OUTLINE Essays on Finite Sample Inference and Financial Econometrics Yong Bao Department of Economics University of California, Riverside 1. Finite Sample Moments of Econometric Estimators with Non-IID Observations 2. The Second-Order Bias and Mean Squared Error of Time Series Estimators* 3. Finite Sample Properties of Maximum Likelihood Estimator in Spatial Models 4. Bias of Value-At-Risk Model 5. Evaluating Predictive Performance of Value-AtRisk Models in Emerging Markets: A Reality Check* March 31, 2004 6. A Test for Density Forecast Comparison with Applications to Risk Management Chapters 1 to 4: OVERVIEW Addresses two issues in econometric modeling: I. INTRODUCTION i) a model’s in-sample properties of when the sample size is finite (Chapters 1 to 4) Motivation: ˆ wn = ˆ w = h (Z) , properties (moments) of ˆ w or f (ˆ w)? n is finite (small or moderately large), properties of ˆ wn / properties of a model f (ˆ wn) ii) a model’s out-of-sample predictive ability when the sample size is large (Chapters 5 to 6) n is infinitely large, predictive ability under proper loss functions R w) = E[h (Z) ] = h (Z) f (Z)dZ Exact results: e.g., E(ˆ Approximate • Asymptotic theory (first-order), n < " • finite sample theory (second-order), n is moderately large E[h( Z )] ³ h( Z ) f ( Z )dZ In general, difficult to obtain, or difficult to interpret even if obtainable E (Tˆ) (regardless of n) Exact Bias = O(n 1 ) MSE = O(n 2 ) Consistent V (Tˆ) O (n 1 ) Approximate Asymptotic Theory (Second-order) (First-order) (moderately large n) (n o f) Moments (Analytical) of Tˆ hZ Problems with the asymptotic theory: • Can not distinguish a class of estimators of the same asymptotic properties — FGLS in SURE models — GMM and GEL • Crucial assumption: n < ". Realistic, esp. for macro data? No! — JBES, 1996, GMM Finite-Sample Properties of Some Alternative GMM Estimators. pp. 262-80 Lars Peter Hansen, John Heaton and Amir Yaron A Comparison of Alternative Instrumental Variables Estimators of a Dynamic Linear Model. pp. 281-93 Kenneth D. West and David W Wilcox Small-Sample Properties of GMM-Based Wald Tests. pp. 294-308 Craig Burnside and Martin Eichenbaum Small-Sample Properties of GMM for Business-Cycle Analysis. pp. 309-27 Lawrence J Chistiano and Wouter J den Haan GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study. pp. 328-52 Torben G Andersen and Bent E Sorensen Small-Sample Bias in GMM Estimation of Covariance Structures. pp. 353-66 Joseph G Altonji and Lewis M Segal Small-Sample Properties of Estimators of Nonlinear Models of Covariance Structure. pp. 367-73 Todd E Clark Volume 14, issue 3, 1996 Journal of Business and Economic Statistics Analytical finite sample theory allows us to • select the estimator with good finite sample properties from a class of asymptotically equivalent estimators • measure the magnitude of the loss of asymptotictheory-based inference in finite samples • understand the source of the finite sample bias and thereby design a bias-corrected estimator • check the accuracy of certain Monte Carlo experiments Extensive literature on the analytical finite sample properties of econometric estimators • Linear Models: Hurwicz (1950), White (1957, 1958, 1959, 1961), Nagar (1959), Shenton and Johnson (1965), Sawa (1969, 1978), Anderson and Sawa (1973, 1979), Basmann (1974), Sargan (1974, 1976), Phillips (1977,1978, 1979, 1987), Dufour (1984, 1990), Hoque et al. (1988), Rothenberg (1984), Kiviet and Phillips (1993, 1997), Dufour and Kiviet (1996), Lieberman (1994), Tsui and Ali (1994), Ullah and Srivastava (1994), Ali (2002), Ullah (2002), among others. • Nonlinear Models: Amemiya (1980), Cordeiro and Klein (1994), Rilstone et al.(1996), Linton (1997), Iglesias and Phillips (2001), Gospodinov (2002), Anatolyev (2003), Bao and Ullah (2003), Newey and Smith (2004), among others. Issues: • Generally IID • Generally Gaussian normal • Generally linear models • Generally specific estimators (LS or ML) in specific models Contribution of this thesis: a unified approach for the second-order bias/MSE of a class of estimators when • Non-IID (time series, cross section, panel, etc.) • Nonnormal • Nonlinear • Digerent types of estimators (GMM, LS, QML, and other extremum estimators) II. SECOND-ORDER BIAS AND MSE I Consider a class of n-consistent estimators identified by the moment condition ˆ w=ˆ wn = arg {n(w) = 0} , where n(w) = n(Z; w) is a known p × 1 vectorvalued function of the observable data Z = {Zi}n i=1 , and a parameter vector w of p elements such that E [n(w)] = 0. Example 1: LS y = Xq + 0 ½ ¾ ˆ OLS = arg n (q) = 0 | n (q) = 1 X 00 q n Chapter 1: general results, non-IID and nonnormal Example 2: (Q)ML Chapter 2: time series models, normal Chapter 3: spatial models, normal Chapter 4: VaR model, nonnormal P L (w) = n1 n i=1 li (w) ; ? < n 1X Yli (w) @ ˆ wML = arg n (w) = 0 | n (w) = = n i=1 Yw > Example 4: GEL Example 3: GMM min D4 (Fn, Pn) gn (w) = E [g (Z, w)] = 0, gn (·) is m × 1, w is p × 1, m D p Qn (w) = gn (w)0 Wn (w) gn (w) ˆ wGMM = arg {n (w) = 0 | n (w) = YQn (w) /Yw} PnMP s.t. gn (w) = E [g (Z, w) |Pn] = R g (Z, w) dPn = 0 g (·) is m × 1, w is p × 1, m D p ¡ ¢ Define X = w0, b0 0 and Ln (X) = D4 (Fn, Pn) + b0gn (w) ˆ GEL = arg {n (X) = 0 | n (X) = YLn (X) /YX} X Assumption 1: The s-th order derivatives of n(ˆ w) 2 s exist in a neighborhood of w and E(||Q n(w)|| ) < ", where ||A|| for a matrix A is the usual norm £ ¡ ¢¤ tr AA0 1/2 and tr is the trace operator on a matrix. Given Assumptions 1-3, Taylor expansion ³ ´ w 0 = n ˆ ³ ´ w 3 w + 12 Q2n (w) = n (w)+Qn (w) ˆ Assumption 2: For some neighborhood of w, [Qn(ˆ w)]31 = Op (1) . + 16 Q3n (w) h h³ ´ ³ ¯¯ ³ ´ ¯¯ ¯¯ ¯¯ ³ ³ ´ i h³ ´ ³ ´ ³ ˆ w3w ˆ w3w ˆ w3w ˆ w3w ˆ w3w + 16 Q3n ¯ w 3 Q3n (w) ¯¯ ¯¯ ¯¯ ¯¯ w 3 Qs n (w)¯¯ $ ¯¯ˆ w 3 w¯¯ Mn Assumption 3: ¯¯Qsn ˆ for some neighborhood of w, where E (|Mn|) < C < " for some positive constant C. ´ h³ ´i ´ ³ ˆ w3w ˆ w3w ˆ w3w ´i Solve for (ˆ w 3 w) from above and use the expansion for [Q n (w)]31 as follows [Qn (w)]31 = h i31 31 Q +V = Q 3 QV Q + QV QV Q + · · · , where Q = [EQn (w)]31 and V = Qn (w) 3 EQ n (w). | {z O(1) } | ¡ {z ¢ OP n31/2 } ´i . XE H 1 n O 1 1 1 1 n n n OP §¨ n 1 / 2 ·¸ © ¹ 1 1 X 'H X ' y XE n n 1 Ÿ ’\ n E X ' X n Ÿ 1 1 1 [ E ( X ' X ) ( X ' X ) E ( X ' X )]1 n n n Ÿ \ n E OP §¨ n 1 / 2 ·¸ © ¹ OP §¨ n 1 ·¸ © ¹ OP §¨ n 3 / 2 ·¸ © ¹ = [ E ( X ' X )]1 u {I / , // , /// ....