LHC’de Yeni Ağır Kuarkların Araştırılması Orhan Çakır AU & IAU Ankara YEF Günleri 2015, ODTU, Ankara İçerik Parçacık çeşitliliği Yeni parçacıklar / yeni etkileşmeler Yeni ağır kuarkların araştırılması Modelden bağımsız araştırmalar Sonuç ve Yorum 2 Parçacık Çeşitliliği Kozmik ışın deneylerinde keşfedildiği zaman, elektron ile benzer özelliklere sahip daha ağır yeni bir parçacık ”muon” için I.I. Rabi sürprizle “who ordered that?” demişti. Çünkü, muonun nükleer fizikte bir rolü olmadığı düşünülüyordu. Kuark ve leptonların 3 ailesi bilindikten sonra bugün “neden daha fazla olmasın?” diye de sorulabilir. Yeni ağır fermiyonların çarpıştırıcılarda araştırılması için bazı motive eden nedenler: (i) evrendeki madde-antimadde asimetrisinin olası açıklaması (daha fazla CP kaynağı), (ii) fermiyon kütle hiyerarşisine bir açıklama (yüksek enerjilerde demokrasi ve bilinen spektrum için dinamik mekanizma), (iii) EW simetri kırılmasına yeni bir bakış, (iv) karanlık madde adayı sağlaması. 3 Yeni Parçacıklar / Yeni Etkileşmeler Standart Model Ötesinde yeni fermiyon araştırmaları için Modele bağımlı araştırma (model parametreleri) 4G (SM, SM-genişletilmeleri) VLQ (küçük Higgs modeli, kompozit Higgs modeli, ek boyutlar, E6 model, çeşni simetrik model, …) Modelden bağımsız araştırma (etkin köşeler tanımlanır) 4 Higgs bozonu SM bulmacasını tamamlamış olsa bile SM’in de daha büyük bir kozmik bulmacanın son parçası olmadığı düşünülebilir quarks will be suppressed by the elements (fourth row structure and/or fourth the 4×4 nfamily considering a sequential repetition of the generation of column) the SM,ofthe mily quark pairs already be produced at the Large Hadron Collider (LHC) at an initial center of √ on content andcangauge transformation properties are well defined. The fourtheV and an initial luminosity of L = 1031 cm−2 s−1 . At the nominal center of mass energy s = 14 ation quarks and−1leptons should obey the chiral structure of the theory, or in other −1 33 −2 34 −2 −1 will be 10 cm s which will later increase to 10 cm s corresponding to 10 and 100 fb per s, the left-handed components of the new quarks and leptons would transform as a )sent doublet under electroweak gaugeproduction group, while the right-handed components an analysis of the the anomalous resonant of t ′ quarks at the LHC. Here, we assume the c d transform as a(via SU (2) singlet. Conventionally the new fourth-generation ominated channel charged currents) in which the magnitude of Vt ′ q is important,fermions leading to a fina ous production. fast simulation performed for theparticles detector effects the signal and background enoted by the Asymbols of the isthird-generation with aonprime: 4Gpeak çerçevesinde yeni GeV ağırwith fermiyonların sınıflandırılması variant mass in the interval 300-800 the final state containing W ± b jet can be interpre ✓ 0◆ alous resonant production. t 0 0 fourth-generation quarks : , t , b yeni ağır kuarklar b0 L R R ✓ ◆ ⌫⌧ 0 II. FOURTH FAMILY QUARK INTERACTIONS 0 0 yeni ağır leptonlar fourth-generation leptons : , ⌫ , ⌧ 0 ⌧,R R. ⌧ L Yeni Ağır Kuarklar ks can couple to charged weak currents by the exchange of W ± boson, neutral weak currents by Z 0 4Ghave kuarkların etkileşmeleri Lagrangian currents by photon exchange and strong colour (boyut-4) currents the için gluons. We include the fourth f enetic particles the same quantum numbers as theirbylower-generation cousins, framework (primed) of the SM. The quark interaction lagrangianhas is given by charge +2/3 and the up-type fourth-generation t0 (t-prime) electric yoğunluğu 0 own-type fourth-generation quark b 1/3. foton ve ′ µ ′ (b-prime) has′ charge ′ a µ ′ a L = −ge ∑ Qei Qi γ Qi Aµ − gs ∑ Qi T γ Qi Gµ s explained in Section′ 1.1.2, the unitary CKM matrix in generation space deterQi =b′ ,t ′ Q′i =b′ ,t ′ s the mixing of the quark gmass eigenstates to form the weak-interaction eigen′ µ i e Z bozonu ile i 5 ′ 0 − Q γ (g − g γ )Q Z s. Promoting the CKM matrix from toi aµ 4 ⇥ 4 matrix results ∑′ a′ 3i ⇥ 3Vmatrix A 2 cos θw sin θw Q′ =b ,t i 0 1 0 1 0 1 g W bozonu ile dweak − √ e Vud ∑ Vus VVi jubQ′ γ µV(1 d± ub0− γ 5 )q jW mass i µ + h.c. B sweak C 2 2 B sin θVwcdQ′ V=b ′ ,t ′ Vcb 0 C B smass C V cs cb B C =B C B C . i̸= j (1.30) @ bweak A @ Vtd Vts Vtb 5 Vtb0 A @ bmass A Teorik ve Deneysel Sınırlamalar Nereden Geliyor? CKM matris üniterliği Elektrozayıf duyarlı veriler Doğrudan ölçümler Teorik üniterlik ve perturbatif sınır Higgs bozonu araştırmaları 6 ′ ′ ′→ γ ′ ′ ′ → γ ′ > b’ Kuark Kütle Sınırlamaları ′ ′ ′ ′ → ℓ ℓ− •′ ℓ ℓ− > Çift üretim için kütle sınırları (PDG2014) > > > > > > ! ! !