DCM for evoked responses Harriet Brown SPM for M/EEG course, 2013 The DCM analysis pathway The DCM analysis pathway Build model(s) Fit your model parameters to the data Collect data Pick the best model Make an inference (conclusion) The DCM analysis pathway Build model(s) Fit your model parameters to the data Collect data Pick the best model Make an inference (conclusion) Data for DCM for ERPs 1. 2. 3. 4. 5. Downsample Filter (1-40Hz) Epoch Remove artefacts Average The DCM analysis pathway Build model(s) Fit your model parameters to the data Collect data Pick the best model Make an inference (conclusion) The DCM analysis pathway ‘hardwired’ model features Build model(s) Fit your model parameters to the data Collect data Pick the best model Make an inference (conclusion) Models Standard 3-population model (‘ERP’) Canonical Microcircuit Model (‘CMC’) B A S ( p7 ) Output equation: y Lp 3 p 5 p 6 p 6 H3 3 F ( A S ( p 7 ) 5 S ( p1 ) 6 S ( p 7 ) 4 S ( p 5 )) B 5 Supragranular Layer 2 p6 3 B A S ( p3 ) p5 A S ( p7 ) 3 2 p 3 p 4 4 p 4 3 H2 2 (( A S ( p 7 ) 8 S ( p1 ) 7 S ( p 3 )) B 2 8 9 6 p 2 H1 1 (( A S ( p 3 ) 1 S ( p1 ) 3 S ( p 5 ) 2 S ( p 3 ) Cu ) F 2 p2 1 1 p1 2 7 p 1 p 2 Granular Layer 2 p4 2 1 U Infragranular Layer F p 7 p 8 p 8 H4 4 ( A S ( p 2 ) 10 S ( p 7 ) 9 S ( p 5 )) F F A S ( p3 ) 2 p8 4 p7 4 2 10 A S ( p3 ) B A S ( p7 ) p3 2 2 S ( p7 ) Canonical Microcircuit Model (‘CMC’) Canonical Microcircuit Model (‘CMC’) Supragranular Layer Granular Layer Infragranular Layer Canonical Microcircuit Model (‘CMC’) Inhibitory Interneurons Superficial Pyramidal Cells Supragranular Layer Granular Layer Spiny Stellate Cells Infragranular Layer Deep Pyramidal Cells Canonical Microcircuit Model (‘CMC’) Inhibitory Interneurons Superficial Pyramidal Cells Supragranular Layer Granular Layer Spiny Stellate Cells Infragranular Layer Deep Pyramidal Cells Canonical Microcircuit Model (‘CMC’) Inhibitory Interneurons 5 Supragranular Layer Granular Layer 3 9 6 Superficial Pyramidal Cells 8 Spiny Stellate Cells Infragranular Layer Deep Pyramidal Cells 2 Canonical Microcircuit Model (‘CMC’) Inhibitory Interneurons 5 Supragranular Layer Granular Layer 4 3 9 6 Superficial Pyramidal Cells 2 8 Spiny Stellate Cells Infragranular Layer Deep Pyramidal Cells 10 7 1 Canonical Microcircuit Model (‘CMC’) F A S ( p3 ) Inhibitory Interneurons 5 Supragranular Layer Granular Layer 4 3 9 6 Superficial Pyramidal Cells 2 8 7 1 Spiny Stellate Cells Infragranular Layer Deep Pyramidal Cells 10 B A S ( p7 ) Canonical Microcircuit Model (‘CMC’) B A S ( p7 ) F Inhibitory Interneurons 5 Supragranular Layer Granular Layer 4 3 6 A S ( p7 ) Superficial Pyramidal Cells 2 8 9 B A S ( p3 ) 7 1 Spiny Stellate Cells Infragranular Layer F Deep Pyramidal Cells F A S ( p3 ) 10 A S ( p3 ) B A S ( p7 ) Canonical Microcircuit Model (‘CMC’) B A S ( p7 ) F Inhibitory Interneurons 5 Supragranular Layer Granular Layer 4 3 6 A S ( p7 ) Superficial Pyramidal Cells 2 8 9 B A S ( p3 ) 7 1 Spiny Stellate Cells U Infragranular Layer F Deep Pyramidal