} n 1 OP §¨ n 1 / 2 ·¸ QV { / © ¹ = [ E ( X ' X )]1 u {I [ E ( X ' X )]1[( X ' X ) E ( X ' X )]}1 [’\ n E ]1 = y Expansion for [’\ n T ]1 , an example: OLS Therefore ˆ w 3 w = a31/2 + a31 + a33/2 + OP n32 , where a3s/2 = OP n3s/2 Qin. w = E a31/2 + E (a31) + o n31 , B ˆ ³ ´ ³ ³ ´ are functions of Hi = ´ ³ ³ ´ ´ The second-order bias and MSE M (ˆ w) = E(A31) + E(A33/2) + E(A32) + o n32 , ³ ´ where the p × p matrices A31 = a31/2a031/2, A33/2 = a31/2a031 + a31a031/2, A32 = a31/2a033/2 + a33/2a031/2 + a31a031. Special case: - IID observations, Rilstone, Srivastava, Ullah (1996) Time Series Models III. MODELS 1. ARX(1) yt = 4yt31 + x0tq + 0t, where |4| < 1 and X 0X = O (n) . y = f (X; w) + 0 E (0t) = 0, E ³ ´ 2 0t = j 2. THEOREM. In the ARX(1)³ model ´ with |4| < 1, the 31 second-order bias, up to O n , of the OLS estimator 4 ˆ when the errors are nonnormally distributed is If nonnormal, ³ ´ E 03t = j 3 1, ³ ´ B (ˆ 4) = E 04t = j 4 ( 2 + 3) , E ³ ´ 5 0t = j 5 ( 3 + 10 1) , ³ ´ ³ · ³ ´31¸ 2 2 j tr (MC) 3 24 1 3 4 3 ´ E 06t = j 6 4 + 10 21 + 15 2 + 15 . ¯ D · ¸ ³ ´31 2 0 2 0 2j rD CrD 3 4 1 3 4 rD rD ¯2 D + 11 1, where 11 = 3j 30 ©£ ¡ ¢¤ ª I ¯ C 0M C rD + 2 [I ¯ (MC)] C 0rD . ¯2 D U~ BC , N U~ BC , NN BiasN BiasNN U~ BC , N U~ BC , NN BiasN BiasNN 0.9 0.8815 0.9011 0.9016 0.9017 0.9026 -0.0196 -0.0201 0.3 0.2732 0.2967 0.3017 0.2955 0.3004 -0.0235 -0.0286 0.2 0.1766 0.1963 0.2011 0.1951 0.1999 -0.0197 -0.0246 0.1 0.0803 0.0959 0.1005 0.0949 0.0994 -0.0155 -0.0202 U BC , NN 6 U BC , N U Uˆ n = 50 degrees of freedom of the non-central t true parameter OLS estimate bias-corrected estimate using U , ignoring nonnormality bias-corrected estimate using U feasible bias-corrected estimate using Uˆ , ignoring nonnormality feasible bias-corrected estimate using Uˆ theoretical bias of Uˆ , ignoring nonnormality theoretical bias of Uˆ d.f. BiasN BiasNN d.f. U Uˆ U BC , N U BC , NN U~ BC , N U~ BC , NN 0.9 0.8818 0.9014 0.9020 0.9021 0.9032 -0.0196 -0.0203 0.3 0.2702 0.2937 0.3003 0.2924 0.2988 -0.0235 -0.0301 0.2 0.1735 0.1931 0.1995 0.1919 0.1982 -0.0197 -0.0261 0.1 0.0772 0.0927 0.0988 0.0916 0.0976 -0.0155 -0.0216 U BC , NN 5 U BC , N U d.f. Uˆ Bias, AR model, n = 50 0.9 0.8869 0.9001 0.9010 0.9005 0.9015 -0.0132 -0.0141 0.3 0.2801 0.2950 0.2989 0.2944 0.2983 -0.0149 -0.0188 0.2 0.1823 0.1948 0.1986 0.1943 0.1980 -0.0125 -0.0163 0.1 0.0847 0.0948 0.0984 0.0943 0.0978 -0.0100 -0.0136 5 BiasNN BiasN U~ BC , NN U~ BC , N U BC , NN U BC , N Uˆ U d.f. n = 80 COROLLARY. In a pure AR(1) model with the autoregressive |4| < 1, the second-order bias, ³ coeqcient ´ ˆ is 324/n. up to O n31 , of the OLS estimator 4 COROLLARY. If in the ARX(1) model with |4| < 1, ³X =´ and q 6= 0, the second-order bias, up to O n31 , of the OLS estimator 4 ˆ, is given by B (ˆ 4) = 3 (1 + 34) /n. ³ ´ THEOREM. The second-order bias of 4 ˆ, up to O n31 , ³ ´ ˆ in and MSE, up to O n32 , of the OLS estimator 4 the pure AR(1) model when the errors are normally distributed are 1 B (ˆ 4) = Q2b11, 2 (n 3 1) ´ 6Q2 2Q3 ³ 2 b M (ˆ 4) = b + 1 + 3Q 20 21 (n 3 1)2 (n 3 1)3 3Q4 + b22, (n 3 1)4 where Q = µ tr(C1P) n31 for r, s = 0, 1, 2. ¶31 h ¢ ¡ ¢ ¡ , brs = E y 0Cy r · y 0C1y s i yt xt D Ext 1 ut , c Uxt 1 vt . Intuition: E ( Eˆ E ) V uv V 1 3U · 2 ˆ U ) uv2 §¨ ¸ O(T ) 2 E(U Vv © T ¹ Vv 2 V uv is negative, and V uv / V v  [22.3, 13.6] Even E ( Uˆ U ) | (1 3U ) / T is quite small for U  (1, 1) for moderately large T, the bias of Eˆ is scaled up substantially due to 2 V uv / V v . Nelson, C.R., Kim, M.J., 1993. Predictable stock returns: the role of small sample bias. Journal of Finance 48, 641~661. Mark, N.C., 1995. Exchange rates and fundamentals: evidence on long-horizon predictability. American Economic Review 85, 201~218. Bekaert, G., Hodrick, R.J., Marshall, D.A., 1997. On biases in tests of the expectations hypothesis of the term structure of interest rates. Journal of Financial Economics 44, 309~348. 2. MA(1) THEOREM. In the ARX(1)³ model ´ with |4| < 1, the second-order bias, up to O n31 , of the OLS estiˆ 0)0 is mator ˆ w = (ˆ 4, q ³ ´ B ˆ w ³ ¯ 0C Z ¯ 0C Z ¯ 31[j 2Z ¯D ¯ 31e1 + j 2e1tr Z ¯D ¯ 31 = 3D + 11 1, ³ ´ ³ ´ 4 0 31 0 ¯ + 2j e1 e1D e1 tr CC C ] yt = 0t 3 0t31, || < 1. ´ ¯ 31e1e0 D ¯ 31Z ¯ 0S. where 1 1 = 3j 3D 1 THEOREM. In the MA(1)³ model ´ with 00 = 0, the 31 second-order bias, up to O n , of the conditional ˆ is QMLE ³ ´ ˆ B THEOREM. In the ARX(1) ³model ´ with |4| < 1, the 31 second-order bias, up to O n , of j ˆ 2 = (y 3 ˆ 0(y 3 4 ˆ ˆy31 3 X q)/n is 4 ˆy31 3 X q) ³ ´ ´ 2³ ˆ 2 = 3 1 0 + 11 1 + 21 2 + 31 3 + 41 4 + 211 11 . B j n = tr (N) tr (N1) + tr (N WN1) 3 [tr (N1)]2 n 3 2tr (N) tr (N1) o tr (N2) [tr (N)]2 + tr (N WN) 2 [tr (N1)]3 + 21 2, where 1 2 = {tr(N1)tr(N1 ¯ N) 3tr(N2)tr(N ¯ N) /2}/ [tr (N1)]3 . Define 3. ARCH(1) yt = 0t, p 0t = zt ht, ht = k0 + k102t31, zt ; IID (0, 1) . ) = A02A22 3 A212, ³ j ´ Aij = E 02i t31/ht , P C1 = n i=1 E P C2 = n i=1 E P C3 = n i=1 E P C4 = n i=1 E P C5 = n i=1 E P C6 = n i=1 E à 02t3i 1 3 h2t ht3i h2t h2t3i ! à 02t3i31 02t3i02t3i31 3 h2t ht3i h2t h2t3i à 02t3102t3i 02t31 3 h2t ht3i h2t h2t3i à 02t3102t3i31 02t3102t3i02t3i31 3 h2t ht3i h2t h2t3i à 04 02t3i 04t31 3 t31 2 ht ht3i h2t h2t3i à 04t3102t3i31 04 02 02t3i31 3 t31 t3i 2 ht ht3i h2t h2t3i , ! ! ! , , ! , ! . , ³ ´ THEOREM. The second-order bias, up to O n31 , of the QMLE for the ARCH(1) model is given by ³ ´ 1 B ˆ w = n)2 à B0 B1 ! , THEOREM. The second-order bias of the Value-atRisk estimated by the method of QML, where the conditional volatility is specified by an ARCH(1) model, is h i d VaRn+1|n(k) 3 VaRn+1|n(k) = Bias1 + Bias2, where E B 0 = A222C1 3 A12A22 (C2 + 2C3) + A02A22C4 + A212 (C4 + C5) 3 A02A12C6, where Bias 1 = · · · , is due to misspecification of the conditional distribution, and Bias 2 = · · · , is due to the parameter estimation error. B 1 = 3A12A22C1 + A212 (C2 + C4) + A02A22C3 3 2A02A12C4 3 A02A12C5 + A202C6, Special case: k1 = 0, k 1 B (ˆ k0) = 3 0 , B (ˆ k1) = 3 , n n also see Engle et al. (1985). Berkowitz, J., and J. O’Brien. (2002). “How Accurate Are Value-at-Risk Models at Commercial Banks?” Journal of Finance 57, 1093-1111. Bias of the 5% VaR, n = 1000 D 0 1 D 1 , Student t D1 v 0.1 5 -0.1509 -0.0836 -0.0672 6 -0.1005 -0.0580 -0.0424 10 -0.0495 -0.0237 -0.0258 where |4| < 1 and W is the spatial weights matrix, assumed to be known a priori. 