η! < ′ →. > > > > > ′ ′ → ′ → ′ > > • • • > •>′ > > > > > > > ′ ′ τ ′ ′ ′ • • • α ′ → ′ → ′ → ′ → → ′ ′ → ′ ′ → κ ′" →′ →′ > ′ → √′ ′ → κ " ′ ′→ Zb ′ → ′ → ′ → γ Tek üretim için kütle sınırları (PDG2014) , − ′ ′ 7 ′ ′ t’ Kuark Kütle Sınırlamaları ′ ′• Çift üretim için kütle sınırları (PDG2014) ′ ′ ′ ′ > > > > > > > → → → → ′ → ′ ′ • • • • >′ Tek > >> > >> > > > üretim için kütle sınırları − ′ 8 < ′ ′ ′ → − ℓ ν ℓ− ν • • • (PDG2014) ′ → ′ → ′ ′ → ′ → ′→ ′ ′ ′ → − κ ! ′ → ′ →′ < → → ′ →√ ′ → κ ! ′ ′ → ′ → < → < < < < < < < < < g1, we have de′ 10 ) 0:04 √ e parametrization 0.80 by replacing has !min =d:o:f slightly larger −than Vi j Qi γ µ (1 − γ 5 )q jW ∑ 2 2 sin θw Q′ with cided to keep this fit, since the predictions ′ ,t ′ this 11 ) 0:03 0.93 i̸= j =b V cb0 ¼ c14 s24 0 nicely match with the data. mass of: m # ¼: "#; ~ $¼ "t$: ~ (3.6) 11 ) 0:02 1.17 where gein is mind the electromagnetic coupling gs is the strong coupling consta Having all the facts above,constant, we conclude that our #i 11 ) 0:02 1.45 0 −boson and W ± −boson, respectively. Q is) s e denote photon, gluon, Z the electric c ei 24 0 best fits are obtained for 300 & m & 700, with the fitted For the case of four generations we have to determine first 11 ) 0:02 1.76 Gell-Mann matrices. The gV and gA aret the couplings for vector and axial-vector n D† . The parameters given of in the Table II,V Uwhile the selected 4V 11 ) 0:02 2.07i.e. the elements Vin as: V = VCKM corresponding ×CKM 4 CKM matrix is the possible size, power new i j are"expressed Karışım Sınırlamaları ( ðx24 matrix elements are presented in Table III. matrix elements. With the results of the previous section ⎛ ⎞ The final results at 95% confidence level of the complete ′ V V V V us ud ub ub we=d:o:f obtain: ith !2min ! 1 for mt0 > ¼ Vcd Vcs Vcb ) Vcb′c⎟ 4 ' 4 fitted matrices are given below: V = ⎜ 24 CKM4 üniterliğinden: ⎝V V V V ′ ⎠ large su ¼ sin"u mixing angle ts td tb tb " 1 3 2 ≈3:2"3( 1 þ low en (≈ ' 0:0535≈1:05" ' 0:0364 0:7" $68:9 i 3 CKM $12:4 i The magnitude of the 3 × matrix elements are determined from the 0:9742 0:2257 0:0035e 0:0018e 6 8 1 2ud | = 0.97418 ± 0.00027, |Vus1| = 0.2255 are |V (2 ± 0.0019, |Vcd | = 0.230 ± 0.011, |Vc Conservative bound normal sınırlama the 4th 2 0 Family IV Aggressive bound güçlü sınırlama Vt ′ d Vt ′ s Vt ′ b Vt ′ b′ jVub0 j 0j 29:8 i C Yeni Param. jVcbB ' 0:144 ≈ 0:6"0:9732 ≈ 2:8" ' 0:104 ≈ 0:46" ≈ 2" $0:2255 0:0414 0:0102e C B |Vub | = 0.00393 ± 0.00036, |Vtd | = 0.0081 ± 0.0006, |Vts | = 0.0387 ± 0.0023 (assum C ; (2.27) 0 GeVÞjV ¼B 1 1 ( ( $24:1 ≈ i 3:0" 0j ' 0:672 '0:9649 0:671 ≈ 3:0" A CL.Önerisi: fromi the single top production |Vtb0:2589 | > 0.74 at 95% [1]. In the fourth( family tb@ 0:0086e $0:0416e0:7 ðx2 c (i 18:9 $0:0019e 2 2 24 2 (i calculated as |Vub′ | = 0.0008, |Vcb′ | = 0.0295 and |Vtb′ | = 0.4054. For the first thr 69:3 0:0052e |V ′ |2 = 0.0315 $0:2591 0:9658 |V | λ4-i for th and |Vt ′ b |2 = 0.4053. We see that there loosei4constraint i4|is=a |A ts quarks. In this case, these( bounds can be relaxed to an uncertainty level. If4-j there is a 1 ( |V | = |A | λ $68:9 i most probably i third 4j family quarks. 4j body decays occur into the Inspiring fr 0:2256the two 0:0036e 0:0164e$87:4 propose a parametrization of these matrix elements that e gets We (λ := Vus = 0.2255) Bobrowski2009 manifestly respects the above bounds: 0 0:9740 (i) For the mixing of first3 ×and fourth we define (i C 3 CKM matrix,family we could simply consider fourth(iii) row andFinally, fourth column B $76:1the theof the $0:2259 0:9728 0:0414 0:0290e 0.0001 ± 0.0014 C B where Ai j sınırlar can be optimizedve for the quark flavorsüniterliği qC family number an ; q j ; n is the (2.28) 0 GeVÞ•¼ B i and $27:7( i Fit sonuçları: deneysel CKM4 A @ significantly ′ ′ + 0:0092e $0:0414 0:9932 2 3 We consider the decay width of t0:1079 quark through t → W q including the final state #i! 2 Error: 0.037 ≈V0.74 · λ ≈ 3.3 · λ ( ( 14 :¼ "i ðx14$0:1082 $94:6 ¼ is140:0310e e # iy14 Þ ub0 89:9 $0:0091e 0:9935 the mixing an varsayımı −0.0020 ± 0.0055 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 m3 ' αsine e |VQ q | s 1 0 1 ( ( Q in th 34 ′ 2 2 2 $68:9 i $81:1 i λW λr Γ(Q → W q) = 2s 0:9740 0:2256 0:0035e 0:0160e x ¼ " þ y ) 2 2 14 16 sin θW mW that Error: 0.074 ∝ 1.5 · λ 14 14 B $71:8( i C It is obvious $0:2259 0:9726 0:0414 0:0329e C B 2 2 C B ; confusing; (2.29) see (3.8 0 GeVÞ ¼ (i (i −0.13 ± $27:1 6:0 Eilam2009 x þ y A @ 0.13 0:0083e $0:0416e 4 14 0:9934 0:1059 14 8 þ0:7Oð" " (i Þ; (3.7) ) (i 