, 24, 507-527,1977. Okada,H., andA. Mcintyre,Moderncoccolithophores of the Pacific and North Atlantic Oceans, issue. Mantz,P.A.,Incipienttransport of finegrainsandflakes - An extended Shieldsdiagram, ]. Hydraul.Div.Am. Micropalaeontology, 23, 1-55, 1977. Oser, R.K., Sedimentarycomponentsof northwest Pacificpelagicsediments, J. Sediment.Petrol.,42, 461-467, 1972. $oc. Civ.Eng;, 103, 601-615,1977. Mantz,P.A., Bedformsproducedby fine, cohesionless, Parkin,D.W., Trade-windsduringthe glacialcycles, Proc.R. Soc.London Ser•l, 337, 73-100,1974. granular and flakey sedimentsunder subcritical Partheniades, E., Erosionand depositionof cohesive waterflows,Sedimentology, 25, 83-103,1978. Mass6,L., Sedimentation oceanique profondeau Quasoils,J. Hydraul.Div. Am. Soc.Civ.Eng.,91, 105139, 1965. ternaire.Flux sedimentes et paleocirculations dans l'Atlantique sud-ouest: Bassin sud-Brezilien et PeakFit, Peak Analysis Software, Jandel Scientific, prismed'accretionsud-Barbade. Ph.D. thesis,339 Erkrath, Germany,1990. pp., Univ. BordeauxI, France,1993. Pond,S.,andG.L.Pickard, Introductory Dynamical OceanMcCave,I.N., Erosionand deposition by currentson ography,2rid ed., 329 pp., Pergamon,New York, submarine slopes, Bull.Inst.Geol.Bassin.Aquitaine, 31, 47-55, 1982. 1983. Rees, A.I., Some flume experimentswith a fine silt, Sedimentology, 6, 209-240,1968. McCave,I.N., Particulatesize spectra,behaviourand originof nepheloidlayersoverthe Nova ScotJan Richardson, M.J.,M. Wirebush, andL.A. Mayer,Exceptionallystrongnear-bottom flowson thecontinental Continental Rise,i. Geophys. Res.,88, 7647-7666, 1983. rise of NovaScotia,Science, 213, 887-888,1981. McCave,I.N., Erosion,transportanddeposition of f'me Robinson, S.G., and I.N. McCave,Orbitalforcingof grainedmarine sediments,in Fine-GrainedSedibottom-current enhancedpelagicsedimentation on ments:Deep SeaProcesses and Facies,editedby FeniDrift, NE Atlantic,duringthemid-Pleistocene, D.A.V. Stowand D.J.W. Piper,Geol.Soc.London Paleoceanography, 9, 943-972,1994. Spec.Publ., 15, 35-69, 1984. McCave,I.N., Sedimentology and stratigraphy of box cores from the HEBBLE site on the Nova Scotian Continental Rise,Mar. Geol.,66, 59-89,1985. McCave,I.N., Stirringsin the abyss, Nature,331,484, 1988. McCave,I.N., andS.A.Swift,A physical modelfor the rate of deposition of fine-grained sediment in the deepsea,Geol.Soc.Am. Bull.,87, 541-546,1976. McCave,I.N., and J.P.M. Syvitski,Principlesand Russel,W.B., Review of the role of colloidalforces in the rheologyof suspensions, J. Rheol.,24, 287-317, 1980. Sandwell,D.T., and B. Zhang,Globalmesoscale variabilityfrom the GEOSAT exactrepeat mission: Correlationwith oceandepth,I. Geophys. Res.,94, 17,971-17,984,1989. Schmitz, W.J.,Abyssal eddykineticenergyin theNorth Ariantic,J. Mar. Res.,42, 509-536,1984a. Schmitz, W.J.,Abyssaleddykineticenergylevelsin the 610 McCAVE ET AL: SORTABLE SILT AND westernNorth Pacific, J. Phys.Oceanogr., 14, 198201, 1984b. Schmitz,W.J., Observationsof the vertical structureof PALEOCURRENT SPEED Hatton and Gardar Drifts, NE Atlantic, J. Geol. Soc. London, 147, 373-383, 1990. Warren, B.A., Transpacifichydrographicsectionsat the eddyfield in the KuroshioExtension.J. GeopLats.43øSand 28øS:The SCORPIO Expedition,II, hys.Res.,89, 6355-6364,1984. Deep Water, Deep SeaRes.,20, 9-38, 1973. Sch6nfeld, J.,andH.R. Kudrass, Hochfrequente Turbiditse- Warren,B.A., Deep circulationof the worldocean,in dimentation in der Sulu-see(Phillipinch), Z. Dtsch. Evolutionof PhysicalOceanography, editedbyB.A. Geol. Ges., 142, 179-197, 1991. Warren and C. Wunsch,pp. 6-41,MIT Press,CamSelf, R.F.L., A.R.M. Nowell, and P.A. Jmars, Factors bridge,Mass.,1981. controllingcriticalshearsfor deposition anderosion Weatherly, G.L.,An estimate ofbottomfrictional dissipation by Gulf Stream fluctuations,J. Mar. Res.,42, of individualgrains,Mar. Geol.,86, 181-199,1989. 