50 -0.0216 -0.0028 -0.0188 Example 1: crime rates f -0.0169 3 5 -0.2105 -0.0768 -0.1337 6 -0.1433 -0.0537 -0.0896 10 -0.0740 -0.0221 -0.0519 50 -0.0379 -0.0026 -0.0353 f -0.0331 0.5 Bias Bias1 0.0000 0.0000 Bias2 -0.0169 -0.0331 4. SPATIAL MODEL y = 4W y + 0, 5 -0.2625 -0.0456 -0.2170 6 -0.1688 -0.0323 -0.1365 10 -0.0957 -0.0136 -0.0821 50 -0.0589 -0.0017 -0.0572 f -0.0528 0.0000 -0.0528 3 43 4 +0 Example 2: starting salaries for new assistant professors 3 0.9 4 Riverside 0 w12 w13 Riverside E F E FE F 0 w23 D C San Diego D C San Diego D = 4 C w21 Irvine Irvine w31 w32 0 4 3 43 4 UCR 0 w12 w13 UCR E F E FE F 0 w23 D C UCSD D C UCSD D = 4 C w21 UCI UCI w31 w32 0 +0 Properties of 4 ˆ? U Uˆ Uˆ BC U~BC J=2 -0.9 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 0.9 -0.882 -0.776 -0.574 -0.382 -0.188 -0.001 0.189 0.382 0.577 0.776 0.881 -0.900 -0.799 -0.598 -0.401 -0.198 -0.001 0.200 0.402 0.602 0.798 0.899 -0.900 -0.799 -0.597 -0.399 -0.197 -0.001 0.199 0.400 0.600 0.798 0.899 J=6 -0.9 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 0.9 -0.810 -0.741 -0.596 -0.434 -0.253 -0.071 0.124 0.322 0.527 0.736 0.853 -0.812 -0.733 -0.568 -0.388 -0.191 0.003 0.205 0.402 0.599 0.790 0.892 -0.804 -0.728 -0.570 -0.394 -0.199 -0.007 0.196 0.397 0.598 0.794 0.897 - Asymptotic theory? no...until Lee (2001a, 2001b) - Finite sample? Monte Carlo results, Anselin (1980, 1982), Kelejian and Prucha (1999), Das (2000), Das, Kelejian, and Prucha (2001), Gress (2003). THEOREM. The QMLE 4 ˆ in the model has ³ SAR(1) ´ 31 , the second-order bias, up to O n B (ˆ 4) = 4B1B2 3 2B2tr (M1) 3 2B1tr (M2) + 3 [2B2 3 tr (M2)]2 tr (M1) tr (M2) + 2tr (M1M2) [2B2 3 tr (M2)]2 B3{4B12 3 4B1tr(M2) + [tr(M1)]2 + 2tr(M12)} [2B2 3 tr (M2)]3 + 21 2, where 1 2 = {[2B2 3 tr (M2)] tr (M1 ¯ M2) 3 B3tr (M1 ¯ M1)} ÷ [2B2 3 tr (M2)]3 . X MSE of MLE X SAR(1)+X X Spatial Autoregressive Error Model: y = Xq + 0, 0 = 4W 0 + u, ³ ´ u ; IIDN 0, j 2I , X SAR(1)+X+Spatial Autoregressive Error ˆ ML and j X Bias and MSE of q ˆ 2ML Chapters 5 to 6: II. VAR FORECAST I. INTRODUCTION Out-of-sample predictive ability of a model? Traditionally, point forecast under MSE loss. Point forecast is of decreasing relevance for risk management since it does not account take into many other distribution aspects of what is forecasted! i) Quantile / Interval Forecast: Value-at-Risk (3", V aR(k)] Consider a financial return series {rt}T t=1, generated by the probability law Pr(rt $ r|Ft31) Ft(r) conditional on the information set Ft31 (j-field) at time t31 rt = µt + 0t = µt + j tzt, where µt = E(rt|Ft31), j 2t = E(02t |Ft31), and {zt} {0t/j t} has the conditional distribution function Gt(z) Pr (zt $ z|Ft31). The VaR with a given tail probability k M (0, 1), denoted by qt(k), is defined as the conditional quantile Ft(qt(k)) = k, which can be estimated by inverting the distribution function: ii) Density Forecast All aspects of what is forecasted qt (k) = Ft31(k) = µt + j tG31 t (k). VaR forecast: qˆt (k) = Fˆt (k) or qˆt (k) = µ ˆ t+G31 (k) j ˆ t, 1. Parametric Distribution: G(·) = x (·) or t6 2. Historical Distribution: EDF Whether filtered or not Which distribution Unfiltered Filtered Parametric Distribution Normal* t(6)* Historical Distribution HS HS* Monte Carlo Distribution MC MC* NP Distribution NP NP* EVT Distributions GP GP* GEV GEV* HILL HILL* No Distribution CaViaRS CaViaRA 3. Monte Carlo Distribution: µ ¶ 1 St = St31 exp [µt 3 j 2t ] + j tzt , 2 rt 100 log (St/St31) 4. Nonparametrically Estimated Distribution: weighted Nadaraya-Watson (NW) estimator F (y|xt) = n P i=1 piKh(xi 3 xt)1(Yi $ y) n P i=1 piKh(xi 3 xt) 5. Extreme Value Distributions (a) Generalized Extreme Value Distribution, based on sample minima (b) Generalized Pareto Distribution, based on exceedances over threshold (c) Hill Estimator, based on ordered statistics Loss functions: • Predictive Likelihood for Quantile Forecasts T X ˆ P (k) = 1 Q [k 3 dˆt(k)][yt 3 qˆt(k)], P t=R+1 dˆt(k) 1 (yt < qˆt(k)) 6. Conditional Autoregressive VaR (a) Symmetric CaViaR (CaViaRS ) qt (k) = a0 + a1qt31 (k) + a2|rt31|, (b) Asymmetric CaViaR (CaViaRA) qt (k) = a0 + a1qt31 (k) + a2|rt31| + a3|rt31|1(rt31 < 0). • Predictive Likelihood for Interval Forecasts T X µ ˆ ˆ ˆP (k) = 3 1 C log pˆt(k)dt(k)[1 3 pˆt(k)][13dt(k)] P t=R+1 ¶ III. DENSITY FORECAST Aim: Propose a test for comparing various density forecast models; hence assess which volatility and/or distribution are statistically more appropriate to mimic the time series Extensive literature on evaluating density forecast models: e.g. Diebold et al. (1998), Diebold et al. (1999), Clements and Smith (2000), Berkowitz (2001), Hong (2002), etc. Criteria: “distances” of these models to the true, unknown model Compare alternative density forecast models? Why important? Minimum Kullback-Leibler Information Criterion (KLIC) divergence measure to define the distance between the candidate model and the true model Recent evidence on volatility clustering, return asymmetry, and tail-fatness in financial time series =i so many models arising from digerent specification of volatilities and/or distributions. Which one to use? It can be tailored for the tails Problem: each model can be possibly misspecified and we do not know the DGP Note: the test is not designed for comparing density models per se; it can be a test for comparing competing models (in the mean, volatility, etc.) in terms of density forecast (e.g., Diebold et al., Clements and Smith, Corradi and Swanson) Multiple comparison based on the KLIC distance: reality check of White (2000) E [ln )t (yt) 3 ln t (yt; W)] can be consistently estimated by DGP: Yt = µt + 0t µt + Ztj t, µt = E(Yt|Ft31), j 2t = E(02t |Ft31), Zt 0t/j t True density: )t(y) )t(y|Ft31) T 1 X Iˆ () : , W) = [ln )t(yt) 3 ln t (yt; W)], T t=1 ˆT that where W can be consistently estimated by P maximizes T1 T t=1 ln t (yt; ) But we still do not know )t (·) . Way out? Density forecast model: t(y; ) t(y|Ft31; ) Define the minimum KLIC distance measure I () : , W) = E [ln )t (yt) 3 ln t (yt; W)] , where W is the pseudo-true value of , the parameter value that gives the minimum I () : , ) E[ln )t (yt)3 ln t (yt; )] for all M X (e.g., Sawa, 1978; White, 1982) We utilize a inverse normal transform of the probability integral transform (PIT) of the actual realizations of the process with respect to the models’s density ˆT )] forecast. The equivalence between ln[)t(yt)/t(yt; and the log likelihood ratio of the transformed PITs enables us to consistently estimate I () : , W) and hence to compare possibly misspecified models in terms of their distance to the true model. ³ R yt ˆT ˆ t(y)dy, where ˆ t(y) = t y; PIT: ut = 3" Inverse normal transform of PIT: xt = x31(ut) ´ Remark: Checking IID U[0,1] of {ut} or IID N (0, 1) of {xt} provides a powerful approach to evaluating the quality of a density forecast model: Berkowitz, Diebold et al., Hong, Duan, etc. A loop? Do