Cells F A S ( p3 ) 10 A S ( p3 ) B A S ( p7 ) Canonical Microcircuit Model (‘CMC’) B A S ( p7 ) F Inhibitory Interneurons 5 Supragranular Layer Granular Layer 4 3 6 A S ( p7 ) Superficial Pyramidal Cells 2 8 9 B A S ( p3 ) 7 1 Spiny Stellate Cells U Infragranular Layer F Deep Pyramidal Cells F A S ( p3 ) 10 A S ( p3 ) B A S ( p7 ) S ( p7 ) Canonical Microcircuit Model (‘CMC’) p 7 p 8 p 8 H4 4 ( A S ( p 2 ) 10 S ( p 7 ) 9 S ( p 5 )) F 2 p8 4 p7 2 4 Canonical Microcircuit Model (‘CMC’) B A S ( p7 ) p 5 p 6 p 6 H3 3 F ( A S ( p 7 ) 5 S ( p1 ) 6 S ( p 7 ) 4 S ( p 5 )) B 5 Supragranular Layer 2 p6 3 B A S ( p3 ) p5 A S ( p7 ) 3 2 p 3 p 4 4 p 4 3 H2 2 (( A S ( p 7 ) 8 S ( p1 ) 7 S ( p 3 )) B 2 8 9 6 p 2 H1 1 (( A S ( p 3 ) 1 S ( p1 ) 3 S ( p 5 ) 2 S ( p 3 ) Cu ) F 2 p2 1 1 p1 2 7 p 1 p 2 Granular Layer 2 p4 2 1 U Infragranular Layer F p 7 p 8 p 8 H4 4 ( A S ( p 2 ) 10 S ( p 7 ) 9 S ( p 5 )) F F A S ( p3 ) 2 p8 4 p7 4 2 10 A S ( p3 ) B A S ( p7 ) p3 2 2 S ( p7 ) Canonical Microcircuit Model (‘CMC’) B A S ( p7 ) Output equation: y Lp 3 p 5 p 6 p 6 H3 3 F ( A S ( p 7 ) 5 S ( p1 ) 6 S ( p 7 ) 4 S ( p 5 )) B 5 Supragranular Layer 2 p6 3 B A S ( p3 ) p5 A S ( p7 ) 3 2 p 3 p 4 4 p 4 3 H2 2 (( A S ( p 7 ) 8 S ( p1 ) 7 S ( p 3 )) B 2 8 9 6 p 2 H1 1 (( A S ( p 3 ) 1 S ( p1 ) 3 S ( p 5 ) 2 S ( p 3 ) Cu ) F 2 p2 1 1 p1 2 7 p 1 p 2 Granular Layer 2 p4 2 1 U Infragranular Layer F p 7 p 8 p 8 H4 4 ( A S ( p 2 ) 10 S ( p 7 ) 9 S ( p 5 )) F F A S ( p3 ) 2 p8 4 p7 4 2 10 A S ( p3 ) B A S ( p7 ) p3 2 2 S ( p7 ) The DCM analysis pathway ‘hardwired’ model features Build model(s) Fit your model parameters to the data Collect data Pick the best model Make an inference (conclusion) Designing your model Area 1 Area 2 Area 3 Area 4 Designing your model input 35 input (1) 30 25 20 15 10 5 0 0 50 100 150 200 250 time (ms) Area 1 Area 2 Area 3 Area 4 Designing your model input 35 input (1) 30 25 20 15 10 5 0 0 50 100 150 200 250 time (ms) Area 1 Area 2 Area 3 Area 4 Designing your model input 35 input (1) 30 25 20 15 10 5 0 0 50 100 150 200 250 time (ms) Area 1 Area 2 Area 3 Area 4 Designing your model input 35 input (1) 30 25 20 15 10 5 0 0 50 100 150 200 250 time (ms) Area 1 Area 2 Area 3 Area 4 Designing your model input 35 input (1) 30 25 20 15 10 5 0 0 50 100 150 200 250 time (ms) Area 1 Area 2 Area 3 Area 4 Designing your model input 35 input (1) 30 25 20 15 10 5 0 0 50 100 150 200 250 time (ms) Area 1 Area 2 Area 3 Area 4 The DCM analysis pathway Build model(s) Fit your model parameters to the data Collect data Pick the best model Make an inference (conclusion) The DCM analysis pathway fixed parameters Build model(s) Fit your model parameters to the data Collect data Pick the best model Make an inference (conclusion) Fitting DCMs to data Fitting DCMs to data Predicted Observed (adjusted) 1 0.01 0.01 0.005 time (ms) 0.005 0 -0.005 -0.01 mode 1 -0.005 0 50 100 150 time (ms) 200 250 1.5 1 1 0.5 0.5 0 0 -0.5 -0.5 -1 -1 -1.5 -1.5 50 100 150 200 50 100 mode 3 0 -0.01 mode 2 1.5 0 50 100 150 channels 200 250 1.5 