1( i c14 ¼ 1 # an intuitive picture 83:2 $100:4 Error: 0.36 ≈ 1.6 · λ 0:0344e $0:1062e 0:9937 $0:0080e 2 still possible effect 1 0 0.18 −0.14 ± $68:9( i $75:4( i 0:9741 1 0:2256 0:0035e 0:0140e tion we want to kee 9 ( ′ B C ′ gauge anomalies, but here, the presence of vector-like quarks does v:cancel = 246 GeV. Search for vector-likethe quarks decaying to lightquarks quarkscoming from the measurements of S existence of leptons. vector-like rily imply the existence of vector-like Nevertheless, such exotic quark mixing are manifold. The SM couplings themselves are be literature discussed as in well more[58]. detail in Section 1.3.3. Furthermore, the vector s have been studied in the eike of vector-like quarks, which could result in deviations ininduces elec- the very interesting decay pr quark model considerations ing with SM-generation quarks ector-like are required to mix with SMbut ones, this should happen ables. Alsoquarks the oblique parameters get a↵ected, this would new heavy quarks, whichiswill bethe outlined later in this Section. In sce couplings involving the H doublet field (this also case in regular tart mixing (since the vector-like heavyup-type quarks would couple to gauge bosonsmix dominantly with the third from the generic quark extension discussed in SecU and down-type D quarks mixing). There arefunctions). only a restricted amount of constraints gauge-covariant vector-like cuum polarization The experimental on ew quarks are assumed to couple to first-generation Even or bottom partners, and usually d are often referredcouplings to asquarks. top [59]. partners plets associated to such renormalizable These are SU (2)L ke quarks coming from the measurements of SM couplings will sumptions in an experimental analysis1:are unavoidable for pracB, respectively. In this we will mainly focus on vector-like +2/3 1/3thesis, +5/3 4/3 Standart modelde kuarkların sağ-el ve sol-el alanları farklı kuantum (farklı qu CHAPTER New quarks beyond the three Standard-Model g ublets and triplets involving fields U , D , X and Y , where rks beyond the three Standard-Model generations 27 tail in Section 1.3.3. the vector-like quark mixal reasons, we aim to beFurthermore, asthe much as generation possible model-independent, first (up/down-quark partners), with a search for down dönüşüm) özelliklerine sahiptir. “Vector-like quark”ların sağ-el ve sol-el alanları ripts indicate the electric charge. The quarks with SM charges +2/3 and ood sensitivity to the the presence of vector-like quarks. Several quarks induces veryquarks interesting decay properties of rethese presented in Chapter 5. benzer şekilde dönüşür, terminoloji ise ayar bozonu ile etkileşmelerde “vektör” tipli eheereferred to as up-type and down-type vector-like quarks, respectively. The parameters of the considered model are made in Section 5.1.1. of vector-like quarks with SM where quarks can happen in thedensity right-handed will be outlined later in in this Section. Ininteraction scenarios the SM quarks can happen the right-handed sector as well. It The relevant terms in the Lagrangian between bağlaşım yapmasından gelmektedir. Zayıf etkileşme özdurumu çoklular aşağıdaki ak-interaction eigenstate multiplets are n processes are mix described in Section 5.1.2, and the resulting signal turns outtriplets that for new vector-like quark singletsquarks and triplets the mix pe D quarks dominantly with the third generation, they ector-like quark singlets and the mixing angles in the quarks and up-type and down-type vector-like can be written gibi yazılabilir: rized in Section 5.1.3. op partners or bottom partners, and usually denoted by m T qand right-handed sector are suppressed with respect to the left-handed suppressed with respect to the left-handed ones by /m , Kuark karışımı Q g inglets: UL,R , DL,R µ Tekli: p L = W d UR thesis, we will mainly focus on vector-like quark mixing with interaction,U dU R while new doublets the Thirdly, left-handed mixings are suppressed [60–6 µ he left-handed mixings arefor suppressed [60–62]. a peSM : sadece q L 2 oublets: (Xculiar Uwith )L,Rfeature , search (U D) , (D Y )quarks Çiftli: partners), L,R L,R down-quark a for down-type vector-like of vector-like thatg:they do not µobtain their ke quarks is that they do not obtain their mass purelyis VLQ via hem q q L hem de R +SM H field. Zµ uUThey uR Uare parameters Üçlü: R riplets: (Xthe U vacuum-expectation D)L,R , (U Y )L,R . value pter 5. of the allowe value of the SM H field. They areDallowed to have a bare 2cos✓W tion terms in the Lagrangian