289-301, 1984. Shackleton,N.J., Oxygenisotopes,ice volme and sea Weatherly,G.L., and E.A. Kelley, 'Too cold' bottom level, Quat. Sci. Rev., 6, 183-190, 1987. layersat the baseof the ScotianRise,J. Mar. Res., Shackleton,N.J., A. Berger, and W.R. Peltier, An alternative astronomical calibration of the lower Pleistocenetimescalebasedon ODP Site677, Trans. R. Soc.EdinburghEarth Sci., 81, 251-261,1990. Sheridan,M.F., K.H. Wohletz, andJ. Delta, Discrimina- tion of grain-size subpopulations in pyrodastic deposits,Geology,15, 367-370,1987. Shtma,C.K., R.A. Werner, D.T. Sandwell,B.H. Zhang, R.S. Nerem, and B.D. Tapley,Variationsof global mesoscale eddyenergyobserved fromGEOSAT, J. Geophys. Res.,95, 17,865-17,876, 1990. Singer,J., J.B.Anderson,M.T. Ledbetter,K.P.N. Jones, I.N. McCave, and R. Wright, The assessment of analyticaltechniques for the analysis of frae-grained 40, 985-1012, 1982. Weatherly,G.L., andE.A. Kelley,Twoviewsof the cold filament,J. Phys.Oceanogr., 15, 68-81,1985. Weatherly,G.L., and M. Wirebush,Near-bottomspeed andtemperature observations ontheBlake-Bahama outerride,J. Geophys. Res.,85, 3971-3981,1980. Weaver,C.E., Clays,MudsandShales,810pp.,Elsevier, New York, 1989. Weaver,P.P.E.,and J. Thomson,Calculatingerosionby deep-seaturbiditycurrentsduringinitiationand flow, Nature,364, 136-138,1993. Weaver,P.P.E.,R.G. Rothwell,J. Ebbhag,D. Gunn,and P.M. Hunter, Correlation,frequencyof eraplacemeritandsourcedirectionsof megaturbidites onthe sediments,J. Sediment.Petrol.,58, 534-543,1988. Madeira AbyssalPlain,Mar. Geol.,109, 1-20,1992. Southard,J.B.,andL.A. Boguchwal, Bed configurations Weltje, G.J.,and P.L. de Boer,Astronomically induced in steadyunidirectionalwater flows,2, Synthesis of palaeoclimaticoscillationsreflected in Pliocene flume data,J. Sediment.Petrol.,60, 658-679,1990. turbiditcdepositson Corfu (Greece):Implications Stein, R., Rapid grain-sizeanalysesof clay and silt for the interpretationof higher order cyclicityin fraction by Sedigraph5000D: Comparisonwith ancientturbiditcsystems, Geology, 21, 307-310,1993. Coulter Counter and Atterbergmethods,J. SediWelsh,E.B., N.G. Hogg, and R.M. Hendry, The relament. Petrol., 55, 590-593, 1985. tionshipof low-frequencydeep variabilitynear the Syvitski, J.P.M. (Ed.), Principles, MethodsandApplicaHEBBLE site to Gulf Stream fluctuations,Mar. tion of ParticleSizeAnalysis,368 pp., Cambridge Geol., 99, 303-317, 1991. UniversityPress,New York, 1991. Zlotnicki, V., L-L. Fu, and W. Patzert,SeasonalvariabilThorpe,S.A.,Currentandtemperature variabilityonthe ity in global sea level observedwith GEOSAT continentalslope,Phil. Trans.R. Soc.LondonSera4, altimetry,J. Geophys. Res.,94, 17,959-17,969, 1989. 323, 471-517, 1987. Thorpe, S.A., and M. White, A deep intermediate nepheloidlayer,DeepSeaRes.,35, 1665-1671,1988. I.N. McCave,andB. Manighetti,Departmentof Earth Unsold,G., Der Transportbeginn rolligenSohlmaterials Sciences,Universityof Cambridge,DowningStreet, in gleichformigen turbulentenStromungen:eine Cambridge CB23EQ, England,U.K.(e-mail: inccave kritischeUberpmfimg der Shields-Funktion und @esc.cam.ac.uk) ilxreexperimentelle Erweiterungauf feinstk/Srnige, S.G. Robinson,Departmentof Environmental and nicht-bindige Sedimente, Doctoraldissertation, 145 Geophysical Sciences, Manchester Metropolitan Univerpp, Univ. of Kiel, Kiel, Germany,1982. sity,JohnDaltonBtfilding, ChesterStreet,Manchester, vanAndel,T.H., Textureanddispersal of sediments in M1 5GD, England,U.K. the Panama Basin,J. Geol., 81, 434-457, 1973. WangH., andI.N. MeCave,Distinguishing elimarieand current effects in mid-Pleistocene sediments of (ReceivedNovember23, 1993;revisedMay 4, 1994; acceptedNovember16, 1994.)
© Copyright 2024 Paperzz