not know )t (·), make use of the transformed PITs, but do not know pt (·) either? However, out aim is to compare density forecast models; for this, we utilize the following mapping: pt (·) should be able to accommodate heterogeneity, dependency, and nonnormality, possibly existing in the transformed PITs due to some misspecification of the density forecast model h i ˆ t(yt) = ln [pt (xt) / (xt)] , ln )t(yt)/ where pt (·) is the density of xt and (·) is the standard normal density. Therefore, the distance of a density forecast model to the unknown true model can be equivalently estimated by the departure of {xt}T t=1 from IID N(0,1), T ³ ´ 1 X ˆ ˜ I ) : , T = [ln pt (xt) 3 ln (xt)] T t=1 However, measuring departure of the unknown pt (·) from IID N(0,1) is more straightforward than measuring departure of the postulated t (·; ) from something unknown in the sense that we can at least specify a flexible pt (·) to include IID N(0,1) as a special case, but we when we specify t (·; ) there is no guarantee that the postulated t (·; ) will accommodate the complicated )t(·), which is unknown at all a priori We follow Berkowitz (2001) by specifying {xt}T t=1 as an AR(L) process xt = 0Xt31 + j# t, Related works: but with IID # t admitting the SNP density of Gallant and Nychka (1987) ³P ´ K r # k 2 (# ) t k=0 k t p (# t; &# ) = R , ³P ´2 +" K r uk (u) du 3" k=0 k where r0 = 1, &# = (r1, · · · , rK )0 . Setting rk = 0, k = 1, · · · , K, p (# t) = (# t) . Hence we estimate I () : , W) by ³ ´ h ³ ´ i ˆT = 1 PT ln p xt; & ˆ T 3 ln (xt) I¯ ) : , t=1 T 5 P 7 = T1 T t=1 ln h i ˆ #T p (xt 3 ˆ0T Xt31)/ˆ j T ;& j ˆT ˆ T = ( ˆ 0#T )0 is the MLE. where & ˆ0, j ˆ, & Therefore, we can use the KLIC distance as a loss function for a given density forecast model! Testing IID N(0, 1) per se: Jarque and Bera (1980), Pearson distribution; Hall (1990), SNP; Kiefer and Salmon (1983), Smith (1989), Gram-Charlier/EdgeworthSargan. Comparing density forecast models: Corradi and Swanson (2003a, 2003b), Kolmogorov-Smirnov type statistics: mean square error of the CDF and the EDF, integrated integrated out. Our KLIC-PIT approach answers the questions raised in Corradi and Swanson (2003a, 2003b) 6 3 ln (xt)8 , 1. Applicability of PIT approach: Yes 2. Applicability of the KLIC discrepancy measure over some specific regions: Yes, next slide IV. MODEL COMPARISON Benchmark model: 0; competing models: k = 1, · · · , l Define the censored PIT Define the loss digerential: fk,t = L0,t 3 Lk,t xct = ( x31 (k) c xt if xt D c if xt < c. and hence the censored likelihood · µ ¶¸1(xtDc) c3b03b01Xt31 c c ; &# p (xt ; &) = 1 3 P j · ¸ [(xt 3b03b01Xt31)/j ] 1(xt<c) × . j Accordingly, the minimum tail KLIC distance ³ ´ h ³ ´ i ˆT = 1 PT ln pc xt; & ˆ T 3 ln c (xt) I¯c ) : , t=1 T • Pairwise comparison: model k is no better than the benchmark H1 : E(fk,t) $ 0 Diebold and Mariano (1995), West (1996) • Multiple comparison: can any one of the competing models beat the benchmark model? H2 : max E(fk,t) $ 0 1$k$l — In practice bootstrap the following statistics to get the “reality check p-value” V¯n = max n1/2[f¯k,n 3 E(fk,t)], 1$k$l where E(fk,t) is set to be zero. — Also see Hansen’s (2001) p-value that depends on the variance of d¯k,n. V. EMPIRICAL FINDINGS Compare VaR Models: • Filtered models dominate most unfiltered models • Most of the unfiltered models are dominated by the Riskmetrics EWMA model while many of the filtered models dominate the Riskmetrics EWMA model • The filtered EVT models generally produce the best risk forecasts, especially for the 1% tail • Among the filtered EVT models, HILL* and GP* perform the best, especially for the 1% tail for turmoil economies • Filtered nonparametric models, HS* and NP*, perform quite well • The t(6)* model works better than the Normal* model for the extreme 1% tail, while Normal* is better than t(6)* for the 5% tail. However, both t(6)* and Normal* are inferior to the EVT-based filtered models at both k = 0.01 and k = 0.05 • Filtered EVT models mostly do better with k = 0.01 than with k = 0.05. Other models (EWMA, Normal*, HS*, MC*, NP*) tend to perform better with k = 0.05 than with k = 0.01 • The asymmetric CaViaR model does better than the symmetric one, particularly at k = 0.01 189 190 0.003 0.028 0.003 0.048 0.117 0.015 0.079 0.058 0.079 0.005 0.849 0.103 HS vs HS* MC vs MC* NP vs NP* GEV vs GEV* GPD vs GPD* Hill vs Hill* HS vs HS* MC vs MC* NP vs NP* GEV vs GEV* GPD vs GPD* Hill vs Hill* HS vs HS* MC vs MC* NP vs NP* GEV vs GEV* GPD vs GPD* Hill vs Hill* Qˆ P (0.05) Qˆ P (0.01) Cˆ P (0.05) Cˆ P (0.01) 0.092 0.066 0.094 0.141 -0.046 0.022 0.247 0.225 0.248 0.165 0.165 0.175 0.203 0.184 0.203 0.314 0.001 0.186 HS MC NP GEV GPD Hill HS MC NP GEV GPD Hill HS MC NP GEV GPD Hill HS MC NP GEV GPD Hill Qˆ P (0.05) Qˆ P (0.01) Cˆ P (0.05) Cˆ P (0.01) 0.178 0.046 0.179 0.237 -0.030 0.088 Benchmark Loss Fn f1 0.032 0.112 0.033 0.031 0.000 0.000 HS vs HS* MC vs MC* NP vs NP* GEV vs GEV* GPD vs GPD* Hill vs Hill* I 0.000 0.012 0.000 0.004 0.035 0.035 0.084 0.061 0.084 0.123 0.096 0.126 0.184 0.253 0.184 0.084 0.996 0.494 0.000 0.287 0.000 0.004 0.720 0.100 GW 0.008 0.001 0.008 0.000 0.508 0.007 0.003 0.003 0.003 0.028 0.090 0.001 0.017 0.002 0.017 0.002 0.200 0.076 0.000 0.002 0.000 0.000 0.075 0.058 I 0.015 0.000 0.015 0.008 0.149 0.004 0.012 0.019 0.012 0.027 0.042 0.004 0.046 0.031 0.046 0.035 0.510 0.100 0.107 0.019 0.107 0.046 0.073 0.065 Korea 0.000 0.014 0.005 0.001 0.558 0.508 0.002 0.000 0.002 0.006 0.155 0.005 0.110 0.018 0.113 0.054 0.199 0.427 0.002 0.017 0.002 0.000 0.290 0.414 GW I 0.008 0.004 0.004 0.004 0.015 0.157 0.000 0.000 0.000 0.004 0.029 0.000 0.038 0.008 0.038 0.027 0.513 0.107 0.000 0.008 0.000 0.000 0.789 0.054 Malaysia 0.700 0.777 0.700 0.687 0.700 0.564 0.101 0.075 0.101 0.109 0.563 0.641 0.000 0.830 0.000 0.656 0.000 0.000 0.029 0.010 0.030 0.040 0.000 0.000 GW 0.008 0.017 0.008 0.000 0.064 0.019 0.001 0.001 0.001 0.014 0.026 0.015 0.027 0.059 0.027 0.012 1.000 0.185 0.000 0.120 0.000 0.000 0.756 0.010 White Indonesia 0.008 0.017 0.008 0.000 0.064 0.019 0.001 0.001 0.001 0.014 0.026 0.015 0.027 0.059 0.027 0.012 0.503 0.185 0.000 0.120 0.000 0.000 0.756 0.010 Hansen 0.326 0.413 0.326 0.433 0.098 0.328 0.328 0.309 0.329 0.239 0.167 0.376 0.139 0.205 0.140 0.199 0.027 0.074 0.277 0.224 0.277 0.323 0.110 0.137 f1 0.006 0.000 0.006 0.000 0.137 0.000 0.000 0.002 0.000 0.003 0.044 0.000 0.003 0.001 0.003 0.000 0.138 0.020 0.000 0.001 0.000 0.000 0.022 0.009 White Korea 0.006 0.000 0.006 0.000 0.137 0.000 0.000 0.002 0.000 0.003 