Jon Dattorro convexoptimization.com prototypical cardinality problem find x subject to Ax b x0 card x k Perspectives: Combinatorial Geometric 2 Euclidean bodies Permutation Polyhedron P {X R nn X 1 1, X 1 1, X 0 } T • n! permutation matrices are vertices in (n-1)2 dimensions. • permutaton matrices are minimum cardinality doubly stochastic matrices. H Hyperplane H {x R n x 1 1} T 3 Geometrical perspective Compressed Sensing minimize || x ||1 subject to Ax b 1-norm ball: 2n vertices, 2n facets Candes/Donoho (2004) 4 Candes demo %Emmanuel Candes, California Institute of Technology, June 6 2007, IMA Summerschool. clear all, close all n = 512; m = 64; k = 0:n-1; t = 0:n-1; F = exp(-i*2*pi*k'*t/n)/sqrt(n); freq = randsample(n,m); A = [real(F(freq,:)); imag(F(freq,:))]; S = 28; support = randsample(n,S); x0 = zeros(n,1); x0(support) = randn(S,1); b = A*x0; % Solve l1 using CVX cvx_quiet(true); cvx_begin variable x(n); minimize(norm(x,1)); A*x == b; cvx_end norm(x - x0)/norm(x0) figure, plot(1:n,x0,'b*',1:n,x,'ro'), legend('original','decoded') % Size of signal % Number of samples (undersample by a factor 8) % Fourier matrix % Incomplete Fourier matrix wikimization.org 5 Candes demo find x subject to Fx Fx0 A F R m n b Fx0 R m m 64 2 n 512 k 28 binary mask F Fourier matrix x is sparse 6 k-sparse sampling theorem • Donoho/Tanner (2005) A R m n 7 two geometrical interpretations find x subject to Ax b x0 K {Ax x 0} 8 motivation to study cones convex cones generalize orthogonal subspaces K K R * n Projection on K determinable from projection on -K* and vice versa. (Moreau) Dual cone: K { y x y 0 x K} * T 9 application - LP presolver Delete rows and columns of matrix A columns: smallest face F of cone K containing b F( K b) {a K a K b } * A holds generators for K find subject to z bT z 0 AT z 0 A(: , i ) T z 1 If feasible, throw A(: , i) away K {Ax x 0} 10 application - Cartography 11 list reconstruction from distance D a.k.a metric multidimensional scaling principal component analysis Karhunen-Loeve transform cartography: projection on semidefinite cone 12 minimize DS h || V ( D H ) Vn ||F T n subject to V D Vn 0 T n projection on semidefinite cone because S V S h Vn T n subspace of symmetric matrices is isomorphic with subspace of symmetric hollow matrices 13 minimize DS h || V ( D H ) Vn ||F T n subject to V D Vn 0 T n (EY) rank V D Vn T n is convex problem (Eckart & Young) (§7.1.4 CO&EDG) optimal list X from VnT D Vn (§5.12 CO&EDG) 14 ordinal reconstruction minimize DS h || VnT ( D O) Vn ||F subject to VnT D Vn 0 rank V D Vn T n vect D K M • nonconvex • strategy: break into two problems: (EY) and convex problem minimize || vect D || subject to K M • fast projection on monotone nonnegative cone KM+ (Nemeth, 2009) • R 50202 15 Cardinality heuristics y minimize || ||0 4M4M R subject to E vec t 0 minimize vec , y * subject to E vec t 0 16 Rank heuristics trace is convex envelope of rank on PSD matrices rank function is quasiconcave 17 Idea behind convex iteration tr G G , I (vector inner product) 18 Convex Iteration 19 application (Recht, Fazel, Parrilo, 2007) (Rice University 2005) 20 one-pixel camera - MIT 21 one-pixel camera - MIT 22 application - MRI phantom • Led directly to sparse sampling theorem MATLAB>> phantom(256) Candes, Romberg, Tao 2004 23 application - MRI phantom • MRI raw data called k-space • aliasing at 4% subsampling • Raw data in Fourier domain vect 1 f 24 application - MRI phantom P C 216 × 216 (projection matrix) • hard to compute y is direction vector from convex iteration 25 application - MRI phantom 26 application - MRI phantom reconstruction error: -103dB 27
© Copyright 2024 Paperzz