研究集会 数学と現象: Mathematics and Phenomena in Miyazaki 2016 日時:平成28年11月18日∼11月19日 場所:宮崎大学工学部 B棟2階B210教室 世話人:辻川亨, 飯田雅人, 今隆助, 梅原守道, 平山浩之, 坂田繁洋, 出原浩史(宮崎大学) URL: http://www.cc.miyazaki-u.ac.jp/math/mpm/mpm2016/ 研究集会 「数学と現象: Mathematics and Phenomena in Miyazaki 2016 (略称:MPM2016)」 日時: 2016 年 11 月 18 日(金)∼ 11 月 19 日(土) 会場: 宮崎大学工学部 B 棟 2 階 B210 教室 案内: http://www.cc.miyazaki-u.ac.jp/math/mpm/ プログラム 11 月 18 日(金) 午後の部 14:00-14:55 本多 泰理(NTT) 「On synchronization and brain network」 15:15-16:10 可香谷 隆(東京工業大学) 「界面ダイナミクスに対する接触エネルギーの効果について」 16:30-17:25 櫻井 建成(千葉大学) 「走化性大腸菌における進行パルス波と沈殿」 11 月 19 日(土) 午前の部 ! MPM2016 特別体験講座 " 10:15-12:15 石田 祥子(明治大学) 「折紙の数理と構造設計」 注 宮交バス「橘通り 3 丁目→宮崎大学(木花キャンパス)」の土曜日の朝の時刻表: 8:21 → 8:54,8:41 → 9:18,9:11 → 9:52,9:21 → 9:54,9:41 → 10:18(遅刻!) 午後の部 14:00-14:55 中田 行彦(島根大学) 「Delay equations for epidemic models : instability due to waning immunity」 15:15-16:10 吉川 周二(大分大学) 「Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case」 16:30-17:25 好村 滋行(首都大学東京) 「細胞中の異常拡散とマイクロレオロジー」 本研究集会は,科学研究費補助金 課題番号 種目 代表者 26400173 15K04963 16K05279 16KT0135 26800071 26800084 基盤 (C) 基盤 (C) 基盤 (C) 基盤 (C) 若手 (B) 若手 (B) 辻川亨 飯田雅人 今隆助 出原浩史 梅原守道 出原浩史 課題名 縮約系を応用した高次元空間にみられる現象の解明と解析的手法の構築 漸近解構築に基づく反応拡散系の解の形と動きの解明 常微分方程式で近似できる構造化生態系モデルの数理的研究 生命現象における階層を超えるミクロとマクロとをつなぐ理論の構築 天文現象における自己重力流体の運動の数学解析 生物の集合形成メカニズムに対する数理モデルからの探求 の援助を受けています. 世話人: 連絡先: 辻川 亨,飯田 雅人,今 隆助,梅原 守道,平山 浩之,坂田 繁洋,出原 浩史(宮崎大学) 出原 浩史 (Hirofumi Izuhara) 〒 889-2192 宮崎市学園木花台西 1-1 宮崎大学工学部工学基礎教育センター E-mail:[email protected] TEL:0985-58-7384 / 0985-58-7288(事務室)& FAX:0985-58-7289 作成日:2016.11.2 On synchronization and brain network Hirotada HONDA (NTT Network Technology Laboratories)§ 1. Introduction Theoretical investigations of weakly coupled limit cycle oscillators [6] are intensively developed over several research fields these days. For example, in network science, various network models are being taken into account. It is noteworthy that the mathematical analysis of this field has been promoted recently. In this talk, we first introduce some of our results concerning the KuramotoSakaguchi equation. Then, as an application, we show the equation of the resting state network, which is one of the most attractive topics in the brain network analysis these days. 2. Kuramoto-Sakaguchi equation The Kuramoto-Sakaguchi equation is a physical model of the behavior of weakly coupled oscillators. It describes the temporal evolution of the probability density of the phase of each oscillator. In this section, we first introduce some existing results concerning the KuramotoSakaguchi equation. 8 @% @ 2% @% > > ° D +! > > 2 > @t @µ @µ > " # > > Z Z 2º > > @ > 0 0 0 > +K %(µ, !, t) g(! )d! sin(¡ ° µ)%(¡, ! , t)d¡ = 0, > > @µ < R 0 (1) (µ, !, t) 2 Ω £ R £ (0, 1), > > > > > > @ i % ØØ @ i % ØØ > > = (i = 0, 1), (!, t) 2 R £ (0, 1), Ø Ø > > @µi µ=0 @µi µ=2º > > > > : ØØ % t=0 = %0 (µ, !), (µ, !) 2 (0, 2º) £ R, where Ω ¥ (0, 2º), g(!) is the probability distribution function of the natural frequency !, D, the diffusion coefficient, and K is the coupling strength. 