density between first-generation mU gauge-invariant mass term in the Lagrangian, because left-handed a m in the Lagrangian, because left-handed and right-handed density describing the interaction between down-type vector-like 21 HH,uUetkileşmeleri uR UL + h.c. yukarı-tipli VLQ’ların etkileşmeleri aşağı-tipli VLQ’ların down-type vector-like quarks can be written as [62, 63]: fields transform underit the transformations: ly under1/3) theand gauge-group transformations: v charge first-generation quarks,covariantly Equation (1.38), is gauge-group to themodel mechanism quark occurs in the SM org in + the hy- µ g by which µ For amixing nown parameters appear. given quark mass, there Linteraction,U = p= WM 0dU dR, UR Leigenstates =of p WSM uR L(1.36) = M , DR L interaction,D µ m,Q 0 uD m,Q µ ourth-generation extension, the physical mass the and 2 ters, corresponding2 to the couplings to the three bosons: ˜ uD , g type quarks of the aequivalent certain appear diagonalizing the mass matrix. This g pends multiplet representation. The bare masses M where the form depends on the multiplet representation. The µafter of will use on an shorthand notation ˜ ⌘ ˜ , ˜ ⌘ ˜ µ 0 uD W dD Z (1.37) + Zµ uU uR UR + Zµ d D dD R R ver, procedure is more complicated than obtaining just one 4 ⇥ 4 CKM 2cos✓ hgiven thethe boson subscript indicating the boson involved. We do not 2cos✓ multiplet are Wtherefore the same, ofbut the mixing withare Wtherefore the same, but of the components a given multiplet mfor U splittings D splittings stly, ismass amdependence on the chosen multiplet scenario; instance, alues these should have, but they may be of order parametreler vely there smallparameters [49]. Note that from an e↵ective SM quarks induces relatively small mass [49]. Note that HH,uU uR UL + h.c. HH,dD dR D L + h.c. . v p n Section 1.3.3, experiments might constrain = ˜simultaneously tomass the term v down-type ere up-type Uterm and D quarks don’t exist of this mass is point not relevant, but it could for bev is(like of view, the origin of2m this not the relevant, but it coul Q example grelatively 21 Vµ ss),still allows for large of ˜ for high a CKM-matrix asaanalogue ofinvolving Vvector-like a fourth-generation +generated Uvalues Dby t0 b0 in to The interaction terms third-generation quarks would be completely oupling to a scalar singlet that acquires a vacuum-expectation Yukawa coupling a scalar singlet that acquires a vac Linteraction,D = p Welement u D uD R R µ 10 VLQ ver, cancellations among multiple new quark contributions can ion of heavy down-type vector-like quarks to the first generation. Figepresents example Feynman diagrams of coupling charged and neutral current single represents example Feynman of charged and neutral current single on of a heavy vector-like quarkdiagrams Q. ion a heavy vector-like Q. the of mass splitting betweenquark vector-like quarks in a given multiplet is typically e the splitting between vector-like quarks in a given multiplet[49]. is typically V, themass decay from one heavy quark into another is suppressed As a eV, the from one heavy quark into another is suppressed As a nce, the decay possible decays of vector-like quarks are exclusively to [49]. Standardence, the possibleondecays of vector-like quarks exclusively Standarduarks, depending the amount of mixing with are a particular SMtogeneration, quarks, depending on the amount of mixing withwould a particular generation, or H bosons. Mixing with the third generation result following Üçüncü aile ile karışım durumunda T veinSM Bthe nin Zthe or top H bosons. Mixing with the third generation would result in the following and bottom partners: of the topbozunum and bottom kanalları partners: ¯ T ! bW + / tZ / tH, T ! bW / t¯Z / t¯H (1.40) ¯ + / t¯Z / t¯H T ! bW + / tZ / tH, T ! ¯bW (1.40) ¯ ¯ B ! tW / bZ / bH, B ! tW / bZ / bH. (1.41) ¯ / bH. ¯ B ! tW / bZ / bH, B ! t¯W + / bZ (1.41) • ile karışım durumunda U ve D modes nin are: ly mixingBirinci with the aile first generation is allowed, the possible decay nly mixing with the first generation is allowed, the possible decay modes are: bozunum kanalları ¯ U ! dW + / uZ / uH, U ! dW / uZ ¯ / uH ¯ (1.42) PTER 1:UNew quarks beyond the three Standard-Model generations + ¯ + / uZ ! dW / uZ / uH, U ! dW ¯ / uH ¯ (1.42) ¯ ¯ D ! uWthe / dZ / dH,Standard-Model D ! uW ¯ / dZ generations / dH. (1.43) uarks beyond three + ¯ / dH. ¯ D ! uW / dZ / dH, D ! uW ¯ / dZ (1.43) phenomenological of view, thebedecays of U and D are substantially originating frompoint a b quark can identified via