0.044 0.000 0.003 0.001 0.003 0.000 0.138 0.020 0.000 0.001 0.000 0.000 0.022 0.009 Hansen 0.299 0.295 0.317 0.379 0.092 0.083 0.304 0.439 0.304 0.277 0.159 0.321 0.067 0.110 0.068 0.095 -0.003 0.029 0.168 0.131 0.168 0.252 -0.024 0.062 f1 0.000 0.000 0.000 0.000 0.051 0.059 0.000 0.000 0.000 0.000 0.029 0.000 0.042 0.005 0.037 0.011 0.503 0.130 0.001 0.003 0.001 0.000 0.799 0.068 White Malaysia Panel B. Reality Check 0.000 0.000 0.000 0.000 0.051 0.059 0.000 0.000 0.000 0.000 0.029 0.000 0.042 0.005 0.037 0.011 0.503 0.130 0.001 0.003 0.001 0.000 0.799 0.068 Hansen -0.021 -0.020 -0.021 -0.008 -0.024 -0.028 -0.091 -0.096 -0.091 -0.052 -0.041 -0.046 0.008 0.001 0.008 0.004 0.007 0.012 0.017 0.010 0.017 -0.008 0.050 0.084 f1 I 0.950 0.843 0.946 0.839 0.958 0.889 0.996 0.996 0.996 0.923 0.989 0.954 0.169 0.456 0.169 0.107 0.195 0.157 0.153 0.199 0.149 0.678 0.100 0.035 Taiwan 0.868 0.867 0.868 0.616 0.870 0.888 0.986 0.990 0.986 0.978 0.944 0.954 0.092 0.449 0.086 0.211 0.029 0.000 0.066 0.140 0.066 0.819 0.000 0.000 White Taiwan Table 6: Unfiltered vs Filtered VaR Models (Pair-wise Comparison) GW 0.005 0.284 0.005 0.000 0.000 0.153 Model Loss Function Indonesia Panel A. GW Test Table 6: Unfiltered vs Filtered VaR Models (Pair-wise Comparison) 0.481 0.513 0.481 0.616 0.480 0.450 0.516 0.515 0.516 0.539 0.530 0.537 0.092 0.449 0.086 0.211 0.029 0.000 0.066 0.140 0.066 0.819 0.000 0.000 Hansen f1 I 0.054 0.117 0.054 0.097 0.001 0.022 0.208 0.202 0.208 0.280 -0.046 -0.053 0.005 0.032 0.005 0.014 -0.001 -0.007 0.034 0.003 0.034 0.015 0.352 0.086 0.000 0.003 0.000 0.000 0.843 0.928 0.289 0.100 0.279 0.214 0.492 0.652 0.091 0.274 0.090 0.003 0.954 0.961 White Thailand 0.054 0.012 0.054 0.027 0.387 0.103 0.000 0.027 0.000 0.000 0.946 0.958 0.207 0.069 0.199 0.123 0.506 0.487 0.287 0.318 0.287 0.050 0.751 0.678 0.032 0.014 0.033 0.096 -0.031 -0.033 0.680 0.125 0.680 0.329 0.849 0.849 0.017 0.030 0.017 0.001 0.151 0.285 0.000 0.006 0.006 0.017 0.000 0.000 0.040 0.054 0.041 0.077 0.020 0.006 GW Thailand 0.034 0.003 0.034 0.015 0.352 0.086 0.000 0.003 0.000 0.000 0.843 0.512 0.289 0.100 0.279 0.214 0.492 0.652 0.091 0.274 0.090 0.003 0.449 0.447 Hansen 191 192 0.386 0.574 0.419 0.575 0.666 0.361 0.468 0.141 0.225 0.203 0.226 0.270 0.109 0.150 0.372 0.700 0.560 0.700 0.742 0.349 0.605 0.254 0.387 0.384 0.387 0.460 0.048 0.225 Loss 0.386 0.371 0.409 0.396 0.373 0.396 0.429 0.391 0.380 0.141 0.135 0.157 0.132 0.137 0.132 0.129 0.154 0.128 Riskmetrics HS MC NP GEV GPD Hill Riskmetrics HS MC NP GEV GPD Hill Riskmetrics HS MC NP GEV GPD Hill Riskmetrics HS MC NP GEV GPD Hill Benchmark Riskmetrics Normal* t(6)* HS* MC* NP* GEV* GPD* Hill* Riskmetrics Normal* t(6)* HS* MC* NP* GEV* GPD* Hill* Qˆ P (0.05) Qˆ P (0.01) Cˆ P (0.05) Cˆ P (0.01) Loss Fn Qˆ P (0.05) Qˆ P (0.01) Loss Benchmark Loss Fn 0.488 0.706 0.194 0.799 0.628 0.792 0.941 0.237 0.949 0.634 1.000 0.242 0.359 0.966 0.355 0.146 0.468 0.836 White Indonesia 0.010 0.000 0.001 0.000 0.000 0.997 0.032 0.643 0.000 0.005 0.000 0.000 0.920 0.003 0.374 0.028 0.042 0.027 0.010 0.942 0.213 0.470 0.000 0.150 0.000 0.000 0.983 0.006 White 0.005 0.000 0.001 0.000 0.000 0.602 0.030 0.323 0.000 0.003 0.000 0.000 0.677 0.003 0.120 0.028 0.042 0.027 0.010 0.596 0.104 0.297 0.000 0.057 0.000 0.000 0.543 0.006 Hansen 0.488 0.522 0.194 0.556 0.461 0.553 0.709 0.237 0.826 0.529 0.993 0.242 0.324 0.910 0.322 0.146 0.468 0.530 Hansen Indonesia Korea 0.848 0.004 0.000 0.004 0.001 0.652 0.010 0.999 0.000 0.001 0.000 0.000 0.011 0.009 0.900 0.002 0.000 0.002 0.001 0.425 0.025 0.985 0.000 0.001 0.000 0.000 0.017 0.012 White 0.695 0.004 0.000 0.004 0.001 0.305 0.010 0.531 0.000 0.001 0.000 0.000 0.011 0.009 0.523 0.002 0.000 0.002 0.001 0.130 0.016 0.504 0.000 0.001 0.000 0.000 0.016 0.012 Hansen 0.149 0.387 0.519 0.405 0.486 0.116 0.179 0.302 0.803 0.796 0.803 0.821 0.353 0.606 0.097 0.166 0.218 0.166 0.192 0.096 0.121 0.312 0.498 0.449 0.498 0.600 0.295 0.374 Loss 0.585 0.000 0.000 0.000 0.000 0.970 0.440 0.931 0.000 0.000 0.000 0.000 0.496 0.000 0.686 0.043 0.008 0.042 0.015 0.876 0.314 0.510 0.000 0.001 0.000 0.000 0.972 0.041 White Malaysia 0.384 0.000 0.000 0.000 0.000 0.763 0.195 0.776 0.000 0.000 0.000 0.000 0.224 0.000 0.423 0.043 0.008 0.042 0.015 0.630 0.127 0.288 0.000 0.001 0.000 0.000 0.712 0.032 Hansen 0.103 0.112 0.105 0.104 0.111 0.104 0.105 0.101 0.098 0.342 0.350 0.359 0.359 0.348 0.359 0.367 0.345 0.333 Loss Korea 0.432 0.158 0.326 0.355 0.162 0.354 0.300 0.649 0.961 0.457 0.241 0.138 0.128 0.317 0.126 0.090 0.430 0.842 White 0.432 0.158 0.293 0.322 0.162 0.322 0.296 0.424 0.961 0.418 0.241 0.138 0.128 0.293 0.126 0.090 0.363 0.832 Hansen 0.097 0.107 0.101 0.098 0.109 0.098 0.097 0.099 0.092 0.312 0.317 0.326 0.330 0.319 0.330 0.347 0.319 0.313 Loss 0.663 0.275 0.385 0.603 0.260 0.596 0.651 0.500 1.000 0.856 0.789 0.379 0.251 0.696 0.251 0.131 0.534 0.884 White Malaysia 0.655 0.275 0.352 0.426 0.260 0.423 0.435 0.500 1.000 0.829 0.482 0.315 0.250 0.438 0.250 0.131 0.534 0.705 Hansen Loss 0.064 0.062 0.059 0.058 0.061 0.058 0.058 0.057 0.058 0.205 0.200 0.203 0.199 0.199 0.199 0.201 0.202 0.220 Loss 0.078 0.018 0.041 0.018 0.030 0.017 0.000 0.165 0.057 0.055 0.057 0.108 0.053 0.016 0.064 0.066 0.061 0.066 0.062 0.064 0.069 0.205 0.217 0.209 0.216 0.193 0.252 0.304 Table 8: Reality Check, Filtered VaR Models 0.185 0.475 0.606 0.475 0.582 0.219 0.419 0.352 0.792 0.745 0.792 0.738 0.609 0.620 0.103 0.243 0.316 0.244 0.305 0.129 0.172 0.342 0.636 0.571 0.636 0.690 0.454 0.470 Loss Table 7: Reality Check, Unfiltered VaR Models Taiwan 0.269 0.334 0.696 0.941 0.486 0.938 0.877 0.987 0.620 0.360 0.893 0.456 0.918 0.996 0.919 0.644 0.724 0.094 White Taiwan 0.018 0.370 0.082 0.370 0.217 0.383 0.919 0.000 0.144 0.169 0.144 0.006 0.225 0.985 0.494 0.487 0.847 0.487 0.893 0.615 0.326 0.373 0.127 0.264 0.127 1.000 0.000 0.000 White 0.269 0.334 0.696 0.941 0.486 0.938 0.877 0.987 0.620 0.360 0.798 0.392 0.872 0.996 0.878 0.424 0.447 0.094 Hansen 0.018 0.080 0.077 0.080 0.123 0.080 0.503 0.000 0.041 0.044 0.041 0.006 0.063 0.560 0.494 0.465 0.847 0.465 0.893 0.537 0.326 0.246 0.052 0.115 0.052 0.707 0.000 0.000 Hansen 0.072 0.072 0.069 0.072 0.070 0.072 0.072 0.085 0.082 0.269 0.275 0.283 0.275 0.271 0.275 0.279 0.280 0.289 Loss 0.066 0.088 0.199 0.088 0.132 0.022 0.041 0.220 0.505 0.475 0.505 0.590 0.129 0.100 0.072 0.077 0.102 0.078 0.086 0.084 0.076 0.269 0.307 0.285 0.307 0.375 0.249 0.256 Loss 0.462 0.458 0.998 0.573 0.759 0.607 0.621 0.023 0.033 0.853 0.578 0.254 0.504 0.831 0.506 0.328 0.321 0.185 White Thailand 