On Some Types of Fuzzy Separation Axioms in

IOSR Journal of Mathematics (IOSR-JM)
e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 11, Issue 1 Ver. IV (Jan - Feb. 2015), PP 01-08
www.iosrjournals.org
On Some Types of Fuzzy Separation Axioms in Fuzzy Topological
Space on Fuzzy Sets
Assist.Prof. Dr.Munir Abdul Khalik AL-Khafaji Gazwanhaider Abdul Hussein
AL-Mustinsiryah University \ College of Education \ Department ofMathematics
Abstract: The aim of this paper to introduce and study fuzzy ๐›ฟ-open set and the relations of some other class of
fuzzy open sets like (R-open set ,๐œƒ-open set , ๐›พ-open set , โˆ†-open set) , introduce and study some types of fuzzy
๐›ฟ-separation axioms in fuzzy topological space on fuzzy sets and study the relations between of themand study
some properties and theorems on this subject
I. Introduction
The concept of fuzzy set was introduced by Zedeh in his classical paper [1] in 1965.The fuzzy
topological space was introduced by Chang [2] in 1968. Zahran [3] has introduced the concepts of fuzzy ฮด-open
sets, fuzzy ฮด-closed sets, fuzzy regular open sets, fuzzy regular closed sets. And LuayA.Al.Swidi,AmedS.A.Oon
[15] introduced the notion of ฮณ-open set, fuzzy ฮณ-closed set and studied some of its properties. N.V.Velicko[9]
introduced the concept of fuzzy ฮธ-open set, fuzzy ฮธ-closed set,the fuzzy separation axioms was defined
bySinha[10],And Ismail Ibedou[7]introduced anewsetting of fuzzy separation axioms. The purpose of the
present paper is to introduce and study the concepts of fuzzy ฮด-open sets and some types of fuzzy open set and
relationships between of them and study some types of fuzzy ฮด-separation axioms in fuzzy topological space on
fuzzy sets and study the relationships between of them and we examine the validity of the standard results.
1 .fuzzy topological space on fuzzy set
Definition 1.1 [4]Let X be a non empty set, a fuzzy set Aฬƒ in X is characterized bya function ฮผAฬƒ: X โ†’ I , where
I = [ 0 ,1 ] which is written as Aฬƒ = {( x , ฮผA (x) ) : x โˆˆ X , 0 โ‰ค ฮผA (x)โ‰ค 1}, the collection of all fuzzy sets in
X will be denoted by I X ,that is I X = { Aฬƒ : Aฬƒ is a fuzzy sets in X} where ฮผAฬƒ is called the membership function .
Proposition1.2
Let Aฬƒ and Bฬƒ be two fuzzy sets in X with membership functions ฮผAฬƒ and ฮผBฬƒ respectively then for all x โˆˆ X : 1. Aฬƒ ๏ƒ Bฬƒ โ†” ฮผA (x)โ‰ค ฮผBฬƒ (x).
2. Aฬƒ = Bฬƒ โ†” ฮผA (x)= ฮผBฬƒ (x).
3. Cฬƒ = Aฬƒ โˆฉBฬƒ โ†” C(x) = min{ฮผA (x) , ฮผBฬƒ (x) }.
4. Dฬƒ = Aฬƒ โˆช Bฬƒ โ†” D(x) = max{ฮผA (x), ฮผBฬƒ (x)}.
c
5. Bฬƒ the complement of Bฬƒ with membership function ฮผBฬƒ c (x)= ฮผA (x)โ€“ ฮผBฬƒ (x) .
Definition1.3 [4]
A fuzzy point xr is a fuzzy set such that :
ฮผx (y)= r >0 if x = y , โˆ€ y โˆˆ X and ฮผx (y)= 0
r
r
The family of all fuzzy points of Aฬƒ will be denoted by FP(Aฬƒ) .
Remark 1.4 [6] : Let Aฬƒ โˆˆ I X then
[5]
if x โ‰  y , โˆ€ y โˆˆ X
P(Aฬƒ) = { Bฬƒ : Bฬƒ โˆˆ I X , ฮผBฬƒ (x) โ‰ค ฮผA (x) } โˆ€x โˆˆ X .
Definition 1.5 [4]
A collection Tฬƒ of a fuzzy subsets of Aฬƒ , such that Tฬƒ ๏ƒP(Aฬƒ) is said to be fuzzy topology on Aฬƒ if it satisfied the
following conditions
1. Aฬƒ ,ฯ• โˆˆ Tอ‚
2. If Bฬƒ , Cฬƒ โˆˆ Tอ‚ then Bฬƒ โˆฉ Cฬƒ โˆˆ Tอ‚
3. If Bฬƒ j โˆˆ Tอ‚
then โˆชj Bฬƒ j โˆˆ Tอ‚ , j โˆˆ J
(Aฬƒ , Tอ‚) is said to be Fuzzy topological space and every member of Tอ‚ is called fuzzy open set in Aฬƒ and its
complement is a fuzzy closed set .
DOI: 10.9790/5728-11140108
www.iosrjournals.org
1 |Page
On some types of fuzzy separation axioms in fuzzy topological space on fuzzy sets
2. On some types of fuzzy open set
Definition 2.1 [8,11,12,13,14]
A fuzzy set Bฬƒ in a fuzzy topological space (Aฬƒ ,Tอ‚) is said to be
1)
Fuzzy ฮด-open [resp.Fuzzyฮด-closed set ] set if ฮผInt Cl
B
x โ‰ค ฮผB x
[ฮผBฬƒ (x) โ‰ค ฮผCl (Int B ) (x)]The family of all fuzzy ฮด-open sets [resp. fuzzy ฮด-closed sets ]
in a fuzzy topological space (Aฬƒ ,Tอ‚) will be denoted by FฮดO(Aฬƒ) [resp. FฮดC(Aฬƒ)]
2)
Fuzzy regular open [Fuzzy regular closed ] set if :
๐œ‡๐ตฬƒ (๐‘ฅ)= ๐œ‡๐ผ๐‘›๐‘ก (๐ถ๐‘™ ๐ต ) (๐‘ฅ)[๐œ‡๐ตฬƒ (๐‘ฅ)= ๐œ‡๐ถ๐‘™ ๐ผ๐‘›๐‘ก ๐ต (๐‘ฅ)] , The family of all fuzzy regular open [fuzzy regular closed ]set
in Aฬƒ will be denoted by FRO(Aฬƒ)[ FRC(Aฬƒ)].