dedicated algorithms (see • Egzotikpoint yük taşıyan VLQ bozunum kanalları phenomenological of view, the decays of U and D vector-like are substantially from the decays of T en B. The presence of top quarks, subsequently decaying 3.5). Note that the only possible decay modes of the quarks with a b quark can be identified via dedicated algorithms (see t fromand the adecays of T+enand B. of Thebottom presence of top will quarks, subsequently decaying uark W boson, quarks, result in a high b-quark rges are X ! u W and Y ! d W , with u and d up-type and down-type i decay modes i the vector-like i i i aile he only possible of quarks with quark a W boson, andamount of bottom quarks, resultstate. in a In high b-quark ity+andand a potentially large of leptons in will the final a particle of generation i,i Wrespectively. indisi W and Y ! d , with andof dleptons and down-type city and a potentially large amount in the final state. Incalled a particle i up-type the quarks will be detected asuai collection of hadronized particles jets, anching ratios di↵erent modes would depend oncalled the multiplet in ,respectively. the quarks willof bethe detected as a decay collection of hadronized particles jets, VLQ Bozunumları 11 95% CL expected limit σ(pp → it it ±1σ it ±2σ 10 95% CL expected limit ±1σ 95% CL expected limit ±2σ JHEP11(2014)104 Yeni Ağır Kuark Araştırmaları it 95% CL observed limit 1 10-1 10 ağır Zb/t + X B) kütlesinin bir fonksiyonu olarak tahmin Yeni (T ve Ldt = kuark 20.3 fb ∫ ation Dilep. + Trilep. Combination s = 8 TeV SU(2) (B,Y) doublet edilen çift üretim tesir kesitleri ve kütle üzerine sınırlar; birinci 10 0 900 300 400 500 600 700 800 900 [GeV] panelde SU(2) (T,B) çifti m [GeV] oluşturan T kuark için sonuç, ikinci panelde (b) ise SU(2) (B,Y) ikilisi oluşturan B kuark için sonuç verilmiştir. -2 -3 it ±2σ it 102 102 ATLAS 10 ATLAS 10 10-1 10-1 ation 95% CL expected limit ±95% 1σ CL expected limit ±1σ -2 95% CL observed limit 95% CL observed limit 10 Ldt = 20.3 fb -1 ∫ s = 8 TeV -3 900 10 300 Theory (NNLO) 95% CL expected limit ±95% 2σ CL expected limit ±2σ 1 ∫ Theory (NNLO) 95% CL expected limit 95% CL expected limit 1 10-2 σ(pp → BB) [pb] it ±1σ σ(pp → BB) [pb] σ(pp → TT) [pb] B it 0 -1 102 ATLAS Theory (NNLO) 95% CL expected limit 10 95% CL expected limit ±1σ 95% CL expected limit ±2σ 95% CL observed limit 1 10-1 10-2 -1 Zb/t + X Ldt = 20.3Zb/t fb + X Dilep. + Trilep. Combination Dilep. + Trilep. Combination s =SU(2) 8 TeV (T,B) doubletSU(2) singlet ∫ -1 Ldt = 20.3 fb s = 8 TeV -3 10 300 400 500 JHEP2014 Zb/t + X Dilep. + Trilep. Combination SU(2) (B,Y) doublet -3 400 600 [GeV] 500 700 600 800 700 900 mT [GeV] (d) (a) 800 900 10 300 400 500 600 mB [GeV] 12 700 800 900 mB [GeV] (b) 2 2 4 λW = 1 + mW /MQ2 ′ − 2m2q/m2Q′ + m4q /m4Q′ + m2qmW /m4Q′ − 2mW /m4Q′ Etkin Yüksüz Akım Etkileşmeleri ( cay width numerically, we assume three parametrizations PI, PII and PIII for the fourth family mixi the PI parametrization we assume the constant values |VQ′ q | = |VqQ′ | = 0.01, PII contains a dynamic = |VQ′ q j | ≈ λ 4−n with a preferred value of λ = 0.1, and PIII has the parameters |Vt ′ d | = 0.063, |Vt ′ s | = 0.4 arXiv:1410.5480 0.044, |Vcb′ | = 0.46, |Vtb′ | = 0.47 [22]. g neutral current interactions known to be absent tree level in the SM. However,kuarklar the fourth fami Bugünkü deneysel are verilere göre yeni atağır kuarklar ile bilinen than the top quark, could have different dynamics than other quarks and they can couple to the FCN arasındaki karışımın küçük olduğu görülmektedir, burada bozunma enhancement in the resonance processes at the LHC. Moreover, the arguments for the anomalous intera zayıf öngörüsünden daha farklı (yeni interactio bir given kanalları in [23], are yüklü more valid for etkileşme t ′ and b′ quarks. The effective Lagrangian forolabilir the anomalous simetri küçük olmasını açıklayabilir). olası anormal ly quarks t ′ andbu b′ ,karışımın ordinary quarks q, and the neutral gauge bosonsÜst V =kuarkın γ , Z, g can be written explicitly etkileşmelerindeki tartışmalar daha ağır yeni kuarklar için de geçerlidir. qi qi κ κ γ z Qqi get ′ σµν qi F µν + ∑ gzt ′ σµν qi Z µν L′a = ∑ qi =u,c,t Λ qi =u,c,t 2Λ t’qγ ve t’qZ κgqi ′ gst σµν λa qi Gaµν + h.c. + ∑ qi =u,c,t 2Λ t’qg qi κγqi κ ′ ′ z + ∑ Qqi ge b σµν qi F µν + ∑ gz b σµν qi Z µν qi =d,s,b 2Λ qi =d,s,b Λ b’qγ ve b’qZ κgqi ′ + ∑ gs b σµν λa qi Gaµν + h.c. qi =d,s,b 2Λ b’qg ( Gµν are the field strength tensors of the gauge bosons; σµν = i(γµ γν − γν γµ )/2; λa are the Gell-Ma 13 r 700 4.34 17.30 69.40 0.39 1.58 6.31 