STUDYGUIDEFORTESTI MATH1113 1. Determinewhichofthefollowingarefunctionsarefunctionsofx.Giveareasonto supportyouranswer.Ifitisafunction,statethedomainandrange.(Assumealltables arecomplete.) (a) (b) x y x y 3 1 4 2 7 11 2 7 3 −3 7 −2 −1 5 −2 4 (c) (e) 8 (d) (f) 2. Determinethedomainofthefollowingfunctions. 4 3 (b) (a) (c) 3. 1 (d) √3 √ Determinewhetherthefollowingfunctionsareeven,odd,orneitherbyevaluating f`(−x).Checkyouranswerbygraphingandlookingforsymmetry. (a) 99 (b) (c) 4 1 (d) | | 4 5 (f) 3 (e) 3 (g) √1 (h) | 3| 2 4. 5. 6. | | if 2 . 2 if 2 (a) Findf(−2),f(0),f(2),andf(3). (b) Sketchthegraphoff. Given 1 if 2 3 if 2 0. 3 if 0 (a) Findf(−2),f(−1),f(0),andf(2). (b) Sketchthegraphoff. Given Determinetheintervals(x‐interval)inthedomainonwhichthefollowingfunctions areincreasing,decreasing,and/orconstant. (a) (b) (c) (d) 3 7. Determinewhetherthegraphsofthefollowingequationsaresymmetricaboutthex‐ axis,they‐axis,theorigin,ornoneoftheabove. (a) 4 (b) 4 (c) 3 5 (d) 1 1 (e) 8. Let 2 andstatethedomain. (a) f+g (b) f−g (c) fg (d) (f) 1 9. 3and .Computethefollowing,simplifyifnecessary, Computef◦gandg◦fforeachofthepairsoffunctionsbelow.Also,statethedomain off◦gandg◦f. (a) 1 3 ; (b) 36; (c) ; √ √ 10 10. Verifybycomputingf◦gandg◦fthat and areinverses. 11. Sketchthegraphofeachofthefollowingfunctionsanddeterminewhetherornot eachfunctionhasaninverse.Ifithasaninverse,sketchthegraphoftheinverse. (a) (c) 1 (b) √ 5 4 12. Findtheinverseofthefollowingfunctions.Sketchthegraphoftheinversebyusing thegraphoff(x). (a) (b) √2 1 13. Computethedifferencequotientforthefollowingfunctions.Usethedifference quotientformula 14. (a) (c) If (a) (c) (e) (g) (i) 2 , 0. 1 (b) 3 2 1 2,find f(3) f(−x) f(2t) f(2t+1) Iff(x)=4,whatisx? 15. Thegraphof following. 9 (b) (d) (f) (h) (j) 2 f(−5) f(t) f(t–3) Ifx=8,whatisf(x)? Iff(x)=10,whatisx? 1isshownbelow.Sketchthegraphofthe (b) (d) (f) (a) 4 (c) (e) 3 2 5 16. Findthex‐valueswherethefollowingfunctionsarediscontinuous,identifyeachasa verticalasymptoteormissingpoint,findthehorizontalasymptote(ifany).Findany obliqueasymptote.Sketchagraphofthefunction.Plotandlabelthex‐andy‐ interceptsUsedashedlinestorepresentasymptotes. (a) (c) (e) (f) (b) (d) Hint:Thenumeratorfactors.SeeSectionR.5,Example3,page44. (g) ANSWERS 1. 2. 3. (a) (c) (e) (a) (c) no yes;D:(−∞,∞);R:(−∞,∞) no (b) (d) (f) yes;D:{4,2,7,−2}; R:{2,7,−2,4} no yes;D:(−∞,∞);R:(−∞,∞) D:(−∞,∞) D:(−∞,−3)U(−3,9)U(9,∞) (b) D:(−∞,3] (d) D:(−∞,1)U(4,∞) (b) neither (d) even(symmetricwrtthey‐ 4. (a) even(symmetricwrtthey‐axis) (c) odd(symmetricwrttheorigin) axis) (e) neither (g) even(symmetricwrtthey‐axis) (a) 2,0,2,2 (b) (f) odd(symmetricwrttheorigin) (h) neither 6 5. (a) 1,−2,−3,−3 (b) 6. 7. (a) (c) increasing:(0,∞) decreasing:(−∞,0) increasing:(−∞,∞) (b) (d) (a) x‐axis (c) y‐axis (e) origin (a) 2 3 ; : ∞, 3 ∪ 3, ∞ (b) 2 3 ; : ∞, 3 ∪ 3, ∞ (c) (d) 9. (a) (b) ∘ ∘ (c) ∘ ∘ 10. 11. Note:Theanswerisinworkingtheproblem. 1; : ∘ 3 ∞, 3 ∪ 3 1 ∘ (a) no (c) no increasing:(0,3) decreasing:(−2,0) constant:(3,∞) increasing:(0,∞) decreasing:(−2,0) constant:(−∞,−2) (b) y‐axis (d) x‐axis (f) x‐axis,y‐axis,andorigin 8. 2 5 ; : √ √ √ 3 9; : ∞, 3 ∪ ∞, 0 ∪ 0, ∞ ; D: √ 3, ∞ ∞, ∪ 1\3, ∞ 10 36; D: 0, ∞ 36 10; D: √36, ∞ ; D: 0,100 ∪ 100, ∞ ; D: 10, ∞ (b) yes 3, ∞ 7 12. (a) 13. 14. (a) 2 (c) 2 (a) (c) (e) (g) (i) (b) (c) 6 3 2 1 4 (b) 28 (d) 2 (f) 7 10 (h) 54 (j) x=−3,x=4 2 2 2 4 4 2 2 x=−2,x=3 15 (a) shiftsrightby4anddownby3 (b) verticalcompressionbyfactorof 16. (c) horizontalstretchbyafactorof3 (e) reflectionacrossthey‐axis (d) reflectionacrossx‐axis (f) reflectionandstretchbyfactorof 2acrossx‐axis. (c) v.a.: (d) v.a.: (e) missingpointatx=3;x‐int:none;y‐int:(0,9) (f) v.a.:x=−2;o.a.:y=2x−5;x‐int: (g) v.a.:x= ;h.a.: (a) v.a.:x=1,x=−1;h.a.:y=0;x‐int:none;y‐int:(0,−1) (b) nopointsofdiscontinuity;h.a.:y=3;x‐intandy‐int:(0,0) ,x=−1;h.a.: ;x‐int:(−2,0),(3,0);y‐int:(0,6) ,x=1;h.a.:y=0;x‐intandy‐int:(0,0) ;x‐int: √ ,0 , √ , 0 ;y‐int:(0,−2) , 0 ;y‐int:(0,−4)
© Copyright 2024 Paperzz