Dynamic Causal Modelling for Cross Spectral Densities Rosalyn Moran Virginia Tech Carilion Research Institute Outline • DCM & Spectral Data Features (the Basics) • DCM for CSD vs DCM for SSR • DCM for CSD Example Outline • DCM & Spectral Data Features (the Basics) • DCM for CSD vs DCM for SSR • DCM for CSD Example Dynamic Causal Modelling: Generic Framework Electromagnetic forward model: neural activity EEG MEG LFP Hemodynamic forward model: neural activity BOLD Time Domain Data Time Domain ERP Data Phase Domain Data Time Frequency Data SteadySpectral State Frequency Cross Densities Data (Frequency Domain) dx F ( x, u, ) dt Neural state equation: fMRI simple neuronal model Slow time scale EEG/MEG complicated neuronal model Fast time scale Electromagnetic forward model: neural activity EEG MEG LFP CSDs Hemodynamic forward model: neural activity BOLD Time Domain Data “theta” Power (mV2) Dynamic Causal Modelling: Generic Framework Frequency (Hz) dx F ( x, u, ) dt Neural state equation: fMRI simple neuronal model Slow time scale EEG/MEG complicated neuronal model Fast time scale Dynamic Causal Modelling: Framework Empirical Data Generative Model Bayesian Inversion Hemodynamic forward model: Model Structure/ Model Parameters Electromagnetic forward model: Neural state equation: dx fMRI simple neuronal model dt F ( x, u, ) EEG/MEG complicated neuronal model Dynamic Causal Modelling: Framework Bayes’ rules: p ( | y , m ) p ( y | , m ) p ( | m ) p( y | m) Bayesian Inversion Free Energy: F ln p ( y m ) D ( q ( ) p ( y , m ) ) max Inference on models Inference on parameters Model 1 Model 2 Model 1 0.8 Model comparison via Bayes factor: p ( y | m1 ) BF p( y | m2 ) 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -2 accounts for both accuracy and complexity of the model allows for inference about structure (generalisability) of the model -1 0 1 2 3 4 5 p ( conn 0 | y ) 99 . 1 % Dynamic Causal Modelling: Framework Bayes’ rules: p ( | y , m ) p ( y | , m ) p ( | m ) p( y | m) Bayesian Inversion Free Energy: F ln p ( y m ) D ( q ( ) p ( y , m ) ) max Inference on parameters Inference on models Model 1 Model 2 Model 1 0.8 Model comparison via Bayes factor: p ( y | m1 ) BF p( y | m2 ) 0.7 q ( ) p ( y , m ) 0.6 0.5 0.4 0.3 0.2 0.1 0 -2 accounts for both accuracy and complexity of the model allows for inference about structure (generalisability) of the model -1 0 1 2 3 4 5 p ( conn 0 | y ) 99 . 1 % Dynamic Causal Modelling: Neural Mass Model EEG/MEG/LFP signal Properties of tens of thousands of neurons approximated by their average response Intrinsic Connections inhibitory interneurons neuronal (source) model spiny stellate cells Internal Parameters x F x , u , Pyramidal Cells Extrinsic Connections State equations Dynamic equations mimic physiology and produce electrophysiological responses Neurotransmitters: Glu/GABA AMPA receptors A Neural Mass Model (6) layer cortical regions) x F x , u , State equations: A dynamical systems description of anatomy and physiology Intrinsic Connections Supragranular Pyramidal Cells + inhibitory interneurons Internal Parameters Eg. Time constants of Sodium ion channels spiny stellate cells Deep Pyramidal Cells + inhibitory interneurons Extrinsic