3)
Fuzzy โˆ†-open set if for every point ๐‘ฅ๐‘Ÿ โˆˆ Bฬƒ there exist a fuzzy regular semi -open set ๐‘ˆ in Aฬƒ such that
๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) โ‰ค ๐œ‡๐‘ˆ (๐‘ฅ) โ‰ค ๐œ‡๐ตฬƒ (๐‘ฅ) , Bฬƒ is called [Fuzzy โˆ†-closed ] set if its complement is Fuzzโˆ†-open set the family of
all Fuzzy โˆ†-open [Fuzzy โˆ†-closed ] sets in Aฬƒ will be denoted by Fโˆ†O(Aฬƒ)[ Fโˆ†C(Aฬƒ)].
4)
Fuzzy ๐›พ โˆ’ ๐‘œ๐‘๐‘’๐‘› [ ๐›พ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ ] set if
๐œ‡๐ตฬƒ (๐‘ฅ) โ‰คmax {๐œ‡๐ผ๐‘›๐‘ก (๐ถ๐‘™ ๐ตฬƒ ) (๐‘ฅ), ๐œ‡๐ถ๐‘™(๐‘–๐‘›๐‘ก ๐ต ) ๐‘ฅ } , [๐œ‡๐ตฬƒ (๐‘ฅ) โ‰ฅ min {๐œ‡๐ผ๐‘›๐‘ก (๐ถ๐‘™
๐ตฬƒ ) (๐‘ฅ),
๐œ‡๐ถ๐‘™(๐‘–๐‘›๐‘ก
๐ต )
๐‘ฅ }] The family
of all
fuzzy ๐›พ โ€“ open [fuzzy ๐›พ โ€“ closed] sets in Aฬƒ will be denoted by F๐›พ๐‘‚(Aฬƒ) [ F๐›พ๐ถ(Aฬƒ)].
5)
Fuzzy ๐œƒ-open [ ๐œƒ-closed ] set if ๐œ‡๐ต ๐‘ฅ =๐œ‡ ๐œƒ๐ผ๐‘›๐‘ก ๐ต (๐‘ฅ) , [ ๐œ‡๐ต ๐‘ฅ = ๐œ‡๐œƒ๐ถ๐‘™(๐ต ) (๐‘ฅ)]
The family of all fuzzy ๐œƒ-open (fuzzy ๐œƒ-closed ) sets in Aฬƒ will be denoted by F๐œƒ๐‘‚(Aฬƒ) [F๐œƒC(Aฬƒ)].
Proposition 2.2
Let (Aฬƒ , Tฬƒ ) be a fuzzy topological space then :
1)
Every fuzzy ๐›ฟ-open set (resp. fuzzy ๐›ฟ-closed set) is fuzzy โˆ†-open set (resp.fuzzy โˆ†-closed set) [fuzzy
๐›พ-open set (resp.fuzzy ๐›พ-closed set ) ].
2)
Every fuzzy๐œƒ-open set (resp. fuzzy ๐œƒ-closed set) is fuzzy ๐›พ-open set (resp. fuzzy ๐›พ-closed set) [fuzzy
๐›ฟ-open set (resp. fuzzy ๐›ฟ-closed set , fuzzy โˆ†-open set (resp.fuzzy โˆ†-closed set) ]
3)
Every fuzzy regular open set (fuzzy regular closed set ) is fuzzy ๐›ฟ-open set (resp. fuzzy ๐›ฟ-closed set)
[fuzzy ๐›พ-open set(resp. fuzzy ๐›พ-closed set) , fuzzyโˆ†-open set(resp.fuzzy โˆ†-closed set )]
Proof : Obvious .
Remark 2.3
The converse of proposition (2.2) is not true in general as following examples shows
Examples 2.4
1)
Let X = { a , b } and ๐ต , ๐ถ , ๐ท are fuzzy subset in ๐ด where
๐ด = {( a , 0.9 ) , ( b , 0.9 ) } , ๐ต= { ( a , 0.0 ) , ( b , 0.7 ) } ,๐ถ = { ( a , 0.8 ) , ( b , 0.0 ) },๐ท = { ( a , 0.8 ) , ( b , 0.7
) , The fuzzy topology defined on ๐ด is Tอ‚ = { โˆ… , ๐ด , ๐ต , ๐ถ , ๐ท }
๏‚ท
The fuzzy set ๐ท is a fuzzy โˆ†-open set but not fuzzy๐›ฟ โ€“ open set (fuzzy regular open set , fuzzy ๐œƒ โ€“
open set).
๏‚ท
let X = { a , b , c } and ๐ต , ๐ถ , ๐ท , ๐ธ are fuzzy subset in ๐ด where
๐ด = {( a , 0.9 ) , ( b , 0.9 ) , ( c , 0.9 ) } , ๐ต= { ( a , 0.3 ) , ( b , 0.3 ) , ( c , 0.4 ) }๐ถ = { ( a , 0.4 ) , ( b , 0.3
) , ( c , 0.4 ) } , ๐ท = { ( a , 0.5 ) , ( b , 0.5 ) , ( c , 0.4 ) }๐ธ = { ( a , 0.6 ) , ( b , 0.6 ) , ( c , 0.7 ), The
fuzzy topology defined on ๐ด is Tอ‚ = { โˆ… , ๐ด , ๐ต , ๐ถ , ๐ท , ๐ธ }
๏‚ท
The fuzzy set ๐ต is a fuzzy ๐›พ โ€“ open set but not fuzzy ๐›ฟ โ€“ open set (fuzzy regular open set , fuzzy ๐œƒ โ€“
open set).
2)
Let X ={ a , b , c } and Bฬƒ , Cฬƒ , Dฬƒ , Eฬƒ , ๐น be fuzzy subsets of Aฬƒ where:
Aฬƒ = {( a ,0.8 ) ,( b ,0.8 ) , ( c ,0.8 )} , Bฬƒ = {( a ,0.1 ) , ( b ,0.1 ) , ( c ,0.2)} , Cฬƒ = {( a ,0.2 ) , ( b , 0.1) , ( c
,0.2)}๐ท= {( a ,0.3 ) , ( b ,0.3 ) , ( c ,0.2 )} ,Eฬƒ ={( a ,0.4 ) , ( b ,0.4 ) , ( c ,0.5 )} ,๐น = {( a ,0.3 ) , ( b ,0.3 ) , ( c ,0.3 )}
The fuzzy topologies defined on Aฬƒ are Tอ‚ = { ๐œ™ , Aฬƒ , Bฬƒ , Cฬƒ , Dฬƒ }The fuzzy set ๐ธ is a fuzzy ๐›ฟ-open set but not
fuzzy regular open set (fuzzy ๐œƒ-open set ).
Remark 2.5
Figure - 1 โ€“ illustrates the relation between fuzzy ๐›ฟ-open set and some types of fuzzy open sets.