0.031 0.12 0.50 0.074 (1.866) 800 4.33 17.30 69.20 0.40 1.61 6.44 0.031 0.12 0.50 0.110 (2.749) Z Q q Q Z 2 2 2 λ2 Z = 2 − m /m − 4m ′ Z 4 Q 4 q/ 2 4 m m2t /m /m2Q′′ + −2m mZ4/m (7) − Z4m /m4Q′′ − 6m Q’ Anormal Üretim ve Bozunumu 4.32 17.30 69.10 0.13 0.51 0.154 2 0.412 1.64 6.54 0.032 2 2 4 (3.869) 2 2 3 2 λZ = 2 − mZ /mQ′ − 4mq /mQ′ + 2mq /m4Q′ λ−Z 6m m /m/m q Zm Q′ − = 2 − Z Q′ 1000 4.32 17.30 69.00 0.41 1.66 6.63 0.032 0.13 0.52 0.210 (5.253) 900 q Q q Q The anomalous decay wid −2 The anomalous decay widths in different channels are proportional to Λin different , and they are The anomalous decay widths chann 6L parametrization [27]. The new heavy quarks can be produced through its anomaarXiv:1410.5480 assumed to be dominant for −1 −1 uplings toassumed the ordinary and neutral vector bosons>as 0.1 shown in Fig. 1. toquarks be dominant for κ/Λ TeV overtothe assumed be charged dominantcurrent for κ/Λchannels. > 0.1 TeVIn this ov LHC’de yeni ağır kurakların anormal bağlaşımlar yoluyla case, if we take all the anom l cross sections for the productions of new heavy quarks t′ and b′ are given in Table V if we take the anomalous equal case, if we take all the anomalous couplingcase, equal then theallbranching ratioscoupling will be nearly üretimleri için pp—>QV+X (burada Q=t, b ve V=g, γ, Z) süreci ble VI for the parametrization PI, PII and PIII, at the center of mass energy of 8 TeV independent of κ/Λ. We ha independent of κ/Λ. We have used three parame independent of κ/Λ. We have used three sets entitled PI, PII and PIII TeV. For an bozunumları illustration, taking the mass of new heavy quarks as 700parametrization GeV the cross ve için Q’—>QV süreci çalışılmıştır. For the PI parametrization, −1 the const For the PI parametrization, we assume For the PI parametrization, we assume the constant value κ /Λ = 0.1 TeV , and PII PI: i g g Q Q Q 4−i −1 has the 0.1λ parameters κi /Λ the λ parameters κi /Λ with= λ PII: has the parameters κi /Λ = 0.1λ4−i QTeV −1has with = 0.5. For PIII= we take TeV the couplings q q 4−i −1′ V of the new heavy 4−i width −1 ching ratios (%) and decay width quark (b′Vratios ) with only anomalous κ /Λ = 0.5λ TeV t Table I: Branching (%) and decay of the new heavy quark (t )ofwith with on 4−i −1 i κ /Λ = 0.5λ TeV with the same value λ. T i λ. The PIII:index i is the generation number. κi /Λ = 0.5λ TeV with the same value of −1 . b’the dallanma oranları, t’and dallanma oranları, parametrization and κ/Λ = 0.1 interactions for PI parametrization and κ/Λ = 0.1 TeV−1 . IPI 1:PIDiagrams for subprocess gq → V Q TeV withPI anomalous vertices Q′ qV and Table Q′ QV (where Table and Table II quark prese I Table II present the decay width and Table I and Table II present the decay width and branching ratios of the new heavy ′ ′ Mass(GeV) Zd(s, b)onγd(s, b) Γ(GeV) be the new heavy quark b′gd(s, or t′ b) depending the type of light (q) or Mass(GeV) heavy (Q ≡ t, b) gu(c) gt Zu(c) Zt γu(c) γt Γ(GeV) ′ ′ interactions t through anomalous for the parame t through anomalous intera ′ t through anomalous interactions for the parametrization PI, PII and PIII, respectively. respectively). 500 30.50 2.60 0.21 0.257 500 33.5 22.9 2.86 1.82 0.92 0.63 0.23 −1 Taking the anomalous coupling κ/Λ = 0.1 TeV Taking the anomalous coupl −1 ′ Taking the anomalous coupling κ/Λ = 0.1 TeV we calculate the t decay width Γ = 0.65 600 30.40 2.69 0.21 0.436 600 32.3 25.0 2.86 2.13 0.91 0.70 0.41 6 GeV and 1.90 GeV forGeV mt′ and = 700 GeV andfor 1000 GeV ′ = 7 1.90 GeV m ′ t ′ GeV and 1.90 GeV for m = 700 GeV and 1000 GeV, respectively. The branching into t → qg 700 30.40 2.76 t 0.22 0.682 700 31.6 26.2 2.87 2.34 0.90 0.75 0.65 ′ channel is the largest and branching into t → qγbra ch channel is the largest and ′ channel largest2.82 and branching the2.89 smallest for 0.78 equal0.97 anomalous 800 channel 31.1 is 27.0 2.48 0.90 800is the30.30 0.22 1.005into t → qγ couplings with the parametrization PI. On the ot couplings with the1.39parametr 900 other 30.7hand, 27.5 PII 2.91 2.58 PIII 0.91 0.81 900 with 30.20 2.86 0.22 1.415PI. On the couplings the parametrization and parametrization give higher branching ratios into tV (V = g, Z, γ) give higher branching ratios 30.5 qV 27.8 (q2.93 2.66 0.83 due 1.90 to 1000 30.20 2.90ratios 0.23 give higher branching into 1.921 tV (V = g, 1000 Z, γ) than = u, c) 0.91 channels λ4−i factor in the parametrization. 