3. Resting state network : application of Kuramoto model In this section, we consider another problem concerning the brain network, derived on the basis of Cabral’s works [1][2] as an application of the Kuramoto theory. In the region of the brain analysis, it is reported that a synchronous cooperation of multiple regions emerges when the individuals are at rest. They are now called as the resting state network. Recently, Cabral [1][2] derived a system of ordinary equation as a model of the average neuronal behavior in each region of the brain in the resting state network. It reads N X ° ¢ dµn = !n + K cnp sin µp (t ° ønp ) ° µn (t) (n = 1, 2, . . . , N ), dt p=1 2000 Mathematics Subject Classification: 45K05, 45M10. Keywords: Kuramoto-Sakaguchi equation, brain network, resting state network.. § e-mail: [email protected] (2) where the unknown µn (t) (n = 1, 2, . . . , N ) are the average phase of the neuronal firing in each region numbered n at time t; cnp , the coupling strength between neurons n and p; K, the global coupling strength which scales all connection strength; ønp , the delay in the axon between neurons n and p, and !n , the natural frequency of the signal of a neuron numbered n. In [4], we derived a Fokker-Planck equation corresponding to the equation (2), and discussed the mathematical well-posedness, stability and vanishing diffusion limit. On the other hand, since the resting state network contains the dynamical property, the dynamics of the model has been left for further study [2]. Here, we consider a dynamical model of the resting state network. On the basis of existing models of modified versions of Kuramoto-Saguchi equation [5][7], it reads 8 @% @% @ 2 % kK(t) @ > > + ! ° D + F[%, %] = 0 > > > @t @¡ @¡2 P (t) @¡ > > > > t > 0, (¡, k, x, !) 2 Ω £ R+ £ R £ R, < (3) > @ i % ØØ @ i % ØØ > > = (i = 0, 1), t > 0, (k, x, !) 2 R+ £ R £ R Ø Ø > > @¡i ¡=0 @¡i ¡=2º > > > > : ØØ % t=0 = %0 (¡, k, x, !) 2 Ω £ R+ £ R £ R, where F[%1 , %2 ] ¥ %1 (¡, t; x, !) Z R G(x ° y)dy Z 0 2º Z R 0 g(! )d! 0 Z k 0 P (k 0 )dk 0 R+ Γ(¡0 ° ¡)%2 (¡0 , æ(t; x, y); k 0 , y, ! 0 ) d¡0 , P (t; k) and g(!) are the probability densities of the node degree k and natural frequency !, respectively; D, the diffusion coefficient; Γ(·), the coupling function; K(t), the coupling strength; G(·, t), the coupling strength between each node; æ(t; x, y), the R delay between nodes x and y, and P (t) ¥ R+ kP (t; k)dk is the expected value of the degree. References [1] J. Cabral, E. Hugues, O. Sporns and G. Deco, Role of local network oscillations in resting-state functional connectivity, NeuroImage, 57 (2011), 130–139. [2] J. Cabral, M. L. Kringelbach and G. Deco, Exploring the network dynamics underlying brain activity during rest, Progress in Neurobiology, 114 (2014), 102–131. [3] Ha, S. Y. and Xiao, Q., Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation, J. Diff. Eq. 259 (2015), 2430–2457. [4] H. Honda, On mathematical modeling and analysis of brain network, preprnit. [5] Ichinomiya, T., Frequency synchronization in a random oscillator network, Phys. Rev. E, 70 026116 (2004). [6] Kuramoto, Y., in Int. Symp. on Mathematical problems in theoretical physics, edited by H. Araki (Springer, New York), Lect. N. Phys., 39 (1975), 420–422. [7] W.S.Lee, E.Odd and T.M.Antonsen, Large Coupled Oscillator Systems with Heterogeneous Interaction Delays, Phys. Rev. Lett., 103 (2009), 044101. ( ) ∗ A⊂Ω E(A) := Hn−1 (∂A ∩ Ω) + cos θHn−1 (∂A ∩ ∂Ω). Ω ⊂ Rn n (1) (1) θ ∈ (0, π) 0 < m < |Ω| 1: Σm := {A ⊂ Ω : |A| = m} (1) ∂Ω θ (i) A ∈ Σm Σm ( 1 A ∂A ∩ Ω ) (1) Ω = {(x, y) ∈ R2 : y > 0} A(0) ⊂ Ω [1] ∂Ω (1) Γ := ∂A ∩ Ω x l− (Γ), l+ (Γ) ψ− , ψ+ ∈ (0, π/2) 2: 1 Ẽ(A) := H (Γ) − l+ (Γ) cos ψ+ + l− (Γ) cos ψ− A(0) Γ(t) := ∂A(t) ∩ Ω (Eq) V (BC) Γ(t) (IC) Γ(0) ∗ e-mail: x κ 2 A(t) Γ(t) Γ(t) x ( Ẽ Γ(t) ! A(t) Γ(t) V =κ− ! 