0.329 0.106 0.001 0.106 0.020 0.943 0.625 0.080 0.000 0.000 0.000 0.000 0.589 0.994 0.770 0.674 0.130 0.670 0.309 0.454 0.718 0.366 0.017 0.097 0.016 0.000 1.000 0.573 White Thailand 0.354 0.398 0.940 0.338 0.711 0.363 0.411 0.023 0.033 0.817 0.503 0.254 0.418 0.782 0.420 0.328 0.321 0.185 Hansen 0.197 0.077 0.001 0.077 0.020 0.783 0.453 0.014 0.000 0.000 0.000 0.000 0.127 0.524 0.754 0.384 0.130 0.381 0.301 0.454 0.677 0.254 0.017 0.088 0.016 0.000 0.632 0.332 Hansen 193 194 Cˆ P (0.05) 0.254 0.314 0.260 0.372 0.477 0.598 Riskmetrics CaViaRS CaViaRA Qˆ P (0.01) Riskmetrics CaViaRS CaViaRA 0.141 0.191 0.167 Riskmetrics CaViaRS CaViaRA Qˆ P (0.05) Cˆ P (0.01) Loss 0.386 0.464 0.544 Cˆ P (0.01) Benchmark 0.254 0.181 0.201 0.184 0.200 0.184 0.146 0.046 0.039 Riskm’s Normal* t(6)* HS* MC* NP* GEV* GPD* Hill* Cˆ P (0.05) Riskmetrics CaViaRS CaViaRA 0.372 0.337 0.526 0.453 0.334 0.452 0.577 0.185 0.430 Riskmetrics Normal* t(6)* HS* MC* NP* GEV* GPD* Hill* Loss Fn Loss Benchmark Loss Fn 0.795 0.172 0.613 0.982 0.051 0.001 0.999 0.030 0.133 0.993 0.011 0.000 White Indonesia 0.007 0.014 0.004 0.010 0.009 0.010 0.054 0.754 0.992 0.018 0.026 0.000 0.001 0.031 0.001 0.000 0.996 0.001 White Indonesia 0.640 0.172 0.413 0.491 0.044 0.001 0.546 0.030 0.037 0.513 0.011 0.000 Hansen 0.007 0.014 0.004 0.010 0.009 0.010 0.019 0.101 0.496 0.018 0.013 0.000 0.001 0.015 0.001 0.000 0.540 0.001 Hansen Korea 0.078 0.017 0.351 0.164 0.030 0.164 0.171 0.553 0.964 0.057 0.000 0.000 0.000 0.001 0.000 0.001 0.001 0.996 White 0.078 0.017 0.085 0.129 0.030 0.129 0.138 0.120 0.563 0.030 0.000 0.000 0.000 0.001 0.000 0.001 0.001 0.540 Hansen 0.149 0.211 0.178 0.089 0.224 0.089 0.107 0.024 0.096 0.302 0.359 0.422 0.499 0.357 0.499 0.544 0.194 0.285 Loss 0.018 0.003 0.005 0.180 0.002 0.180 0.087 0.984 0.151 0.108 0.003 0.001 0.000 0.004 0.000 0.000 0.998 0.155 White Malaysia 0.016 0.003 0.005 0.054 0.002 0.054 0.032 0.525 0.054 0.034 0.003 0.001 0.000 0.004 0.000 0.000 0.628 0.027 Hansen Loss 0.185 0.206 0.178 0.352 0.369 0.347 0.103 0.106 0.096 0.342 0.348 0.342 0.635 0.322 0.685 0.540 0.401 0.804 0.194 0.121 0.916 0.574 0.261 0.766 White Korea 0.635 0.322 0.685 0.540 0.401 0.615 0.194 0.121 0.845 0.574 0.261 0.502 Hansen Loss 0.149 0.130 0.088 0.302 0.499 0.485 0.097 0.094 0.086 0.312 0.324 0.322 0.113 0.213 0.921 0.995 0.005 0.006 0.103 0.171 0.927 0.713 0.263 0.303 White Malaysia 0.113 0.213 0.573 0.534 0.005 0.006 0.103 0.171 0.585 0.713 0.263 0.303 Hansen Table 9: Reality Check, CaViaR Models 0.185 0.214 0.133 0.149 0.193 0.149 0.149 0.120 0.091 0.352 0.456 0.463 0.463 0.436 0.463 0.500 0.443 0.244 Loss 0.078 0.063 0.064 0.165 0.148 0.148 0.064 0.060 0.058 0.205 0.198 0.198 Loss 0.078 0.060 0.047 0.039 0.061 0.039 0.038 0.041 0.028 0.165 0.155 0.167 0.148 0.151 0.148 0.160 0.094 0.062 Loss Table 8 (Continued): Reality Check, Filtered VaR Models Taiwan 0.129 0.972 0.520 0.134 0.803 0.743 0.152 0.457 0.897 0.078 0.527 0.968 White Taiwan 0.064 0.099 0.300 0.578 0.096 0.584 0.632 0.532 0.903 0.006 0.014 0.006 0.018 0.017 0.018 0.012 0.214 0.970 White 0.129 0.610 0.226 0.134 0.615 0.522 0.152 0.457 0.549 0.078 0.112 0.508 Hansen 0.064 0.099 0.148 0.329 0.096 0.349 0.466 0.429 0.747 0.006 0.014 0.006 0.018 0.017 0.018 0.012 0.048 0.539 Hansen 0.066 0.034 0.052 0.220 0.330 0.316 0.072 0.074 0.075 0.269 0.275 0.282 Loss 0.066 0.131 0.067 0.034 0.082 0.034 0.035 0.020 0.018 0.220 0.300 0.337 0.297 0.273 0.297 0.310 0.175 0.153 Loss 0.227 0.927 0.296 0.983 0.014 0.036 0.693 0.373 0.359 0.676 0.376 0.204 White Thailand 0.250 0.020 0.203 0.741 0.093 0.741 0.724 0.776 0.977 0.121 0.001 0.001 0.001 0.006 0.001 0.004 0.568 0.959 White Thailand 0.227 0.816 0.296 0.560 0.014 0.036 0.693 0.373 0.359 0.676 0.364 0.204 Hansen 0.195 0.020 0.170 0.228 0.093 0.228 0.228 0.450 0.939 0.043 0.001 0.001 0.001 0.006 0.001 0.004 0.144 0.535 Hansen Compare Density Forecast Models: Volatility Specification: j 2t = j 2t (Ft31; v ) , GARCHfamily Distribution Specification: ft (z) = ft (z|Ft31; d) , normal and nonnormal EWMA: Riskmetrics ; ; A Student t A A A A A ? GED A A A A Symmetric A A A A Double Exponential A A A A = A A Double Weibull A A A A A A ; A A A A A Skewed t A A A A A ? A Hansen t A A A Nonnormal A A A ? Skewed GED A A A A Skewed IHS A A A A A A A A Mixture A A A A A A A Double Gamma A A A A A A A = A A Edgeworth A A A A A A A = GARCH: symmetric GJR: asymmetric APARCH: asymmetric EGARCH: asymmetric HYGARCH: symmetric and long memory HYAPARCH: asymmetric and long memory Historical CGARCH: symmetric and long memory Table 10: Reality Check, S&P 500 Data (DIEBOLD) • The choice of conditional distributions may be more important than the choice of volatility • A model that provides superior density forecasts does not necessary meet the needs of risk managers who care much more about the tails • Nonnormality and long memory in the second moments exist for both the S&P 500 and Nasdaq return series, but there are clear digerences between the stochastic processes to generate the two series • The Hansen t, skewed t, normal and historical distributions generally appear to be the worst distributions • In the tails, however, Skewed t systematically dominates other distributions and in every case it fares better than the Hansen t Panel A: Whole Distribution EWMA GARCH GJR APARCH EGARCH STGARCH HYGARCH HYAPARCH CGARCH HS 0.0142 0.889 0.888 0.0093 0.628 0.590 0.0827 0.217 0.217 0.0801 0.248 0.248 0.0767 0.278 0.278 0.0096 0.623 0.587 0.0093 0.628 0.590 0.0807 0.239 0.239 0.0090 0.652 0.612 NM 0.0146 0.805 0.784 0.0166 0.799 0.784 0.0234 0.766 0.760 0.0314 0.705 0.703 0.0251 0.750 0.746 0.0185 0.793 0.784 0.0166 0.799 0.784 0.0307 0.710 0.708 0.0136 0.805 0.783 St t 0.0163 0.791 0.783 0.0163 0.792 0.783 0.0212 0.765 0.764 0.0270 0.702 0.701 0.0221 0.756 0.755 0.0172 0.790 0.783 0.0163 0.792 0.783 0.0328 0.644 0.644 0.0154 0.792 0.783 GED 0.0389 0.595 0.595 0.0435 0.545 0.545 0.0540 0.545 0.545 0.1259 0.168 0.168 0.0584 0.545 0.545 0.0456 0.545 0.545 0.0435 0.545 0.545 0.1247 0.169 0.169 0.0153 0.792 0.783 LP 0.0259 0.694 0.694 0.0218 0.754 0.754 0.0263 0.685 0.685 0.0263 0.688 0.688 0.0283 0.651 0.651 0.0229 0.739 0.739 0.0206 0.768 0.768 0.0260 0.690 0.690 0.0214 0.758 0.758 DW 0.0113 0.817 0.787 0.0075 0.881 0.800 0.0144 0.801 0.783 0.0120 0.824 0.787 0.0127 0.813 0.783 0.0126 0.811 0.784 0.0039 0.971 0.872 0.0301 0.669 0.669 0.0038 0.974 0.881 Sk t 0.0289 0.647 0.647 0.0263 0.652 0.652 0.0186 0.779 0.779 0.0181 0.783 0.783 0.0164 0.785 0.783 0.0237 0.686 0.686 0.0263 0.652 0.652 0.0182 0.782 