14 factor in the parametrization σ( 0 10 -1 10 Tesir Kesitleri 500 600 700 800 Mb’(GeV) 900 1000 arXiv:1410.5480 PIII on the new heavy quark mass Figure 3: The cross section for the process pp → bV + X depending 102 PI √PII for parameter sets PI, PII and PII at the center of mass energy s = 13 TeV. Farklı parametrizasyonlar için sinyal tesir kesitleri 1 10 σ(pb) Table VI: The cross sections (in pb) of new heavy quark b′ production without cuts for PI, PII and PIII parametrizations at the center of mass energy of 13 TeV (8 TeV), respectively. 100 PI PII PIII 102 11.340 (3.913) 0.970 (0.285) 24.474 (7.114) 10 Mass (GeV) √ √ √ s =13 TeV (8 TeV) s =13 TeV (8 TeV) s =13 TeV (8 TeV) PIII PI PII -1 10 500 600 600 7.495 (2.410) 700 800 M0.607 (GeV) t’ (0.162) 700 5.179 (1.546) 0.412 (0.099) 900 1 1000 σ(pb) 500 15.290 (4.09) 100 10.031 (2.483) Figure 2: The cross for the process pp → tV + X(0.062) depending on 6.832 the mass for parameter sets 800 section 3.697 (1.025) 0.286 (1.566) √ PI, PII and PIII of (0.697) mass energy s0.1905 = 13 TeV. 900at the center 2.707 (0.040) 4.791 (1.018) -1 10 500 1000 2.021 (0.482) 0.137 (0.027) 3.441 (0.678) ′ Table V: The cross sections (in pb) of new heavy quark t production without cuts for PI, PII and 600 700 800 Mt’(GeV) 900 1000 PIIIA.parametrizations at the center pp of → mass energy 13 (V TeV=(8 Analysis of the process W+ bV + X g, TeV), Z, γ) respectively. for t′ signal PIII Figure 2: The cross section 102 for the process pp → tV + X dependingPIon the mass for parame Massprocess (GeV) √ + √ PII The signal pps =13 → WTeV bV(8+TeV) X (V√s==13 g, Z, γ) includes√the t′ exchange both in the TeV (8 TeV) s =13 TeV (8 TeV) PI, PII and PIII at the center of mass energy s = 13 TeV. PI PII PIII s-channel and t-channel. The s-channel contribution to the signal process would appear 1 10 16.736 (6.113) ′ itself as resonance around the t mass value in the W bV invariant mass. The t-channel Table V: gives The cross sections (in pb) of new heavy quark t′ production without cuts for PI, 600 10.362(3.72) 0.464 (0.159) 11.770 (4.031) the non-resonant contribution. We consider that the W boson decays into lepton+missing 0 PIII parametrizations at 10 the center of mass energy 13 TeV (8 TeV), respectively. 700 7.825 (2.64) 0.337 (0.109) 8.502 (2.718) transverse momentum with the branching ratio 21% and Z boson decays into dilepton with PI PII PIII 800 5.961 (1.89) 0.250 (0.075) 6.276 (1.882) Mass (GeV) √ √ √ -1 10 s =13 TeV (8 TeV) s =13 TeV (8 TeV) s =13 TeV (8 TeV) 900 4.602 (1.36) 0.189 (0.053) 4.701 (1.326) 13.733 (5.30) 0.664 (0.244) σ(pb) 500 8 1000 3.593 (0.98) 0.144 (0.038) 3.609 (0.950) 500 600 section of t′ (b′ ) production is calculated as 8.50 pb (10.03 pb) for the parametrization PIII at 700 15 √ 13.733 (5.30) 500 600 0.664 (0.244) 10.362(3.72) 700 800 0.464 (0.159) Mb’(GeV) 7.825 (2.64) 0.337 (0.109) 16.736 (6.113) 900 1000 11.770 (4.031) 8.502 (2.718) Benzetim Çalışmaları arXiv:1410.5480 16000 Photon Jet 1 Jet 2 Jet 3 14000 12000 Events / 10 GeV Entries Sinyal tV ve bV olayları (20k) ve arkaplan WjV ve jV olayları (1M) CalcHEP ile üretildi; altsüreç olaylarının karışımı “event_mixer” betiği ile yapıldı; bozunma ve hadronlaşma Pythia ile yapıldı; LHC için genel algıç parametreleri kullanılarak benzetim PGS4 ile yapıldı; ExRootAnalysis olay bilgilerinin dönüşümü için kullanıldı; Root ile histogramlar ve analiz yapıldı. Background 120 Signal Ecm=13 TeV mt’=700 GeV κ/Λ=0.15/TeV 100 10000 80 8000 6000 60 4000 40 2000 0 50 100 150 200 250 300 350 400 p (GeV) T 500 600 700 800 900 M rec t’ 1000 (GeV) Figure 11:16The reconstructed mass distributions for background and signal (tγ) with 700 900 800 900 MtV(GeV) 1000 Mt’(GeV) MtV(GeV) 10 500 600 700 800 900 10 Mt’(GeV) 600 800 900 4: Invariant mass distributions mtV (where V = 1000 γ, g and Z) for g and Z)500 for PI Figure parametrization of700 the 10 M6: (GeV) arXiv:1410.5480 t’ √ Figure The same as Fig.5, but for parametrizatio Invariant mass distributions m (where V = γ, g and Z) for PI parametrization of te −1 b’->bγ tV ′ signal with κ/Λ = 0.2 TeV and m = 700 GeV at the center of mass t nter of mass energy s = 13 TeV. b’->bZ √ b’->bg bVparametrization sinyal Figure 6: 700 TheGeV same but for PII. h κ/Λ =tV 0.2 sinyal TeV−1 and mt′ = at as theFig.5, center of mass energy s = 13 TeV. 10 500 500 700 600 600 800 1 Lint(fb-1) İncelenen Sinyal Kanalları 0 -1 500 600 700 800 Mb’(GeV) jet 900 1000 ′ bjet + j an In the analyses, we consider the b signal to be b + γ , the branching 6.7%. In our analyses, we consider the t signal in th bγ: t′ signal in the l + b + γ + MET , The same as Fig.5, but for parametrization PII. tγ: Figure 6: jet ′ ′ ′ ching 6.7%. In our analyses, we