2 ) κ dH1 Γ(t) C2 dH1 on Γ(t). A(t) ψ− , ψ+ ∈ (0, π/2) (BC) [email protected] 1 (ii) [3] ε>0 ! ! ε|∇u|2 W (u) Eε (u) := + dx + σ(u) dHn−1 2 ε Ω ∂Ω u Ω W R σ Eε {uε ≈ −1} ( 3 W (s) = (1 − s2 )2 ) double well potential( uε {uε ≈ 1} Ω {uε ≈ 0} ) ε→0 uε → u0 = ±1 ∃m s.t. {u0 = 1} E Hn -a.e. x ∈ Ω as for Σm 3: uε ε → 0, E (2) . θ σ(1) − σ(−1) θ = arccos " 1 # 2W (s) ds −1 (A1) Ω R (A2) W W ≥ 0, W (±1) = 0, (−1, 1) R (A3) σ C ∈ [0, 1) (A4) εi → 0(i ∈ N, i → ∞) (uεi ν |σ " (s)| ≤ C uεi # 2W (s) λi Ẽ ) " −εi ∆uε + W (uεi ) = λε i i εi εi *∇uε , ν+ = −σ " (uε ) i i Ω (A5) ,uεi ,L∞ (Ω) , |λi |, Eεi (uεi ) (A6) W "" (s) > 0(|s| ≥ γ) γ ∈ (0, 1) εi |∇uε |2 W (uεi ) − 2 εi in Ω, on ∂Ω. i L1 (Ω) 0 varifold (2) varifold [2] [1] T. Kagaya and M. Shimojo, Exponential stability of a traveling wave for an area preserving curvature motion with two endpoints moving freely on a line, Asymptotic Analysis 96 (2016), no. 2, pp 109–134. [2] T. Kagaya and Y. Tonegawa, A fixed contact angle condition for varifolds, submitted, arXiv:1606.00164. [3] T. Kagaya and Y. Tonegawa, A singular perturbation limit of diffused interface energy with a fixed contact angle condition, submitted, arXiv:1609.00191. 2 Swarm ring REFERENCES [1] E.O. Budrene and H.C. Berg, Nature 349, 630 (1995) [2] L. Tsimring, H. Levine, I. Aranson, E. Ben-Jacob, I. Cohen, and O. Shochet, Phys. Rev. Lett. 79, 1859 (1995) [3] R. Tyson, S.R. Lubkin, and J.D. Murray, Proc. R. Soc. Lond. 266, 299 (1999) [4] A. Aotani, M Mimura, and T. Mollee, Japan J. Indust. Appl. Math. 27, 5 (2010) DELAY EQUATIONS FOR EPIDEMIC MODELS: INSTABILITY DUE TO WANING IMMUNITY YUKIHIKO NAKATA Abstract. The talk will begin with introduction of ”delay equation formulation” of structured population models using the Kermack and McKendrick epidemic model as an example [1, 2]. We briefly review analytical results (such as a threshold dynamics and final size relation) and then extend the Kermack and McKendrick model to describe reinfection due to waning immunity of recovered individuals. Together with stability analysis, it is suggested that recovered period is the source of destabilisation of the system. We also discuss global stability of equilibria and periodicity of a periodic solution for specific cases. Comparison of two models will illustrate importance of the immune period and its distribution in the periodic oscillation of infectious diseases. The talk is based on the collaboration studies with R. Omori and G. Röst [3, 4]. References [1] D. Breda, O. Diekmann, W.F. de Graaf, A. Pugliese, R. Vermiglio, On the formulation of epidemic models (an appraisal of Kermack and McKendrick), J. Biol. Dyn. 6, Suppl. 2 (2012) 103-117. [2] W.O. Kermack, A.G. McKendrick, A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. B Biol. Sci. 115 (1927) 700-721. [3] R. Omori, Y. Nakata, H. L. Tessmer, S. Suzuki, K. Shibayama, The determinant of periodicity in Mycoplasma pneumoniae incidence: an insight from mathematical modelling. Scientific Reports 5, 14473; doi: 10.1038/srep14473 (2015) [4] Y. Nakata, G. Rost, Global stability of an SIS epidemic model with a finite infectious period, submitted Department of Mathematics, Shimane University, Nishikawatsu-cho 1060, Matsue, 690-8504 1 Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case Shuji Yoshikawa Oita University, Oita, Japan email: [email protected] Abstract. (CH) We study the following one-dimensional Cahn–Hilliard equation: ! ∂t u − ∂x2 p = 0, p = −γ∂x2 u + F ! (u), (x, t) ∈ (0, L) × (0, T ], under two kinds of dynamic boundary condition. The unknowns u := u(x, t) and p := p(x, t) are the