DOI: 10.9790/5728-11140108
www.iosrjournals.org
2 |Page
On some types of fuzzy separation axioms in fuzzy topological space on fuzzy sets
III. Some Types Of Fuzzy Separation Axioms
Definition 3.1
A fuzzy topological space ( Aฬƒ , Tฬƒ ) is said to be Fuzzy ๐œน ๐‘ป๐ŸŽ โˆ’ space(F๐œน๐‘ป๐ŸŽ ) if for every pair of distinct fuzzy
points ๐‘ฅ๐‘Ÿ , ๐‘ฆ๐‘ก in Aฬƒ there exist Bฬƒ โˆˆ F๐›ฟO(Aฬƒ) such that either
๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) < ๐œ‡๐ตฬƒ (๐‘ฅ) , ๐‘ฆ๐‘ก ๐‘ž Bฬƒ or ๐œ‡๐‘ฆ๐‘ก (๐‘ฆ) <
๐œ‡๐ตฬƒ (๐‘ฆ), ๐‘ฅ๐‘Ÿ ๐‘ž Bฬƒ .
Theorem 3.2
If (Aฬƒ , Tฬƒ ) is a fuzzy๐›ฟ๐‘‡0 - space then for every pair of distinct fuzzy points ๐‘ฅ๐‘Ÿ ,๐‘ฆ๐‘ก where ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) < ๐œ‡๐ดฬƒ (๐‘ฅ) ,
๐œ‡๐‘ฆ๐‘ก (๐‘ฅ) < ๐œ‡๐ดฬƒ (๐‘ฅ) then either ๐›ฟ- cl(๐‘ฅ๐‘Ÿ ) ๐‘ž ๐‘ฆ๐‘ก or ๐›ฟ- cl(๐‘ฆ๐‘ก ) ๐‘ž ๐‘ฅ๐‘Ÿ .
Proof: Let ๐‘ฅ๐‘Ÿ ,๐‘ฆ๐‘ก be two distinct fuzzy points such that
๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) < ๐œ‡๐ดฬƒ (๐‘ฅ) , ๐œ‡๐‘ฆ๐‘ก (๐‘ฅ) < ๐œ‡๐ดฬƒ (๐‘ฅ) then there exist a fuzzy ๐›ฟ- open set Bฬƒ such that either ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) < ๐œ‡๐ตฬƒ (๐‘ฅ) , Bฬƒ
๐‘ž ๐‘ฆ๐‘ก or ๐œ‡๐‘ฆ๐‘ก (๐‘ฅ) < ๐œ‡๐ตฬƒ (๐‘ฅ) , Bฬƒ ๐‘ž ๐‘ฅ๐‘Ÿ
If ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) < ๐œ‡๐ตฬƒ (๐‘ฅ) , ๐ตฬƒ ๐‘ž ๐‘ฆ๐‘ก then ๐ต ๐‘ ๐‘ž ๐‘ฅ๐‘Ÿ , ๐œ‡๐‘ฆ๐‘ก (๐‘ฅ) โ‰ค ๐œ‡๐ต ๐‘ (๐‘ฅ)
Since ๐ต ๐‘ is a fuzzy ๐›ฟ- closed set therefore ๐œ‡๐›ฟ๐‘๐‘™ (๐‘ฆ๐‘ก ) (๐‘ฅ) โ‰ค ๐œ‡๐ต ๐‘ (๐‘ฅ)
Hence ๐›ฟ- cl(๐‘ฆ๐‘ก ) ๐‘ž ๐‘ฅ๐‘Ÿ
Similarly if ๐œ‡๐‘ฆ๐‘ก (๐‘ฅ) < ๐œ‡๐ตฬƒ (๐‘ฅ), Bฬƒ ๐‘ž ๐‘ฅ๐‘Ÿ โ– 
Definition 3.3 :
A fuzzy topological space ( Aฬƒ , Tฬƒ ) is said to be Fuzzy ๐œน ๐‘ป๐Ÿ โˆ’ space (F๐œน๐‘ป๐Ÿ ) if for every pair of distinct fuzzy
points ๐‘ฅ๐‘Ÿ , ๐‘ฆ๐‘ก in Aฬƒ there exist two Bฬƒ , ๐ถ โˆˆ F๐›ฟO(Aฬƒ) such that ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) < ๐œ‡๐ตฬƒ (๐‘ฅ) , ๐‘ฆ๐‘ก ๐‘ž Bฬƒ and ๐œ‡๐‘ฆ๐‘ก (๐‘ฆ) < ๐œ‡๐ถ (๐‘ฆ),
๐‘ฅ๐‘Ÿ ๐‘ž ๐ถ .
Proposition 3.4 :
Every fuzzy ๐›ฟ๐‘‡1 โ€“ space is a fuzzy ๐›ฟ๐‘‡0 โ€“ space .
Proof : Obvious .
Remark 3.5 :
The converse of proposition (3.4) is not true in general as shown in the following example .
Example 3.6 :
Let X={ a , b } and
๐ต , ๐ถ , ๐ท
are
fuzzy subset of ๐ด
where:
๐ด = {( a , 0.4 ) , ( b , 0.4 )} , ๐ต = {( a , 0.4) , ( b , 0.1)} ,๐ถ = {( a , 0.1 ) , ( b , 0.1 )} , ๐ท = {( a , 0.4 ) , ( b , 0.2
)} ,๐ธ = {( a , 0.3 ) , ( b , 0.1)}, ๐‘‡ = { โˆ… , ๐ด , ๐ต , ๐ถ , ๐ท } be a fuzzy topology on ๐ด and the F๐›ฟO(๐ด) = {โˆ… , ๐ด , ๐ถ ,
๐ธ } Then the space (๐ด , ๐‘‡ ) is a fuzzy ๐›ฟ๐‘‡0 - space but notfuzzy ๐›ฟ๐‘‡1 โ€“ space
Theorem 3.7:
If ( Aฬƒ , Tฬƒ ) is a fuzzy Topological space then the following statements are equivalents :
1)
( Aฬƒ , Tฬƒ ) is a fuzzy ๐›ฟ๐‘‡1 - space.
DOI: 10.9790/5728-11140108
www.iosrjournals.org
3 |Page
On some types of fuzzy separation axioms in fuzzy topological space on fuzzy sets
2)
For every maximal fuzzy points ๐‘ฅ๐‘Ÿ , ๐‘ฆ๐‘ก in Aฬƒ , there exists a fuzzy open nbhds sets Uฬƒ and Vฬƒ o f ๐‘ฅ๐‘Ÿ
and ๐‘ฆ๐‘ก respectively in Aฬƒ such that ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ)= min {{ ๐œ‡๐‘ˆฬƒ (๐‘ฅ),๐œ‡๐‘ˆฬƒ (๐‘ฆ)}, { ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) , ๐œ‡๐‘ฆ๐‘ก (๐‘ฆ)}} and ๐œ‡๐‘ฆ๐‘ก (๐‘ฆ)= min {{
๐œ‡(๐‘‰ ) (๐‘ฅ), ๐œ‡(๐‘‰ ) (๐‘ฆ) } , { ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) , ๐œ‡๐‘ฆ๐‘ก (๐‘ฆ) }}.