consider the t in l but ++ bjparametrization + lγ= In the analyses, we consider the b signal to bbg: + γasthe , bjet and b+ + We have obtained the cross sections by using the pseudo-rapid re l = e, l + bjetif+one j +takes METthe and 3l + bjet Figure +besignal MET channels, where e,MET µ.diH jet jet 15: The same Fig. 13, for jet PIII. tg:µ. However, ′ j,γwhere nalyses, we consider the b signal to be b γ20 , be b− +e, jµ. and bfor + dilepton. bZ: jet jet a j + of MET and 3l + b + MET channels, ljet = However, ifand one takes t ctor BR(W → hadrons)/BR(W → tZ: We have obtained the cross sections by using the pseudo-rapidity cuts |η hadronic W decays cuts the signal will enhanced by factor ofphoton, BR(W jet transverse momentum p +> 200 GeV jets T 10 0.5 j,γby using the pseudo-rapidity ave obtained the cross sections cuts |ηj,γ | in < Table 2.5 an W decays the signal will be enhanced by a factor of BR(W → hadrons)/BR(W lν). transverse momentum cuts p > 20 − 200 GeV for jets and photon, Table PIII) parametrizations, respectively. Invari T PIII XIIIj,γfor PI (PII, b'!"bΓ se momentum cutsWe pT|ηhave >| 20 − GeV jets sections and 0.4photon, in Table XII cuts pseudo-rapidity <obtained 2.5200 and j,γ theforcross by b'!"bZ using the XI cuts(Table pseudo-r 2 Table XIII for PI(where (PII, PIII) parametrizations, respectively. Invariant mass the bV V = γ, g and Z) system is shown in Fig. 12 for P 10 j,γ III PI (PII, PIII) parametrizations, respectively. Invariant mass distribution o nd for photon, inthe Table VII (TableVIII, transverse momentum p > 20 − 200 GeV for jets and photon, in ave obtained cross sections by using the cuts pseudo-rapidity |η | < 2.5 an −1 j,γ T and the bV (where V = κ/Λ γ, g = and system ismshown in Fig. 12 for PI paramet signal with 0.2Z) TeV b′ = 700 GeV at the center of ma j,γ tively. Invariant mass distribution (where V = γ, pgTable and Z) − system isofshown inparametrizations, Fig. photon, 12 for PIinparametrization of th IX) for PI (PII, PIII) respectively. Invaria −1 esignal momentum > 20 200 GeV for jets and Table VII (TableVII T = 0.2 TeV with κ/Λ and mb′ = 700 calculation GeV at the that centerthe of optimized mass energy 10 It appears from signal significance tr √ −1 Fig.κ/Λ 4 for PI parametrization of the ′ = s =413 TeV ith = 0.2 TeV and m 700 GeV at the center of mass energy b the tV (where V = γ, g and Z) system is shown in Fig. for PI b’->bγ )Itfor PI (PII, PIII) parametrizations, respectively. Invariant mass distribution ′ appears from signal calculation that the optimized transverse m √ significance b’->bZ is p >200 GeV for b analyses. T erscenter of masssignificance energy s = 13 TeV. −1the optimized b’->bg that from signal calculation transverse momentum cu ′ signal with κ/Λ = 0.2 TeV and m = 700 GeV at the center of ma where V10 500 = γ, g600 and Z) ′ system is shown in Fig. t 4 for PI parametrization of t is pT >200 GeV for b analyses. 700 800 900 1000 ¯b)V (where V ≡√ The backgrounds for the final state b( photon, jet ′ transverseM momentum the optimized (GeV) 00 GeV for b analyses. It −1 appears signal significance calculations that the soptimized th κ/Λ = 0.2 TeV and mfrom GeV at¯the center of mass energy = 13 TeV t′ = 700 The backgrounds the final state b(b)Vcontour (where V ≡ photon, jet and Zforbo in XIV. Wefor apply the toof anomalous the final state photon Figure 16: The cuts plot coupling and mass of new heavy quark b and the ¯ following Lint(fb-1) Κ#%!TeV!1 " 1 b'!"bg 0.3 0 0.2 -1 0.1 500 b’ 600 700 800 900 1000 Mb' !GeV" ′ Sonuçlar ve Yorum SM çerçevesinde çift üretim süreçlerinden alınan sonuçlara göre yeni ağır kuarkların kütle alt sınırları 700 GeV civarındadır, ve bu değer perturbatiflik sınırının üzerindedir. SM Higgs bozonu araştırmalarında üretim ve bozunma oranları SM3 modeli ile uyumlu bulunmuştur. Deney verilerine göre fit yaparak minimal Higgs sektörü içeren SM4 modelinin 5σ ile dışarlandığı yayınlandı [Eberhardt,PRL2012]. Ancak, SM4 modeli genişletilirse (THDM, HTM, vb.) bu sınırlamanın zayıflayacağı düşünülebilir. VLQ kütle özdurumları SM kuarklarınki ile karışabilir, QL ve QR alanları farklı dönüşen kuarkların karşılaştığı sınırlamalardan geçebilir, bozunum özellikleri, diğerleri ile karşılaştırıca daha az serbest parametreye sahip olması, VLQ’ların fenomenolojik olarak çalışılması ve LHC deneylerinde araştırılması daha ilginç olmaktadır. Sinyal önemi hesaplarından LHC 13 TeV’de t’ ve b’ kuarkların anormal t’ b’ bağlaşımlara duyarlılık κ /Λ=0.10/ TeV ve κ /Λ=0.15/TeV olarak elde edilmiştir. 18
© Copyright 2024 Paperzz