Connections GABAa receptors Dynamics mimicked at AMPA and GABA receptors Neurotransmitters: Glu/GABA AMPA receptors Cortico-cortical connection 3 AP generation zone 1 GABAa receptors Supragranular Layer: Inhibitory Cells Intrinsic Connection Granular Layer: Excitatory Cells synapses He Infragranular Layer: Pyramidal Cells AP generation zone e Cortico-cortical connection Parameters quantify contributions at AMPA and Neurotransmitters: Glu/GABA GABA receptors AMPA receptors 3 AP generation zone 1 Supragranular Layer: Inhibitory Cells Intrinsic Connection Granular Layer: Excitatory Cells synapses He Infragranular Layer: Pyramidal Cells e Cortico-cortical connection GABAa receptors State equations in a 6 layer cortical model x f x , u , x 7 x 8 x 8 inhibitory interneurons Extrinsic forward connections spiny stellate cells Extrinsic L A S ( x0 ) lateral connections F He e (( A A 3 I ) S ( x 0 )) B L e x7 e 2 3 4 x1 x 4 x 4 A S (x0 ) He e (( A A 1 I ) S ( x 0 ) Cu ) F 1 pyramidal cells 2 x8 L Intrinsic connections 2 x4 e x1 e 2 2 x 0 x 5 x 6 x0 x 2 x 5 x 5 He e (( A A ) S ( x 0 ) 2 S ( x1 )) B L x 3 x 6 x 6 Hi i 4 S ( x7 ) 2 x6 i x3 i 2 2 x5 e x2 e 2 Extrinsic B A S ( x0 ) backward connections State equations to Spectra Time Differential Equations State Space Characterisation x f ( x ) Bu x Ax Bu y l( x) y Cx Transfer Function Frequency Domain H ( s ) C ( sI A ) B Linearise mV Moran, Kiebel, Stephan, Reilly, Daunizeau, Friston (2007) A neural mass model of spectral responses in electrophysiology. NeuroImage Given an empirical recording: estimate parameters of the model GABAa receptor density AMPA receptor density Superficial layers v4 = g 4 g 4 = k e H e AB S(v6region 2 ) + k e H eg 3S (v6 ) - 2k e g 4 - k e2 v4 g5 = k i H ig 5 S (v7 ) - 2k i g5 - k i2 v5 v7 = g 4 - g5 3 Granular layers v1 = g1 spiny cells in granular layers Excitatory 1 H x4 AF S(v region2 ) + k H g S(v ) - 2k g - k 2 v g1 = xk e 1 e 1 x4 ekeeHe (1s(x9 6a) u) 2keex4 e k1e2x1 6 v2 1 =g Deep layers 1.4 1.31.4 1.21.3 Glutamate release i2 = k e H e A S(v region 2 6 ) + k e H eg 2 S(v1 ) - 2k e g 2 - k v 2 e 2 v3 = g 3 1.1 1 1 0.8 0.8 0.7 0.7 0 2 4 6 8 g3 = k i H ig 4 S(v7 ) - 2k i g3 - k v AMPA time constant 6 8 6 4 10 12 14 16 18 2 Frequency (Hz) 0 2 i 3 v6 = g 2 - g3 1.2 1.1 0.90.9 2 B GABAa TC 2 Increased activity at GABA receptors in 16 L-Dopa 14 supragranular 12 Placebo layers 10 Frequency (Hz) 4 Normalised Power (a.u.) Normalised Power (a.u.) GABA release 5 Measurement v5 = g5 800 11 Frequency (Hz) Bayesian Inversion Predicted response (Pyramidal Cell Depolarization) Moran, Stephan, Seidenbecher, Pape, Dolan, Friston (2009) Dynamic Causal Model of Steady State Responses. NeuroImage Friston, Bastos, Litvak, Stephan, Fries, Moran (2012) DCM for complex data: cross-spectra, coherence and phase-delays. NeuroImage 16 A conductance model offers more biological plausibility Neurotransmitters: Glu/GABA Superficial layers C V (2) Sodium Channel (2) ) g E (V E V (2) g NMDA f MG (V NMDA V (2) Chloride Channel I 32 g L (V L V g g (2) E k E ( ( g (2) I k I ( ( (2) NMDA E 23 I 22 k I ( I 23 (3) V (2) V ( (2) VR , (3) VR , (2) (2) V VR , (2) Neuromodulators: Acetylcholine/Dopamine ) ) g I (V I V (2) ) g (2) E ) E ) g (2) I ) I (2) (2) ) V ) g NMDA ) NMDA (2) Granular layers Potassium ChannelC V (1 ) g L (V L V (1 ) ) g E (V E V (1 ) (1 ) E 23 ) I V (1 ) E (3) (3) (1 ) g E k E ( 13 ( V V R , ) g E ) E (2) E (3) (3) (2) g E k E ( 23 ( V V R , ) g E ) E (2) I (2) (2) (2) g I k I ( 22 ( V V R , ) g I ) I Depolarization dependent 1.4 Calcium Channel 1.4 (2) I (2) (2) (2) g NMDA k I ( 31 ( V V R , ) g NMDA ) NMDA f Mg 1 exp( ( V 1.31.3 1.21.2 1.1 1.1 1 (3) )) AMPA/NMDA Ratio higher in Prefrontal Regions than Parietal Regions NMDA mediated switch Frequency (Hz) Deep layers E 31 Normalised Power (a.u.) Normalised Power (a.u.) 13E 1 1 0.9 0.90.8 0.7 0.8 0.7 0 0 2 4 6 8 10 12 14 16 Frequency (Hz) Moran, Stephan, Dolan, Friston (2011) Consistent Spectral Predictors for Dynamic Causal Models of Steady State Responses. NeuroImage 6 4 18 2 Frequency (Hz) 6 8 800 11 16 Roadmap Extract Data Features Specify model Find your experimental data Maximise the model evidence (~-F) Test models or MAP parameters 0 10 20 30 40 50 60 70 Response Prediction Power (mV2) Response Prediction Power (mV2) Summary: DCM for Steady State Responses 80 90 100 0 10 20 30 40 60 5 70 80 90 100 0 Frequency (Hz) Frequency (Hz) Power (mV2) Prediction Response 0 10 20 30 40 50 Frequency (Hz) | H2(ω) . H2*(ω) | | H1(ω) . H1*(ω) | | H1(ω) . H2*(ω) | Cortical Macrocolumns and free parameters dx/dt = Ax + B 60 70 80 90 100 0 10 20 30 40 50 60 70 Prediction Response Power (mV2) Prediction Response Power (mV2) Summary: DCM for Steady State Responses 80 90 100 0 10 20 30 40 60 5 Power (mV2) 10 20 30 40 50 Frequency (Hz) | H2(ω) . H2*(ω) | | H1(ω) . H1*(ω) | dx/dt = Ax + B v ( t ) he / i ( t ) u ( t ) Cortical Macrocolumns and free parameters 80 90 100 Prediction Response 0 | H1(ω) . H2*(ω) | 70 0 Frequency (Hz) Frequency (Hz) he / i ( t ) H e / ik e / i t exp( t k e / i ) 60 70 80 90 100 Outline • DCM & Spectral Data Features (the Basics) • DCM for CSD vs DCM for SSR • DCM for CSD Example Time to Frequency Domain Linearise around a stable fixed point or LC DCM for SSR DCM for CSD Power (mV2) 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 60 5 70 80 90 100 0 Frequency (Hz) Frequency (Hz) Prediction Response Power (mV2) DCM for Cross Spectral Densities Response Prediction Power (mV2) Response Prediction 0 10 20 30 40 50 60 70 80 90 Frequency (Hz) H2(ω) . H2*(ω) H1(ω) . H1*(ω) Spectra and Phase lag Coherence Cross Correlations H1(ω) . H2*(ω) dx/dt = Ax + B v ( t ) he / i ( t ) u ( t ) Cortical Macrocolumns and free parameters he / i ( t ) H e / ik e / i t exp( t k e / i ) 100 Power (mV2) 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 60 5 70 80 90 100 0 Frequency (Hz) Frequency (Hz) Prediction Response Power (mV2) DCM for Cross Spectral Densities Response Prediction Power (mV2) Response Prediction 0 10 20 30 40 50 60 70 80 90 Frequency (Hz) H2(ω) . H2*(ω) H1(ω) . H1*(ω) Spectra and Phase lag Coherence Cross Correlations H1(ω) . H2*(ω) dx/dt = Ax + B v ( t ) he / i ( t ) u ( t ) Cortical Macrocolumns and free parameters he / i ( t ) H e / ik e / i t exp( t k e / i ) 100 Accommodating Imaginary Numbers F Real and imaginary errors F ln( y ) D ( q ( ) p ( y , ) ) 1 1 T 2 Real and imaginary derivatives wrt fx, G 1 ln 1 2 T 2 E: 1 n ln 2 2 1 ln 2 1 ln 2 M: 1 1 G G T 1 1 I ( ) (G ) T 1 2 I ( ) tr ( Pi ( 1 2 T tr ( Pij ( 1 1 I ( ) I ( ) G G )) T T G G ) Pi P j ) T Roadmap Extract Data Features Specify model Find your experimental data 1. 