ADVANCED HIGHER PRELIM PRACTICE PAPER 1) Find the coefficient of u 4 v 12 SELKIRK HIGH SCHOOL in the expansion of 3u 2 6 5 . v3 2) A curve C is defined in terms of the parameter t by the equations x t 5 9t 3 , y 3t 2 . Find the equations of the tangents to the curve C at the point 0,27. 3) Use Gaussian elimination to solve the system of equations below 2x - y - 13z = 1 x - y + 2z = -3 - x + 2y - 3z = 2 4) (a) (b) Factorise x3 2 x 2 x 2. Hence evaluate x3 3x 2 2 x 10 dx. x3 2 x 2 x 2 3 2 a b Express your answer in the form ln c, where a, b and c are constants. 5) a +10 , a + 5 , a + 2 are the first three terms of a geometric sequence. Find: 6) (a) the value of the first term and the common ratio of the sequence (b) the value of the sixth term of the sequence (c) the sum to infinity of the geometric series (a + 10) + (a + 5) + (a + 2) +… Given f(x) = tan 3x, find f ( x ) and f ( x) . Hence show that f ( x) kf ( x) , stating the value of k. f ( x) ADVANCED HIGHER PRELIM PRACTICE PAPER SELKIRK HIGH SCHOOL 7) A curve is defined by the equation xy 2 3x 2 y 4 for x > 0 and y > 0 dy dx a) Use implicit differentiation to find b) Hence find an equation of the tangent to the curve where x = 1 6 8) Use the substitution u = 1 + sinθ to show that 0 4 cos d = p q r 1 sin where p , q and r are integers. 9) Find the volume of revolution when the area between the line y = 2 and the curve y = 3x² is rotated about the y axis. 10) Shown is part of the graph of f x x2 5 , x 2. x2 0 Determine algebraically the range of the function f x x2 5 , x 2. x2 ADVANCED HIGHER PRELIM PRACTICE PAPER 11(a) (b) 1 Given f ( x) 6 tan SELKIRK HIGH SCHOOL x , where x > 0, obtain f (x) and simplify your answer. Given y x x 2 , where x > 2, use logarithmic differentiation to obtain dy in terms of x. dx 12) z1 2i and z 2 1 i . (a) (b) (b) z1 in the form a + bi (where a and b are real numbers). z2 z Hence express z1 z2 1 in the form a +bi z2 Express z Find arg 1 . z2 13) Use integration by parts to evaluate 2 2 tan 1 xdx 1 14) A curve is defined by the parametric equations x t 2 2t , y 1 t 4 . Find the equation of the tangent to the curve at the point where t = -1. 15) Express the improper rational function f ( x) x 3 3x 2 8 x 2 x 2 2x 1 in the form f ( x ) g ( x ) h( x ) , where g(x) is a polynomial function and h(x) is a proper rational function expressed in partial fractions. ADVANCED HIGHER PRELIM PRACTICE PAPER SELKIRK HIGH SCHOOL 16) Find the solution of the differential equation dy sec y given that y when t = 0. 3t dt 6 4e 6 17) Use the substitution u = 1 + sinθ to show that 0 4 cos d = p q r 1 sin Where p , q and r are integers. 18) By using the substitution t = 1 + tan x sec 2 x 0 1 tan x dx 4 19) (a) (b) Calculate the sum of all the two digit natural numbers which are divisible by 3. Find the value of , 0 2 , such that: 1 sin 2 sin 4 sin 6 ... 2 . 20) A scientist constructs the differential equation dy e x y dx to describe the relationship between two quantities x and y. (a) Find the general solution of the differential equation. (b) Given that y = 0 when x = 1, find the particular solution, expressing y in terms of x. ADVANCED HIGHER PRELIM PRACTICE PAPER SELKIRK HIGH SCHOOL 21) Two complex numbers, z1 and z 2 , are given by z1 3 2i and z 2 6 ki, where k is a real number. a) Write z1 z2 in the form a+ib. b) Given z12 3z 2 is a purely real number, find the value of k. 22) The function f is defined by f ( x) (a) x2 3 , x 1, x R. x 1 (i) Write down the equation of the vertical asymptote of f. (ii) Show that f has a non-vertical asymptote and obtain its equation. (iii) Find the point(s) of intersection with the x- and y- axes. (b) Find the coordinates and nature of the stationary points of f. (c) Sketch the graph of y = f(x), indicating the features found in (a) and (b). ADVANCED HIGHER PRELIM PRACTICE PAPER SELKIRK HIGH SCHOOL ADVANCED HIGHER PRELIM PRACTICE PAPER 6 2 6 r 5 3u 3 v r 0 r 12 2 r 6 6 6 r r u 3 5 v 3r 1) r 0 r 6 r r4 6 2 4 3 5 4 84,375 2) 6 5t 27t t 5 9t 3 0 t 3,0,3 3 3t 2 27 t 3,3 1 1 or 9 9 9 y x 243 or 9 y x 243 9 y x 243 or 9 y x 243 3) 2 1 1 1 1 2 3 1 2 3 2 2 3 1 1 0 1 4 7 (or equivalent) 1 2 3 2 2 3 1 1 0 1 4 7 (or equivalent) 0 1 1 1 2 3 1 1 0 1 4 7 (or equivalent) 0 0 3 8 SELKIRK HIGH SCHOOL ADVANCED HIGHER PRELIM PRACTICE PAPER inconsistent (accept “no solution” or “no answer”) 4) x 1x 1x 2 (or equivalent) x 3 2 x 2 x 2 x 3 3x 2 2 x 10 5 x 2 x 12 1 2 x 2x 2 x 3 5 x 2 x 12 Ax 1x 2 Bx 1x 2 C x 1x 1 A 1, B 4, C 2 3 1 4 2 2 1 x 1 x 1 x 2 dx (or equivalent) x ln x 1 4 ln x 1 2 ln x 2 3 ln 2 4 ln 4 2 ln 5 2 ln 1 4 ln 3 2 ln 4 200 1 81 ln 5) a5 a2 a 10 a 5 a 5 2 5 5 2 5 10 2 3 r 5 5 3 2 5 243 1250 5 SELKIRK HIGH SCHOOL 7 3 1 x ,y ,z 2 2 2 ADVANCED HIGHER PRELIM PRACTICE PAPER 5 2 3 1 5 25 4 SELKIRK HIGH SCHOOL
© Copyright 2025 Paperzz