3)
For every maximal fuzzy points ๐‘ฅ๐‘Ÿ , ๐‘ฆ๐‘ก in Aฬƒ , there exists a fuzzy ๐›ฟ-open nbhds sets Uฬƒ and Vฬƒ of ๐‘ฅ๐‘Ÿ
and ๐‘ฆ๐‘ก respectively in Aฬƒ such that ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ)= min {{ ๐œ‡๐‘ˆฬƒ (๐‘ฅ),๐œ‡๐‘ˆฬƒ (๐‘ฆ)}, { ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) , ๐œ‡๐‘ฆ๐‘ก (๐‘ฆ)}} and ๐œ‡๐‘ฆ๐‘ก (๐‘ฆ)= min {{
๐œ‡(๐‘‰ ) (๐‘ฅ), ๐œ‡(๐‘‰ ) (๐‘ฆ) } , { ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) , ๐œ‡๐‘ฆ๐‘ก (๐‘ฆ) }}.
Proof:
( 1โŸน 2 ) :- Let ๐‘ฅ๐‘Ÿ , ๐‘ฆ๐‘ก โˆˆ MFP(Aฬƒ) , โˆƒ Uฬƒ , Vฬƒ โˆˆ F๐›ฟO(Aฬƒ)
such that ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) < ๐œ‡๐‘ˆฬƒ (๐‘ฅ) , ๐‘ฆ๐‘ก ๐‘ž Uฬƒ and
๐œ‡๐‘ฆ๐‘ก (๐‘ฆ) < ๐œ‡(๐‘‰ ) (๐‘ฆ), ๐‘ฅ๐‘Ÿ ๐‘ž Vฬƒ.then๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ)=๐œ‡๐‘ˆฬƒ (๐‘ฅ)=๐œ‡๐ด (๐‘ฅ) ,
๐œ‡๐‘ฆ๐‘ก (๐‘ฆ)+๐œ‡๐‘ˆฬƒ (๐‘ฆ) โ‰ค ๐œ‡๐ด (๐‘ฆ) and
๐œ‡๐‘ฆ๐‘ก (๐‘ฆ)=๐œ‡(๐‘‰ ) (๐‘ฆ)=๐œ‡๐ด (๐‘ฆ) , ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ)+ ๐œ‡(๐‘‰ ) (๐‘ฅ) โ‰ค ๐œ‡๐ด (๐‘ฅ)then ๐œ‡๐‘ˆฬƒ (๐‘ฆ)= 0 , ๐œ‡(๐‘‰ ) (๐‘ฅ)= 0 , and since Uฬƒ , Vฬƒ โˆˆ
F๐›ฟO(Aฬƒ) then Uฬƒ , Vฬƒ โˆˆ Tฬƒ
Therefore ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ)= min {{ ๐œ‡๐‘ˆฬƒ (๐‘ฅ),๐œ‡๐‘ˆฬƒ (๐‘ฆ)}, { ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) , ๐œ‡๐‘ฆ๐‘ก (๐‘ฆ)}}
and๐œ‡๐‘ฆ๐‘ก (๐‘ฆ)= min {{ ๐œ‡(๐‘‰ ) (๐‘ฅ), ๐œ‡(๐‘‰ ) (๐‘ฆ) } , { ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) , ๐œ‡๐‘ฆ๐‘ก (๐‘ฆ) }}.
( 2โŸน 3 ) :- Obvious.
( 3 โŸน 1 ) :- Let ๐‘ฅ๐‘› , ๐‘ฆ๐‘š โˆˆ FP(Aฬƒ) , then every ๐‘ฅ๐‘Ÿ , ๐‘ฆ๐‘ก โˆˆ MFP(Aฬƒ) , there exist Uฬƒ , Vฬƒ โˆˆ F๐›ฟO(Aฬƒ) such
that
๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ)= min {{ ๐œ‡๐‘ˆฬƒ (๐‘ฅ),๐œ‡๐‘ˆฬƒ (๐‘ฆ)}, { ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) , ๐œ‡๐‘ฆ๐‘ก (๐‘ฆ)}} and
๐œ‡๐‘ฆ๐‘ก (๐‘ฆ)= min {{ ๐œ‡(๐‘‰ ) (๐‘ฅ), ๐œ‡(๐‘‰ ) (๐‘ฆ) } , { ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) , ๐œ‡๐‘ฆ๐‘ก (๐‘ฆ) }}.
then๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ)=๐œ‡๐‘ˆฬƒ (๐‘ฅ)=๐œ‡๐ด (๐‘ฅ) , ๐œ‡๐‘ˆฬƒ (๐‘ฆ)= 0 and
๐œ‡๐‘ฆ๐‘ก (๐‘ฆ)=๐œ‡(๐‘‰ ) (๐‘ฆ)= ๐œ‡๐ด (๐‘ฆ) , ๐œ‡(๐‘‰ ) (๐‘ฅ)= 0
then๐‘ฆ๐‘ก ๐‘ž Uฬƒ and ๐‘ฅ๐‘Ÿ ๐‘ž Vฬƒ, Since ๐œ‡๐‘ฅ ๐‘› (๐‘ฅ) < ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) and ๐œ‡๐‘ฆ๐‘š (๐‘ฆ) < ๐œ‡๐‘ฆ๐‘ก (๐‘ฆ) , โˆ€ n , m โˆˆ I
then๐œ‡๐‘ฅ ๐‘› (๐‘ฅ) < ๐œ‡๐‘ˆฬƒ (๐‘ฅ), ๐‘ฆ๐‘š ๐‘ž Uฬƒ and ๐œ‡๐‘ฆ๐‘š (๐‘ฆ) < ๐œ‡(๐‘‰ ) (๐‘ฆ) , ๐‘ฅ๐‘› ๐‘ž Vฬƒ Hence the space ( Aฬƒ , Tฬƒ ) is a fuzzy ๐›ฟ๐‘‡1 - space.
โ– 
Definition 3.8:
A fuzzy topological space ( Aฬƒ , Tฬƒ ) is said to be Fuzzy ๐œน ๐‘ป๐Ÿ โˆ’ space (F๐œน๐‘ป๐Ÿ ) if for every pair of distinct fuzzy
points ๐‘ฅ๐‘Ÿ , ๐‘ฆ๐‘ก in Aฬƒ there exist two Bฬƒ , ๐ถ โˆˆ F๐›ฟO(Aฬƒ) such that
๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) < ๐œ‡๐ตฬƒ (๐‘ฅ) , ๐œ‡๐‘ฆ๐‘ก (๐‘ฆ) < ๐œ‡๐ถ (๐‘ฆ) and
๐ตฬƒ ๐‘ž ๐ถ .