order parameter and the chemical potential, respectively, F ! is some derivative of the potential F , and γ is a positive constant. The first problem, under the standard dynamic boundary condition, is of the following form: ! ∂t u(0, t) + ∂x u(0, t) = ∂t u(L, t) − ∂x u(L, t) = 0, (DBC1) ∂x p(0, t) = ∂x p(L, t) = 0, t ∈ (0, T ]. The second problem, recently proposed by Goldstein–Miranville–Schimperna [4], is ∂t u(0, t) + ∂x p(0, t) = ∂t u(L, t) − ∂x p(L, t) = 0, (DBC2) p(0, t) = γ∂x u(0, t) + F ! (u(0, t)), p(L, t) = −γ∂x u(L, t) + F ! (u(L, t)) = 0, t ∈ (0, T ]. We propose structure-preserving finite difference schemes (see [2] and [3]) for problems (CH) with (DBC1) and (CH) with (DBC2), and give mathematical results such as an error estimate and unique existence of solution for the scheme, by using the energy method introduced in [5]. This result is based on a collaborated research with Prof. Takeshi Fukao (Kyoto University of Education) and Ms. Saori Wada (Ehime University), which has been submitted as [1]. Bibliography [1] T. Fukao, S. Yoshikawa and S. Wada, Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case, submitted. [2] D. Furihata, A stable and conservative finite difference scheme for the Cahn–Hilliard equation, Numer. Math., 87 (2001), 675–699. [3] D. Furihata and T. Matsuo, Discrete Variational Derivative Method, Numerical Analysis and Scientific Computing series, CRC Press/Taylor & Francis, 2010. [4] G. R. Goldstein, A. Miranville and G. Schimperna, A Cahn–Hilliard model in a domain with non-permeable walls, Phys. D, 240 (2011), 754–766. [5] S. Yoshikawa, Energy method for structure-preserving finite difference schemes and some properties of difference quotient, Journal of Computational and Applied Mathematics 311, 394-413 (2017). Anomalous diffusion and microrheology in cells (Tokyo Metropolitan University) S. Komura, K. Yasuda, and R. Okamoto (Fritz-Haber-Institut der Max-Planck-Gesellschaft) A. S. Mikhailov With the use of the “two-fluid model”, we discuss anomalous diffusion induced by active protein molecules in viscoelastic media. Active proteins in living cells generate non-thermal fluctuating flows that lead to a substantial increment of the diffusion in the cytoplasm [1]. Using the Green's function of the two-fluid model, we first obtain passive (thermal) two-point correlation functions including the displacement cross-correlation function between the two point particles separated by a finite distance. We then calculate active (non-thermal) one-point and two-point correlation functions due to active force dipoles representing proteins. The time correlation of the force dipole is assumed to decay exponentially with a characteristic time scale. We show that the active component of the displacement cross-correlation function exhibits various crossovers from super-diffusive to sub-diffusive behaviors depending on the characteristic time scales and the particle separation. Our theoretical results are intimately connected to the microrheology technique, and also reproduce the experimental result [2] by adding both passive and active contributions to the mean squared displacement. µ η d ! Figure 1: Active proteins in a viscoelastic media References [1] A. S. Mikhailov and R. Kapral, Proc. Nat. Acad. Sci. USA 112, E3639 (2015). [2] M. Guo, A. J. Ehrlicher, M. H. Jensen, M. Renz, J. R. Moore, R. D. Goldman, J. Lippincott-Schwartz, F. C. MacKintosh, and D. A. Weitz, Cell 158, 822 (2014).
© Copyright 2025 Paperzz