0.782 0.0300 0.646 0.646 Hn t 0.0393 0.636 0.636 0.1001 0.137 0.137 0.1441 0.094 0.094 0.1368 0.112 0.112 0.1371 0.110 0.110 0.1003 0.136 0.136 0.1516 0.065 0.065 0.1407 0.104 0.104 0.1015 0.135 0.135 SGED 0.0159 0.793 0.783 0.0431 0.545 0.545 0.0535 0.545 0.545 0.0659 0.542 0.542 0.0318 0.650 0.650 0.0468 0.545 0.545 0.0431 0.545 0.545 0.0650 0.543 0.543 0.0150 0.794 0.783 IHS 0.0160 0.791 0.783 0.0160 0.793 0.783 0.0211 0.765 0.764 0.0268 0.706 0.705 0.0218 0.759 0.758 0.0170 0.791 0.783 0.0160 0.793 0.783 0.0263 0.713 0.712 0.0152 0.792 0.783 MX 0.0137 0.792 0.785 0.0169 0.793 0.782 0.0233 0.756 0.755 0.0275 0.702 0.701 0.0118 0.811 0.785 0.0167 0.794 0.782 0.0169 0.793 0.782 0.0289 0.711 0.710 0.0150 0.795 0.783 DG 0.0014 1.000 0.994 0.0053 0.928 0.825 0.0019 0.998 0.941 0.0025 0.992 0.915 0.0037 0.965 0.864 0.0015 0.999 0.980 0.0016 0.998 0.953 0.0074 0.887 0.810 0.0016 0.998 0.960 SGN 0.0148 0.798 0.783 0.0158 0.798 0.783 0.0200 0.781 0.777 0.0240 0.744 0.740 0.0206 0.781 0.776 0.0164 0.797 0.783 0.0158 0.798 0.783 0.0236 0.749 0.745 0.0152 0.796 0.783 195 Table 10: Reality Check, S&P 500 Data (DIEBOLD) Table 11: Reality Check, S&P 500 Data (SP) Panel B: 5% Tail Panel A: Whole Distribution EWMA GARCH GJR APARCH EGARCH STGARCH HYGARCH HYAPARCH CGARCH EWMA GARCH GJR APARCH EGARCH STGARCH HYGARCH HYAPARCH CGARCH HS 0.3187 0.127 0.127 0.1624 0.236 0.236 0.0219 0.599 0.599 0.0203 0.599 0.599 0.0197 0.599 0.599 0.1651 0.170 0.170 0.1624 0.236 0.236 0.0200 0.599 0.599 0.1615 0.272 0.272 HS 0.0333 0.001 0.001 0.0096 0.298 0.098 0.0118 0.173 0.043 0.0130 0.124 0.034 0.0107 0.225 0.066 0.0054 0.686 0.279 0.0096 0.295 0.102 0.0136 0.111 0.033 0.0115 0.201 0.065 NM 0.0266 0.696 0.696 0.0266 0.680 0.680 0.0271 0.657 0.657 0.0331 0.648 0.648 0.0293 0.645 0.645 0.0286 0.670 0.670 0.0266 0.680 0.680 0.0328 0.649 0.649 0.0229 0.687 0.687 NM 0.0032 0.814 0.474 0.0046 0.580 0.332 0.0075 0.392 0.178 0.0056 0.524 0.268 0.0076 0.392 0.170 0.0084 0.355 0.174 0.0051 0.530 0.298 0.0052 0.551 0.301 0.0022 0.951 0.665 St t 0.0028 0.960 0.924 0.0038 0.919 0.873 0.0069 0.758 0.732 0.0094 0.704 0.689 0.0093 0.701 0.682 0.0040 0.909 0.867 0.0038 0.924 0.881 0.0115 0.609 0.609 0.0026 0.973 0.917 St t 0.0022 0.964 0.764 0.0029 0.897 0.618 0.0043 0.725 0.419 0.0030 0.906 0.662 0.0043 0.722 0.428 0.0063 0.449 0.182 0.0030 0.890 0.590 0.0028 0.918 0.657 0.0014 0.992 0.901 GED 0.1334 0.549 0.549 0.1359 0.545 0.545 0.1357 0.545 0.545 0.2825 0.196 0.196 0.1398 0.544 0.544 0.1359 0.545 0.545 0.1359 0.545 0.545 0.2816 0.197 0.197 0.0081 0.795 0.778 GED 0.0020 0.973 0.812 0.0027 0.909 0.642 0.0043 0.712 0.426 0.0029 0.895 0.658 0.0043 0.712 0.422 0.0059 0.494 0.224 0.0029 0.895 0.588 0.0027 0.916 0.632 0.0012 0.996 0.935 LP 0.0001 1.000 1.000 0.0010 0.998 0.934 0.0014 0.973 0.802 0.0015 0.972 0.796 0.0019 0.970 0.862 0.0007 1.000 0.977 0.0019 0.985 0.842 0.0015 0.970 0.792 0.0014 0.994 0.879 LP 0.0054 0.592 0.286 0.0018 0.978 0.836 0.0021 0.964 0.799 0.0006 0.998 0.961 0.0011 0.997 0.919 0.0052 0.610 0.300 0.0009 0.998 0.957 0.0006 0.998 0.969 0.0011 0.998 0.930 DW 0.0032 0.972 0.946 0.0035 0.958 0.922 0.0038 0.929 0.884 0.0060 0.834 0.799 0.0051 0.852 0.811 0.0036 0.959 0.925 0.0049 0.904 0.856 0.0062 0.807 0.762 0.0035 0.949 0.911 DW 0.0022 0.961 0.758 0.0043 0.753 0.424 0.0049 0.662 0.333 0.0053 0.625 0.304 0.0035 0.823 0.550 0.0059 0.517 0.233 0.0025 0.942 0.683 0.0022 0.969 0.765 0.0020 0.978 0.821 Sk t 0.0089 0.641 0.631 0.0080 0.660 0.644 0.0044 0.867 0.786 0.0044 0.892 0.838 0.0049 0.850 0.798 0.0073 0.686 0.668 0.0080 0.660 0.644 0.0048 0.867 0.807 0.0093 0.628 0.623 Sk t 0.0438 0.001 0.001 0.0581 0.000 0.000 0.0375 0.001 0.001 0.0394 0.001 0.001 0.0360 0.001 0.001 0.0405 0.001 0.001 0.0584 0.000 0.000 0.0396 0.001 0.001 0.0664 0.000 0.000 Hn t 0.0090 0.647 0.638 0.0261 0.599 0.599 0.0365 0.599 0.599 0.0359 0.599 0.599 0.0368 0.599 0.599 0.0260 0.599 0.599 0.0367 0.599 0.599 0.0366 0.599 0.599 0.0267 0.599 0.599 Hn t 0.0386 0.002 0.002 0.0447 0.000 0.000 0.1270 0.000 0.000 0.1303 0.000 0.000 0.1218 0.000 0.000 0.0446 0.000 0.000 0.1340 0.000 0.000 0.1274 0.000 0.000 0.0611 0.000 0.000 SGED 0.0065 0.866 0.846 0.1339 0.545 0.545 0.1320 0.545 0.545 0.1372 0.545 0.545 0.0075 0.739 0.714 0.1341 0.545 0.545 0.1339 0.545 0.545 0.1366 0.545 0.545 0.0071 0.831 0.793 SGED 0.0019 0.968 0.813 0.0025 0.924 0.698 0.0038 0.777 0.499 0.0026 0.920 0.650 0.0040 0.748 0.476 0.0057 0.517 0.236 0.0026 0.908 0.656 0.0024 0.944 0.697 0.0011 0.997 0.943 IHS 0.0018 0.995 0.952 0.0027 0.976 0.927 0.0050 0.851 0.812 0.0071 0.763 0.740 0.0065 0.778 0.748 0.0029 0.970 0.929 0.0027 0.976 0.927 0.0067 0.778 0.749 0.0020 0.993 0.931 IHS 0.0021 0.960 0.776 0.0026 0.934 0.705 0.0037 0.804 0.525 0.0025 0.941 0.711 0.0038 0.788 0.514 0.0060 0.485 0.210 0.0026 0.927 0.679 0.0024 0.949 0.738 0.0012 0.996 0.939 MX 0.0061 0.878 0.842 0.0154 0.728 0.728 0.0169 0.707 0.707 0.0120 0.688 0.687 0.0192 0.642 0.642 0.0161 0.726 0.726 0.0154 0.728 0.728 0.0191 0.697 0.697 0.0123 0.754 0.752 MX 0.0001 1.000 0.979 0.0067 0.428 0.188 0.0043 0.697 0.391 0.0031 0.861 0.612 0.0045 0.675 0.367 0.0130 0.228 0.040 0.0030 0.876 0.545 0.0030 0.881 0.622 0.0045 0.656 0.377 DG 0.0010 1.000 0.993 0.0024 0.966 0.844 0.0006 1.000 0.993 0.0016 0.992 0.930 0.0016 0.983 0.899 0.0010 0.998 0.981 0.0011 0.998 0.974 0.0023 0.957 0.835 0.0011 0.998 0.971 DG 0.0020 0.966 0.814 0.0019 0.977 0.821 0.0040 0.797 0.478 0.0037 0.827 0.532 0.0028 0.909 0.652 0.0047 0.720 0.416 0.0031 0.861 0.590 0.0029 0.893 0.612 0.0026 0.914 0.678 SGN 0.0018 0.989 0.831 0.0010 1.000 0.924 0.0018 0.968 0.816 0.0022 0.951 0.803 0.0026 0.926 0.784 0.0007 1.000 0.959 0.0010 1.000 0.924 0.0020 0.962 0.811 0.0015 0.994 0.862 SGN 0.0008 1.000 0.963 0.0007 0.999 0.951 0.0017 0.960 0.779 0.0008 0.999 0.953 0.0021 0.932 0.711 0.0027 0.868 0.611 0.0041 0.636 0.361 0.0052 0.558 0.303 0.0006 1.000 0.965 196 197 Table 11: Reality Check, S&P 500 Data (SP) Table 12: Reality Check, Nasdaq Data Panel B: 5% Tail Panel A: Whole Distribution EWMA GARCH GJR APARCH EGARCH STGARCH HYGARCH HYAPARCH CGARCH EWMA GARCH GJR APARCH EGARCH STGARCH HYGARCH HYAPARCH CGARCH HS 0.0162 0.169 0.169 0.0049 0.743 0.513 0.0071 0.541 0.428 0.0062 0.586 0.454 0.0050 0.720 0.502 0.0040 0.840 0.529 0.0047 0.769 0.521 0.0064 0.565 0.444 0.0056 0.649 0.468 HS 0.0055 0.980 0.588 0.0266 0.351 0.041 0.0265 0.342 0.021 0.0245 0.379 0.029 0.0202 0.443 0.026 0.0301 0.308 0.028 0.0234 0.387 0.044 0.0238 0.387 0.033 0.0177 0.511 0.097 NM 0.0181 0.124 0.120 0.0219 0.107 0.107 0.0169 0.151 0.146 0.0135 