Theorem 3.9 :
A fuzzy topological space (๐ด, ๐‘‡) is a fuzzy ๐›ฟ-๐‘‡2 โ€“space if and only if min{๐œ‡๐œน๐‘๐‘™
,๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) < ๐œ‡๐‘ˆฬƒ (๐‘ฅ) } < ๐œ‡๐‘ฆ๐‘ก (๐‘ฅ) any fuzzy point such that ๐œ‡๐‘ฆ๐‘ก (๐‘ฅ) < ๐œ‡๐ด (๐‘ฅ) .
๐‘ˆ
(x) : ๐‘ˆ is a fuzzy ๐›ฟ-open set
Proof :
(โŸน) Let (๐ด, ๐‘‡) be a fuzzy ๐›ฟ-๐‘‡2 โ€“space and ๐‘ฅ๐‘Ÿ , ๐‘ฆ๐‘ก be a distinct fuzzy points in ๐ด such that ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) < ๐œ‡๐ด (๐‘ฅ) ,
๐œ‡๐‘ฆ๐‘ก (๐‘ฅ) < ๐œ‡๐ด (๐‘ฅ) and
๐œ‡๐‘ฆ๐‘› (๐‘ฅ) = ๐œ‡๐ด (๐‘ฅ) - ๐œ‡๐‘ฆ๐‘ก (๐‘ฅ)then๐œ‡๐‘ฆ๐‘› (๐‘ฅ) < ๐œ‡๐ด (๐‘ฅ) and there exists two fuzzy ๐›ฟ-open set ๐‘ˆ , ๐บ in ๐ด such that
๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) < ๐œ‡๐‘ˆฬƒ (๐‘ฅ) , ๐œ‡๐‘ฆ๐‘› (๐‘ฅ) < ๐œ‡๐บ (๐‘ฅ) , ๐‘ˆ ๐‘ž ๐บ , ๐œ‡๐‘ˆฬƒ (๐‘ฅ) โ‰ค ๐œ‡๐บ ๐‘ (๐‘ฅ) and
๐œ‡๐›ฟ๐‘๐‘™ (๐‘ˆ ) (๐‘ฅ) โ‰ค ๐œ‡๐›ฟ๐‘๐‘™ (๐บ ๐‘ ) (๐‘ฅ) = ๐œ‡๐บ ๐‘ (๐‘ฅ)
Since ๐œ‡๐‘ฆ๐‘› (๐‘ฅ) < ๐œ‡๐บ (๐‘ฅ) and ๐œ‡๐‘ฆ๐‘› (๐‘ฅ) = ๐œ‡๐ด (๐‘ฅ) - ๐œ‡๐‘ฆ๐‘ก (๐‘ฅ),Then
๐œ‡๐ด (๐‘ฅ) - ๐œ‡๐‘ฆ๐‘ก (๐‘ฅ) < ๐œ‡๐บ (๐‘ฅ) ,๐œ‡๐บ ๐‘ (๐‘ฅ) < ๐œ‡๐ด (๐‘ฅ) - ๐œ‡๐‘ฆ๐‘› (๐‘ฅ) and ๐œ‡๐บ ๐‘ (๐‘ฅ) < ๐œ‡๐‘ฆ๐‘ก (๐‘ฅ)
Since ๐œ‡๐›ฟ๐‘๐‘™ (๐‘ˆ ) (๐‘ฅ) โ‰ค ๐œ‡๐บ ๐‘ (๐‘ฅ) < ๐œ‡๐‘ฆ๐‘ก (๐‘ฅ) then ๐œ‡๐›ฟ๐‘๐‘™ (๐‘ˆ ) (๐‘ฅ) < ๐œ‡๐‘ฆ๐‘ก (๐‘ฅ)
Hence min{๐œ‡๐œน๐‘๐‘™ ๐‘ˆ ๐‘– (x) : ๐‘– = 1,โ€ฆโ€ฆ, n }< ๐œ‡๐‘ฆ๐‘ก (๐‘ฅ)
(โŸธ) Suppose that given condition hold ,๐‘ฅ๐‘Ÿ , ๐‘ฆ๐‘ก are distinct fuzzy points in ๐ด such that ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) < ๐œ‡๐ด (๐‘ฅ) ,
๐œ‡๐‘ฆ๐‘ก (๐‘ฅ) < ๐œ‡๐ด (๐‘ฅ) and
Let ๐œ‡๐‘ฆ๐‘› (๐‘ฅ) = ๐œ‡๐ด (๐‘ฅ) - ๐œ‡๐‘ฆ๐‘ก (๐‘ฅ) then ๐œ‡๐‘ฆ๐‘› (๐‘ฅ) < ๐œ‡๐ด (๐‘ฅ)
And ๐œ‡๐›ฟ๐‘๐‘™ (๐‘ˆ ) (๐‘ฅ) < ๐œ‡๐‘ฆ๐‘› (๐‘ฅ) for every ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) < ๐œ‡๐‘ˆฬƒ (๐‘ฅ) โ‰ค ๐œ‡๐›ฟ๐‘๐‘™ (๐‘ˆ ) (๐‘ฅ)
, since ๐œ‡๐‘ฆ๐‘› (๐‘ฅ) = ๐œ‡๐ด (๐‘ฅ) - ๐œ‡๐‘ฆ๐‘ก (๐‘ฅ)
Then ๐œ‡๐›ฟ๐‘๐‘™ (๐‘ˆ ) (๐‘ฅ) < ๐œ‡๐ด (๐‘ฅ) - ๐œ‡๐‘ฆ๐‘ก (๐‘ฅ) and ๐œ‡๐ด (๐‘ฅ) - ๐œ‡๐‘ฆ๐‘› (๐‘ฅ) < ๐œ‡๐›ฟ๐‘–๐‘›๐‘ก (๐‘ˆ ๐‘ ) (๐‘ฅ)hence ๐œ‡๐‘ฆ๐‘ก (๐‘ฅ) < ๐œ‡๐›ฟ๐‘–๐‘›๐‘ก (๐‘ˆ ๐‘ ) (๐‘ฅ)
let๐œ‡๐บ (๐‘ฅ) = ๐œ‡๐›ฟ๐‘–๐‘›๐‘ก (๐‘ˆ ๐‘ ) (๐‘ฅ) and since ๐œ‡๐›ฟ๐‘–๐‘›๐‘ก (๐‘ˆ ๐‘ ) (๐‘ฅ) โ‰ค ๐œ‡(๐‘ˆ ๐‘ ) (๐‘ฅ),Then
๐œ‡๐‘ฆ๐‘ก (๐‘ฅ) < ๐œ‡๐บ (๐‘ฅ)and๐œ‡๐บ (๐‘ฅ) โ‰ค ๐œ‡(๐‘ˆ ๐‘ ) (๐‘ฅ) we get ๐‘ˆ ๐‘ž ๐บ
Hence the space (๐ด, ๐‘‡) is a fuzzy ๐›ฟ-๐‘‡2 โ€“space โˆŽ
DOI: 10.9790/5728-11140108
www.iosrjournals.org
4 |Page
On some types of fuzzy separation axioms in fuzzy topological space on fuzzy sets
Proposition 3.10 :
Every fuzzy ๐›ฟ๐‘‡2 โ€“ space is a fuzzy ๐›ฟ๐‘‡1 โ€“ space .