2. 3. 4. And also report phase lags coherence & delays In channel or source space Maximise the model evidence (~-F) Test models or MAP parameters Interface Additions New CSD routines, similar to SSR SPM_NLSI_GN accommodates imag numbers, slopes, curvatures A host of new results features, in channel and source space! Conditional Estimates: Spectral Power mode 2 to 1 Power mode 1 to 1 18 18 16 16 14 14 12 12 10 10 8 8 6 6 4 4 2 2 0 10 20 30 40 frequency Hz Spectral density over modes (in channel-space) predicted: mode 1 observed: mode 1 predicted: mode 2 observed: mode 2 15 abs(CSD) 0 10 20 30 0 predicted: trial 1 observed: trial 1 18 16 Hipp 14 12 PFC 4 20 30 40 frequency (Hz) Abs(H2(ω) . H2*(ω)) mode 2 to 2 6 10 Abs(H2(ω) . H1*(ω)) 40 8 5 Abs(H1(ω) . H2*(ω)) frequency Hz 10 10 Abs(H1(ω) . H1*(ω)) 2 0 10 20 30 40 frequency Hz Conditional Estimates: Coherence Coh: pfc to hipp 1 1 |(H1(ω).H2*(ω))|2 ______________________ Channels: 2 to 1 0.9 1 0.8 1 {(H1(ω).H1*(ω)) + (H2(ω).H2*(ω))} 0.7 0.6 1 0.5 1 0.4 0.3 1 0.2 1 1 0 0.1 10 20 30 frequency Hz 40 50 0 0 10 20 30 frequency Hz predicted: trial 1 observed: trial 1 40 50 Hipp PFC Conditional Estimates: Covariance mode 1 to 1 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 0 -0.05 -0.05 -100 -50 0 50 100 mode 2 to 1 -100 -50 0 50 F-1(H1(ω).H1*(ω)) F-1(H1(ω).H2*(ω)) F-1(H2(ω).H1*(ω)) F-1(H2(ω).H2*(ω)) 100 lag (ms) lag (ms) mode 2 to 2 Auto-covariance (in channel-space) 0.2 channel 1 trial 1 0.15 channel 2 0.15 auto-covariance 0.2 Hipp 0.1 0.1 0.05 PFC 0.05 0 0 -0.05 -100 -50 0 Lag (ms) 50 100 -0.05 -100 -50 0 50 lag (ms) 100 Conditional Estimates: Delays Delay (ms) PfC to Hipp arg(H1(ω).H2*(ω)) ____________ ω Delay (ms) 2 to 1 10 5 trial 1 5 predicted: trial 1 observed: trial 1 0 0 -5 -5 -10 -10 -15 -15 -20 -20 -25 0 10 20 30 Frequency Hz 40 50 -25 0 10 20 30 40 50 frequency Hz Hipp PFC Outline • DCM & Spectral Data Features (the Basics) • DCM for CSD vs DCM for SSR • DCM for CSD Examples Pharmacological Manipulation of Glutamate and GABA - 4 levels of anaesthesia: each successively decreasing glutamate and increasing GABA (Larsen et al Brain Research 1994; Lingamaneni et al Anesthesiology 2001; Caraiscos et al J Neurosci 2004 ; de Sousa et al Anesthesiology 2000 ) - LFP recordings from primary auditory cortex (A1) & posterior auditory field (PAF) - White noise stimulus & Silence 1.4 % Isoflurane 1.8 % Isoflurane 2.4 % Isoflurane 2.8 % Isoflurane A1 LFP 0.12 0.06 mV 0 -0.06 A2 0.12 0.06 mV 0 -0.06 Summary DCM for CSD: Suitable for long time series with trial-specific spectral features eg pronounced beta Fits complex spectral data features Offers similar connectivity estimates to DCM for ERPs With estimates of frequency specific delays and coherence Can be used with all biophysical, Neural Mass Models (CMC, LFP etc.) Thank You Acknowledgments The FIL Methods Group Karl Friston Dimitris Pinotsis Marco Leite Vladimir Litvak Jean Daunizeau Stephan Kiebel Will Penny Klaas Stephan Andre Bastos Pascal Fries
© Copyright 2024 Paperzz