1 1 0.5 0.5 0 0 -0.5 -0.5 -1 -1 -1.5 -1.5 100 150 200 50 100 mode 5 Observed (adjusted) 2 Predicted 0.01 0.01 0.005 0.005 1.5 1 1 0.5 0.5 0 0 -0.5 -0.5 -1 -1 50 100 150 200 -1.5 50 time (ms) mode 7 0 -0.005 -0.01 0 -0.005 0 50 100 150 time (ms) 200 250 -0.01 0 50 100 150 channels 200 250 1.5 1 1 0.5 0.5 0 0 -0.5 -0.5 -1 -1 50 100 150 200 100 150 200 mode 8 1.5 -1.5 150 mode 6 1.5 -1.5 200 mode 4 1.5 50 150 200 -1.5 trial 1 (predicted) trial 1 (observed) trial 2 (predicted) trial 2 (observed) 50 100 150 time (ms) 200 Fitting DCMs to data mode 2 1 0.5 0.5 0 0 -0.5 -0.5 -1 -1 Predicted Observed (adjusted) 1 0.01 0.005 0.005 time (ms) 0.01 0 -0.005 -0.01 mode 1 1 -1.5 50 100 150 200 -1.5 50 100 mode 3 0 200 mode 4 1 1 0.5 0.5 0 0 -0.5 -0.5 -1 -1 -0.005 0 50 100 150 time (ms) 200 -0.01 250 0 50 100 150 channels 200 250 -1.5 50 100 150 200 -1.5 50 100 mode 5 Observed (adjusted) 2 150 200 mode 6 1 1 0.5 0.5 0 0 -0.5 -0.5 Predicted 0.01 0.01 0.005 -1 -1 -1.5 -1.5 50 100 150 200 50 100 150 200 0.005 time (ms) mode 7 0 -0.005 -0.01 150 0 mode 8 1 1 0.5 0.5 0 0 -0.5 -0.5 -1 -1 trial 1 (predicted) trial 1 (observed) trial 2 (predicted) trial 2 (observed) -0.005 0 50 100 150 time (ms) 200 250 -0.01 0 50 100 150 channels 200 250 -1.5 50 100 150 200 -1.5 50 100 150 time (ms) 200 Fitting DCMs to data 5 x 10 -14 Observed response 1 Observed response 1 0 0 100 150 -5 5 200 0 x 10 50 -14 100 time (ms) 150 200 50 Observed response 2 100 150 channels 200 250 Observed response 2 0 50 peri-stimulus time (ms) 1. Check your data peri-stimulus time (ms) 50 0 100 150 -5 200 0 50 100 time (ms) 150 200 50 100 150 channels 200 250 Fitting DCMs to data 1. Check your data 2. Check your sources Fitting DCMs to data OFC A19 IPL 1. Check your data 2. Check your sources OFC A19 V4 IPL V4 Model 1 3. Check your model IPL IPL V4 V4 Model 2 Fitting DCMs to data 1. Check your data 2. Check your sources 3. Check your model 4. Re-run model fitting The DCM analysis pathway Build model(s) Fit your model parameters to the data Collect data Pick the best model Make an inference (conclusion) What questions can I ask with DCM for ERPs? Questions about functional networks causing ERPs Garrido et al. (2008) What questions can I ask with DCM for ERPs? Questions about connectivity changes in different conditions or groups Boly et al. (2011) What questions can I ask with DCM for ERPs? mode 1 -3 3x 10 2 2 1 1 0 0 -1 -1 -2 -2 mode 2 -3 50 100 150 200 250 300 350 400 -3 50 100 150 200 250 300 350 400 peri-stimulus time (ms) peri-stimulus time (ms) -3 -3 mode 1 mode 2 3 x 10 3 x 10 Superficial Pyramidal Cell gain changed 2 2 1 1 0 0 -1 -1 -2 -2 -3 50 100 150 200 250 300 350 400 -3 peri-stimulus time (ms) 50 100 150 200 250 300 350 400 peri-stimulus time (ms) 0.25 Parameter value Questions about the neurobiological processes underlying ERPs Deep Pyramidal Cell gain changed -3 3x 10 0.2 0.15 0.1 0.05 0 -0.05 -0.1 V4 IPL Area Area 18 SOG How to use DCM for ERPs well A DCM study is only as good as its hypotheses…
© Copyright 2024 Paperzz