Proof : Obvious .
Remark 3.11 :
The converse of proposition (3.10) is not true in general as shown in the following example .
Example 3.12 :
Let X={ a , b } and
๐ต , ๐ถ , ๐ท ,๐ธ
are fuzzy subset of ๐ด
where:
๐ด = {( a , 0.7 ) , ( b , 0.9 )},๐ต = {( a , 0.5) , ( b , 0.0)} ,๐ถ = {( a , 0.0 ) , ( b , 0.7 )} ,๐ท = {( a , 0.5 ) , ( b , 0.7 )},๐ธ =
{( a , 0.1 ) , ( b , 0.8 )} , ๐น = {( a , 0.6 ) , ( b , 0.1 )} , ๐‘‡ = { โˆ… , ๐ด , ๐ต , ๐ถ ,๐ท} be a fuzzy topology on ๐ด and the
F๐›ฟO(๐ด) = {โˆ… , ๐ด , ๐ต , ๐ถ , ๐ท, ๐ธ ,๐น } then the space (๐ด , ๐‘‡ ) is a fuzzy ๐›ฟ๐‘‡1 - space but not fuzzy๐›ฟ๐‘‡2 โ€“ space
Definition 3.13:
A fuzzy topological space ( Aฬƒ , Tฬƒ ) is said to be Fuzzy ๐œน ๐‘ป๐Ÿ๐Ÿ โˆ’ space (F๐œน๐‘ป๐Ÿ๐Ÿ) if for every pair of distinct fuzzy
๐Ÿ
points ๐‘ฅ๐‘Ÿ , ๐‘ฆ๐‘ก in Aฬƒ there exist two Bฬƒ , ๐ถ โˆˆ F๐›ฟO(Aฬƒ) such that
๐›ฟ๐‘๐‘™(๐ต ) ๐‘ž ๐›ฟ๐‘๐‘™(๐ถ ).
๐Ÿ
๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) < ๐œ‡๐ตฬƒ (๐‘ฅ) ,
๐œ‡๐‘ฆ๐‘ก (๐‘ฅ) < ๐œ‡๐ถ (๐‘ฅ)
and
Proposition 3.14 :
Every fuzzy ๐›ฟ๐‘‡21 - space is a fuzzy ๐›ฟ๐‘‡2 - space .
2
Proof :
Let (๐ด , ๐‘‡ ) be a fuzzy ๐›ฟ๐‘‡21 - space , then every pair of distinct fuzzy points ๐‘ฅ๐‘Ÿ , ๐‘ฆ๐‘ก in Aฬƒ there exist two Bฬƒ , ๐ถ โˆˆ
2
F๐›ฟO(Aฬƒ) such that ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) < ๐œ‡๐ตฬƒ (๐‘ฅ) ,๐œ‡๐‘ฆ๐‘ก (๐‘ฅ) < ๐œ‡๐ถ (๐‘ฅ) and ๐›ฟ๐‘๐‘™(๐ต ) ๐‘ž ๐›ฟ๐‘๐‘™(๐ถ )
Since ๐œ‡๐ตฬƒ (๐‘ฅ) โ‰ค ๐›ฟ๐‘๐‘™(๐ต ) , ๐œ‡๐ถ (๐‘ฅ) โ‰ค ๐›ฟ๐‘๐‘™(๐ถ )
Then We get ๐ตฬƒ ๐‘ž ๐ถ , hence (๐ด , ๐‘‡ ) is a fuzzy ๐›ฟ๐‘‡2 - space
Remark 3.15 :
The converse of proposition (3.14) is not true in general as shown in the following example
.Example 3.16 :
Let X={ a , b } and , ๐ต1 , ๐ต2 , ๐ต3 , ๐ต4 ,๐ต5 , ๐ต6 , ๐ต7 , ๐ต8 , are fuzzy subset of ๐ด where:
๐ด = {( a , 0.9 ) , ( b , 0.9 )} , ๐ต1 = {( a , 0.8) , ( b , 0.1)} , ๐ต2 = {( a , 0.0) , ( b , 0.7)} ,
๐ต3 = {( a , 0.8) , ( b , 0.7)}, ๐ต4 = {( a , 0.0) , ( b , 0.1)} , ๐ต5 = {( a , 0.0) , ( b , 0.9)} ,
๐ต6 = {(
a , 0.8) , ( b , 0.9)} , ๐ต7 = {( a , 0.0) , ( b , 0.8)} ๐ต8 = {( a , 0.8) , ( b , 0.0)} , ๐‘‡ = { โˆ… , ๐ด , ๐ต1 , ๐ต2 , ๐ต3 , ๐ต4
,๐ต5 , ๐ต6 } be a fuzzy topology on ๐ด and the F๐›ฟO(๐ด) = {โˆ… , ๐ด , ๐ต1 , ๐ต2 , ๐ต4 , ๐ต7 , ๐ต8 }, then the space (๐ด , ๐‘‡ ) is
a fuzzy ๐›ฟ๐‘‡2 - space but not fuzzy ๐›ฟ๐‘‡21 โ€“space
2
Definition 3.17: A fuzzy topological space ( Aฬƒ , Tฬƒ ) is said to be Fuzzy ๐œน- regular space ( F๐œนR) if for each
fuzzy point ๐‘ฅ๐‘Ÿ in Aฬƒ and each fuzzy closed set ๐น with ๐‘ฅ๐‘Ÿ ๐‘ž ๐น there exists ๐ต , ๐ถ โˆˆF๐›ฟO(Aฬƒ) such that ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) โ‰ค
๐œ‡๐ตฬƒ (๐‘ฅ), ๐œ‡๐น (๐‘ฅ) โ‰ค ๐œ‡๐ถ (๐‘ฅ)โˆ€ x โˆˆ X and ๐ต ๐‘ž ๐ถ
Definition 3.18 :
A fuzzy topological space ( Aฬƒ , Tฬƒ ) is said to be fuzzy ๐œนโˆ— - regular space (F๐œนโˆ— R) if for each fuzzy point ๐‘ฅ๐‘Ÿ in Aฬƒ
and each fuzzy ๐›ฟ- closed set ๐น with ๐‘ฅ๐‘Ÿ ๐‘ž ๐น there exists๐ต , ๐ถ โˆˆF๐›ฟO(Aฬƒ) such that ๐œ‡๐‘ฅ ๐‘Ÿ (๐‘ฅ) โ‰ค ๐œ‡๐ตฬƒ (๐‘ฅ) , ๐œ‡๐น (๐‘ฅ) โ‰ค
๐œ‡๐ถ (๐‘ฅ)โˆ€ x โˆˆ X and ๐ต ๐‘ž ๐ถ
Proposition 3.19 :
Every fuzzy ๐›ฟ- regular space is a fuzzy ๐›ฟ โˆ— - regular space.