0.204 0.186 0.0143 0.189 0.175 0.0225 0.101 0.101 0.0231 0.099 0.099 0.0134 0.205 0.187 0.0199 0.119 0.119 NM 0.0066 0.952 0.474 0.0126 0.709 0.205 0.0200 0.473 0.067 0.0190 0.501 0.083 0.0185 0.521 0.100 0.0151 0.613 0.163 0.0131 0.692 0.193 0.0188 0.506 0.090 0.0065 0.961 0.462 St t 0.0038 0.898 0.718 0.0032 0.929 0.728 0.0028 0.956 0.778 0.0021 0.982 0.853 0.0022 0.976 0.838 0.0042 0.869 0.699 0.0035 0.920 0.732 0.0021 0.983 0.855 0.0031 0.946 0.753 St t 0.0064 0.966 0.417 0.0102 0.820 0.232 0.0158 0.594 0.085 0.0147 0.633 0.128 0.0137 0.677 0.145 0.0121 0.729 0.164 0.0101 0.822 0.232 0.0144 0.640 0.141 0.0068 0.955 0.382 GED 0.0046 0.855 0.681 0.0048 0.846 0.677 0.0039 0.890 0.699 0.0032 0.948 0.785 0.0031 0.951 0.764 0.0052 0.815 0.641 0.0056 0.767 0.597 0.0032 0.947 0.778 0.0052 0.793 0.624 GED 0.0118 0.720 0.255 0.0108 0.790 0.213 0.0165 0.568 0.085 0.0157 0.593 0.116 0.0149 0.628 0.141 0.0127 0.705 0.175 0.0109 0.788 0.218 0.0154 0.603 0.123 0.0066 0.959 0.400 LP 0.0039 0.885 0.680 0.0036 0.915 0.676 0.0025 0.968 0.757 0.0029 0.945 0.663 0.0029 0.951 0.656 0.0038 0.905 0.711 0.0034 0.914 0.695 0.0029 0.947 0.669 0.0033 0.925 0.693 LP 0.0121 0.726 0.138 0.0104 0.822 0.195 0.0133 0.679 0.107 0.0093 0.865 0.306 0.0087 0.893 0.262 0.0123 0.720 0.116 0.0073 0.941 0.355 0.0092 0.868 0.310 0.0077 0.928 0.349 DW 0.0041 0.888 0.701 0.0025 0.973 0.805 0.0020 0.982 0.884 0.0010 0.999 0.967 0.0018 0.988 0.903 0.0050 0.811 0.640 0.0039 0.895 0.720 0.0022 0.985 0.878 0.0036 0.928 0.770 DW 0.0149 0.592 0.147 0.0208 0.426 0.049 0.0246 0.334 0.015 0.0185 0.488 0.071 0.0113 0.764 0.196 0.0120 0.722 0.168 0.0098 0.839 0.227 0.0123 0.727 0.164 0.0051 0.988 0.554 Sk t 0.0140 0.217 0.217 0.0211 0.078 0.078 0.0169 0.151 0.151 0.0176 0.134 0.134 0.0174 0.139 0.139 0.0158 0.174 0.174 0.0208 0.083 0.083 0.0176 0.135 0.135 0.0246 0.042 0.042 Sk t 0.0234 0.389 0.032 0.0218 0.423 0.042 0.0154 0.596 0.154 0.0144 0.638 0.185 0.0137 0.661 0.208 0.0172 0.539 0.119 0.0227 0.400 0.036 0.0146 0.633 0.180 0.0240 0.373 0.029 Hn t 0.0183 0.129 0.126 0.0306 0.009 0.009 0.0401 0.000 0.000 0.0381 0.000 0.000 0.0371 0.000 0.000 0.0306 0.009 0.009 0.0396 0.000 0.000 0.0380 0.000 0.000 0.0326 0.005 0.005 Hn t 0.0784 0.047 0.000 0.4247 0.000 0.000 0.2229 0.000 0.000 0.7250 0.000 0.000 0.1234 0.002 0.000 0.0242 0.350 0.018 0.1322 0.000 0.000 0.1209 0.002 0.000 0.0437 0.187 0.000 SGED 0.0059 0.735 0.573 0.0049 0.827 0.648 0.0031 0.949 0.798 0.0034 0.938 0.808 0.0022 0.980 0.858 0.0058 0.742 0.583 0.0051 0.810 0.636 0.0033 0.939 0.816 0.0045 0.858 0.677 SGED 0.0096 0.831 0.341 0.0149 0.661 0.186 0.0118 0.797 0.253 0.0115 0.805 0.264 0.0128 0.704 0.172 0.0123 0.716 0.198 0.0093 0.850 0.271 0.0131 0.696 0.161 0.0059 0.972 0.457 IHS 0.0036 0.906 0.736 0.0036 0.920 0.706 0.0022 0.985 0.821 0.0020 0.989 0.869 0.0019 0.988 0.841 0.0032 0.939 0.738 0.0037 0.917 0.704 0.0023 0.981 0.820 0.0036 0.918 0.701 IHS 0.0107 0.783 0.264 0.0121 0.790 0.230 0.0098 0.865 0.285 0.0096 0.880 0.304 0.0089 0.908 0.324 0.0132 0.744 0.216 0.0127 0.762 0.217 0.0102 0.848 0.270 0.0063 0.969 0.414 MX 0.0045 0.834 0.584 0.0032 0.943 0.748 0.0023 0.972 0.791 0.0018 0.990 0.865 0.0017 0.988 0.873 0.0041 0.887 0.703 0.0036 0.925 0.722 0.0019 0.989 0.834 0.0040 0.901 0.711 MX 0.0033 1.000 0.810 0.0129 0.699 0.174 0.0139 0.654 0.137 0.0132 0.695 0.156 0.0118 0.743 0.191 0.0158 0.588 0.114 0.0084 0.892 0.325 0.0101 0.867 0.286 0.0099 0.828 0.248 DG 0.0021 0.978 0.880 0.0004 1.000 0.992 0.0001 1.000 0.986 0.0003 0.999 0.992 0.0002 1.000 0.955 0.0010 0.996 0.964 0.0015 0.988 0.873 0.0003 1.000 0.871 0.0008 0.997 0.945 DG 0.0036 0.996 0.712 0.0072 0.934 0.476 0.0129 0.715 0.192 0.0102 0.830 0.293 0.0026 1.000 0.824 0.0016 1.000 0.995 0.0021 1.000 0.870 0.0026 1.000 0.837 0.0075 0.916 0.422 SGN 0.0089 0.436 0.344 0.0155 0.137 0.136 0.0106 0.313 0.287 0.0080 0.497 0.373 0.0087 0.463 0.364 0.0135 0.196 0.186 0.0187 0.134 0.134 0.0131 0.212 0.195 0.0030 0.938 0.705 SGN 0.0103 0.821 0.268 0.0200 0.455 0.055 0.0152 0.624 0.157 0.0148 0.642 0.173 0.0067 0.955 0.438 0.0072 0.940 0.419 0.0052 0.978 0.539 0.0071 0.940 0.437 0.0034 0.997 0.781 198 199 Table 12: Reality Check, Nasdaq Data Panel B: 5% Tail EWMA GARCH GJR APARCH EGARCH STGARCH HYGARCH HYAPARCH CGARCH HS 0.0111 0.321 0.237 0.0136 0.220 0.160 0.0137 0.212 0.156 0.0148 0.174 0.170 0.0169 0.119 0.116 0.0117 0.298 0.207 0.0120 0.289 0.200 0.0133 0.230 0.177 0.0064 0.678 0.494 NM 0.0060 0.592 0.515 0.0103 0.364 0.303 0.0148 0.237 0.231 0.0148 0.236 0.232 0.0160 0.207 0.201 0.0116 0.330 0.276 0.0108 0.351 0.294 0.0151 0.232 0.229 0.0059 0.629 0.527 St t 0.0008 1.000 1.000 0.0039 0.926 0.734 0.0061 0.760 0.613 0.0054 0.841 0.707 0.0050 0.874 0.729 0.0048 0.863 0.668 0.0041 0.907 0.729 0.0051 0.867 0.725 0.0018 0.994 0.968 GED 0.0026 0.988 0.879 0.0028 0.992 0.926 0.0058 0.783 0.573 0.0062 0.733 0.530 0.0067 0.649 0.478 0.0039 0.953 0.820 0.0029 0.987 0.914 0.0061 0.740 0.540 0.0009 1.000 1.000 LP 0.0034 0.896 0.650 0.0035 0.906 0.641 0.0030 0.967 0.781 0.0033 0.946 0.716 0.0031 0.963 0.752 0.0042 0.860 0.584 0.0029 0.951 0.694 0.0032 0.960 0.748 0.0033 0.911 0.637 DW 0.0037 0.948 0.780 0.0032 0.963 0.802 0.0011 0.998 0.990 0.0007 1.000 0.997 0.0038 0.940 0.714 0.0034 0.958 0.810 0.0028 0.984 0.865 0.0031 0.979 0.824 0.0016 0.997 0.981 Sk t 0.0222 0.028 0.028 0.0214 0.031 0.031 0.0154 0.130 0.098 0.0144 0.161 0.121 0.0121 0.253 0.197 0.0177 0.085 0.084 0.0230 0.026 0.026 0.0155 0.132 0.098 0.0231 0.015 0.015 Hn t 0.0310 0.008 0.008 0.0444 0.000 0.000 0.0423 0.000 0.000 0.0438 0.000 0.000 0.0395 0.000 0.000 0.0211 0.031 0.031 0.0410 0.000 0.000 0.0398 0.000 0.000 0.0227 0.017 0.017 SGED 0.0045 0.883 0.689 0.0006 1.000 1.000 0.0002 1.000 0.999 0.0003 1.000 0.997 0.0014 0.999 0.988 0.0010 1.000 0.993 0.0011 1.000 0.986 0.0005 1.000 0.998 0.0010 1.000 0.964 IHS 0.0054 0.829 0.632 0.0005 1.000 1.000 0.0005 1.000 0.999 0.0007 1.000 0.995 0.0009 1.000 0.986 0.0005 1.000 1.000 0.0007 1.000 1.000 0.0004 1.000 1.000 0.0025 0.984 0.783 MX 0.0035 0.917 0.645 0.0009 1.000 0.994 0.0003 1.000 1.000 0.0006 1.000 0.996 0.0012 1.000 0.996 0.0014 0.998 0.973 0.0013 0.997 0.967 0.0002 1.000 1.000 0.0008 1.000 0.990 DG 0.0017 0.995 0.907 0.0027 0.964 0.748 0.0034 0.939 0.704 0.0025 0.978 0.826 0.0018 0.995 0.954 0.0027 0.973 0.852 0.0022 0.984 0.890 0.0010 1.000 0.992 0.0037 0.852 0.578 SGN 0.0042 0.916 0.732 0.0014 0.998 0.985 0.0001 1.000 1.000 0.0001 1.000 1.000 0.0179 0.046 0.046 0.0235 0.004 0.004 0.0252 0.003 0.003 0.0155 0.094 0.055 0.0241 0.003 0.003 200
© Copyright 2024 Paperzz