Proof: Obvious .
Remark 3.20 :
The converse of proposition (3.19) is not true in general as shown in the following example
Example 3.21 :
Let X={ a , b } and ๐ต , ๐ถ , ๐ท ,๐ธ , ๐น is a fuzzy subset of ๐ด where:
๐ด = {( a , 0.7 ) , ( b , 0.8 )} , ๐ต = {( a , 0.0 ) , ( b , 0.7)} ,๐ถ = {( a , 0.6 ) , ( b , 0.0)} , ๐ท = {( a , 0.6 ) , ( b , 0.7
)}, ๐ธ = {( a , 0.7 ) , ( b , 0.0 )} , ๐น = {( a , 0.0 ) , ( b , 0.8 )}
DOI: 10.9790/5728-11140108
www.iosrjournals.org
5 |Page
On some types of fuzzy separation axioms in fuzzy topological space on fuzzy sets
๐‘‡ = {โˆ… , ๐ด , ๐ต , ๐ถ , ๐ท }be a fuzzy topology on ๐ด and the F๐›ฟO(๐ด) = {โˆ… , ๐ด ,๐ต , ๐ถ , ๐ท ,๐ธ , ๐น } Then the space
(๐ด , ๐‘‡ ) is a fuzzy๐›ฟ โˆ—- regular space but not fuzzy ๐›ฟ- regular space.
Definition 3.22:A fuzzy topological space ( Aฬƒ , Tฬƒ ) is said to be Fuzzy ๐œน ๐‘ป๐Ÿ‘ โˆ’ space (F๐œน๐‘ป๐Ÿ‘ ) if it is๐›ฟ- regular
space ( F๐›ฟR)as well as fuzzy ๐›ฟ ๐‘‡1 โˆ’ space (F๐›ฟ๐‘‡1 ) .
Proposition 3.23 :
Every fuzzy ๐›ฟ๐‘‡3 - space is a fuzzy ๐›ฟ๐‘‡21 - space .Proof :
2
Let (๐ด, ๐‘‡ ) be a fuzzy ๐›ฟ๐‘‡3 - space ,
Then (๐ด, ๐‘‡ ) be a fuzzy ๐›ฟ - regular space, for every fuzzy point ๐‘ฅ๐‘Ÿ โˆˆ FP(Aฬƒ) and ๐น โˆˆ FC(Aฬƒ)
Such that ๐‘ฅ๐‘Ÿ ๐‘ž ๐น , ๐น = ๐›ฟ๐‘๐‘™(๐น )
And since (๐ด, ๐‘‡ ) be a fuzzy ๐›ฟ๐‘‡1 - space then We get {๐‘ฅ๐‘Ÿ } is a fuzzy ๐›ฟ-closed set
Let {๐‘ฅ๐‘Ÿ } = ๐ตis a fuzzy ๐›ฟ-closed set
Then ๐›ฟ๐‘๐‘™(๐ต ) ๐‘ž ๐›ฟ๐‘๐‘™(๐น ) , hence (๐ด, ๐‘‡ ) is a fuzzy ๐›ฟ๐‘‡21 - spaceโˆŽ
2
Remark 3.24 :The converse of proposition (3.23) is not true in general as shown in the following example .
Example 3.25 :Let X={ a , b } and , ๐ต1 , ๐ต2 , ๐ต3 , ๐ต4 ,๐ต5 , ๐ต6 , ๐ต7 , ๐ต8 , ๐ต9 , ๐ต10 , ๐ต11 , are fuzzy subset of ๐ด
where:๐ด = {( a , 0.8 ) , ( b , 0.9 )} , ๐ต1 = {( a , 0.8) , ( b , 0.0)} ,
๐ต2 = {( a , 0.0) , ( b , 0.7)} , ๐ต3 = {( a
, 0.8) , ( b , 0.7)}, ๐ต4 = {( a , 0.1) , ( b , 0.9)} , ๐ต5 = {( a , 0.6) , ( b , 0.0)} , ๐ต6 = {( a , 0.1) , ( b , 0.0)} , ๐ต7 =
{( a , 0.6) , ( b , 0.9)}
๐ต8 = {( a , 0.1) , ( b , 0.7)} , ๐ต9 = {( a , 0.6) , ( b , 0.7)} , ๐ต10 = {( a , 0.0) ,
( b , 0.8)} , ๐ต11 = {( a , 0.7) , ( b , 0.0)} ,๐‘‡ = { โˆ… , ๐ด , ๐ต1 , ๐ต2 , ๐ต3 , ๐ต4 ,๐ต5 , ๐ต6 , ๐ต7 , ๐ต8 , ๐ต9 } be a fuzzy
topology on ๐ด and the F๐›ฟO(๐ด) = {โˆ… , ๐ด , ๐ต1 , ๐ต2 , ๐ต4 , ๐ต5 , ๐ต6 , ๐ต7 , ๐ต10 , ๐ต11 }, then the space (๐ด , ๐‘‡ ) is a
fuzzy ๐›ฟ๐‘‡21 - space but not fuzzyfuzzy ๐›ฟ๐‘‡3 โ€“ space .
2
Definition 3.26 :A fuzzy topological space ( Aฬƒ , Tฬƒ ) is said to be fuzzy ๐œนโˆ— ๐‘ป๐Ÿ‘ โˆ’ space(F๐œนโˆ— ๐‘ป๐Ÿ‘ ) if it is๐›ฟ โˆ—- regular
space ( F๐›ฟ โˆ—R) as well as fuzzy ๐›ฟ ๐‘‡1 โˆ’ space (F๐›ฟ๐‘‡1 )
Proposition 3.27 :Every fuzzy ๐›ฟ๐‘‡3 - space is a fuzzy ๐›ฟ โˆ—๐‘‡3 โˆ’ space.
Proof: Obvious
Proposition 3.28 :Every fuzzy ๐›ฟ โˆ— ๐‘‡3 - space is a fuzzy ๐›ฟ๐‘‡21 - space .
2
Proof: Obvious
Remark 3.29: The converse of proposition (3.27)and (2.28) is not true in general
Definition 3.30:
A fuzzy topological space ( Aฬƒ , Tฬƒ ) is said to be Fuzzy ๐œน- normal space ( F๐œนN) if for each two fuzzy closed sets
๐น1 and ๐น2 in Aฬƒ such that ๐น1 ๐‘ž ๐น2 , there exists
๐‘ˆ1 , ๐‘ˆ2 โˆˆF๐›ฟO(Aฬƒ) such that ๐œ‡๐น1 (๐‘ฅ) โ‰ค ๐œ‡๐‘ˆ1 (๐‘ฅ) , ๐œ‡๐น2 (๐‘ฅ) โ‰ค ๐œ‡๐‘ˆ2 (๐‘ฅ) and ๐‘ˆ1 ๐‘ž ๐‘ˆ2 .
Definition 3.31:
A fuzzy topological space ( Aฬƒ , Tฬƒ ) is said to be Fuzzy ๐›…โˆ— - normal space ( F๐›…โˆ— N) if for each two fuzzy ฮด-closed
sets F1 and F2 in Aฬƒ such that F1 q F2 , there exists U1 , U2 โˆˆFฮดO(Aฬƒ) such that ฮผF 1 (x) โ‰ค ฮผU 1 (x) , ฮผF 2 (x) โ‰ค
ฮผU 2 (x) and U1 q U2 .
Proposition 3.32:
Every fuzzy ฮด- normal space is a fuzzy ฮดโˆ— - normal space
Proof: Obvious .
Definition 3.33:
A fuzzy topological space ( Aฬƒ , Tฬƒ ) is said to be Fuzzy ๐›… ๐“๐Ÿ’ โˆ’ space (F๐›…๐“๐Ÿ’ ) if it is
ฮด-normal space ( FฮดN)as well as fuzzy ฮด T1 โˆ’ space (FฮดT1 ) .
DOI: 10.9790/5728-11140108
www.iosrjournals.org
6 |Page
On some types of fuzzy separation axioms in fuzzy topological space on fuzzy sets
Definition 3.34:
A fuzzy topological space ( Aฬƒ , Tฬƒ ) is said to be fuzzy ๐›…โˆ— ๐“๐Ÿ’ โˆ’ space (F๐›…โˆ— ๐“๐Ÿ’ ) if it isฮดโˆ— - normal space ( Fฮดโˆ— N) as
well as fuzzy ฮด T1 โˆ’ space (FฮดT1 )
Proposition 3.35:
Every fuzzy ฮดT4 โ€“ space is a fuzzy ฮดโˆ— T4 โˆ’ space
Proof: Obvious
Proposition 3.36 :
Every fuzzy ฮดT4 โ€“ space is a fuzzy ฮดT3 โˆ’ space
Proof: Obvious
Remark 3.37:
The converse of proposition (3.35) and (3.36) is not true in general
Definition 3.38:
A fuzzy topological space ( Aฬƒ , Tฬƒ ) is said to be Fuzzy ๐›…-completely normal if for any two fuzzy ฮด-separated
sets B , C in Aฬƒ there exist D , E โˆˆFฮดO(Aฬƒ) such that ฮผB (x) โ‰ค ฮผD (x) ,
ฮผC (x) โ‰ค ฮผE x and D q E
Definition 3.39: A fuzzy topological space ( Aฬƒ , Tฬƒ ) is said to be Fuzzy ๐›… ๐“๐Ÿ“ โˆ’ space (F๐›…๐“๐Ÿ“ ) if it isฮดcompletely normal space as well as fuzzy ฮด T1 โˆ’ space (FฮดT1 ) .
Proposition 3.40:
Every fuzzy ฮดT5 โ€“ space is a fuzzy ฮดT4 โˆ’ space
Proof: Obvious
Remark 3.41 :
The converse of proposition (3.40) is not true in general
Remark 3.42 :
Figure (2) illustrate the relations among a certain types of fuzzy
1
ฮดTi โ€“ space , i = 0 , 1 , 2 , 2 2,3,4,5.
References
[1].
[2].
[3].
[4].
[5].
[6].
Zadeh L. A."Fuzzy sets", Inform.Control 8, 338-353 (1965).
Chang, C. L. "Fuzzy Topological Spaces", J. Math. Anal.Appl., Vol.24, pp.182-190,
(1968).
A.M.Zahran "fuzzy ฮด-continuous , fuzzy almost Regularity (normality) on fuzzy
topology No fuzzy set"fuzzy
mathematics,Vol.3,No.1,1995,pp.89-96
Kandil1 A. , S. Saleh2 and M.M Yakout3 โ€œFuzzy Topology On Fuzzy Sets: Regularity and Separation Axiomsโ€ American
Academic & Scholarly Research Journal Vol. 4, No. 2, March (2012).
Mashhour A.S. and Ghanim M.H.โ€Fuzzy closure spacesโ€J.Math.Anal.And Appl.106,pp.145-170(1985).
Chakraborty M. K. and T. M. G. Ahsanullahโ€œFuzzy topology on fuzzy sets and tolerance topology โ€ Fuzzy Sets and Systems,
45103-108(1992).
DOI: 10.9790/5728-11140108
www.iosrjournals.org
7 |Page
On some types of fuzzy separation axioms in fuzzy topological space on fuzzy sets
[7].
[8].
[9].
[10].
[11].
[12].
[13].
[14].
[15].
Ismail Ibedou," A New Setting of fuzzy separation axioms"Department of Mathematics, Faculty of Science, Benha University,
Benha, (13518), Egypt
ShymaaAbdAlhassan A " On fuzzy semi-separation Axioms in fuzzy topological space on fuzzy sets"M.Sc Thesis , College of
Eduction , Al-Mustansiritah University (2013).
N.V.Velicko" H-closed topological space"Amer.math.soc.Transl.(2),78(1968), 103-118.
Sinha,S.P." separation axioms in fuzzy topological spaces"suzzy sets and system,45:261-270(1992).
S.S.Benchalli,R.S.Wali and BasavarajM.Ittanagi " On fuzzy rw-closed sets And fuzzy rw-open sets in fuzzy topological
spaces"Int.J.mathematical sciences and Applications , Vol.1,No.2,May 2011.
Shahla H. K. โ€œOn fuzzy โˆ† - open sets in fuzzy topological spacesโ€ M. Sc. Thesis , college of science , Salahddin Univ. (2004).
R.UshaParameswari and K.Bageerathi" On fuzzy ฮณ-semi open sets and fuzzy ฮณ-semi closed sets in fuzzy topological spaces" IOSR
Journal of mathematics ,Vol 7, pp 63-70, (May-Jun. 2013).
M.E. El-shafei and A. Zakari," ฮธ-generalized closed sets in fuzzy topological spaces " The Arabian Journal for science and
Engineering 31(2A) (2006), 197-206.
LuayA.Al.Swidi,AmedS.A.Oon, Fuzzy ฮณ-open sets and fuzzy ฮณ-closed sets " Americal Journal of Scientific research,27(2011),6267.
DOI: 10.9790/5728-11140108
www.iosrjournals.org
8 |Page