DRIFT INSTABILITIES IN RFP PLASMAS* S. C. Guo Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Corso Stati Uniti 4, Padova 35127, Italy 2nd International West Lake Workshop on Fusion Theory and Simulation, IFTS, HangZhou, China *gratefully acknowledges Prof. L.Chen for valuable discussions 1 OUTLINE Motivation Eigenmode equation in kinetic theory Ion Temperature Gradient driven mode (ITG)-stability threshold (adiabatic electrons) Effects of trapped electrons on ITG mode and Trapped Electron Mode (TEM ) in RFPs Conclusion and discussion 2 Motivation DRIFT WAVE TURBULANCE: ITG, ETG, TEM.. In Tokamak -- principle candidate responsible for the energy confinement In RFP – The interest on drift instabilities and related transport are raised due to significant progress made in RFP operation: -- using PPCD and the similar technic OPCD -- application of the sophisticated feedback system --Quasi Single Helisity (QSH ) state; high Te observed inside the helical core Strong reduction of the stochastic nature of the Magnetic field Attention should be paid on the drift turbulence, at least to understand which role of the drift instabilities will play in the anomalous transport for the future RFP’s The aim of the linear analysis is to provide an orientation for the further study of numerical simulations on drift-like turbulent transport in RFPs. 3 EIGENMODE EQUATION (electrostatic) The ion response and electron response are obtained by solving the gyrokinetic equation L.Chen & S.T.Tsai P.P.(1983) [v||e|| i( dj )] h j i( Tj )J o (k jv̂ ) FMj j = i,e fj e FMj h jJ o (k jv̂ ) Tj where j k̂ jv tj (r, ,z)toroidal coordinates j Lnj / LTj , Tj j[1 j ( v̂ 2 v̂||2 3 / 2)] 2L n k̂ v 2tj 1 v 2 1 2 dj [ ( ) ( 2 2 ) v̂||2 ] cj L B 2 r q z r rs , z , e|| i Rq rs quasineutrality equation Ln1 d ln n j / dr L T d ln T / dr LB1 d ln B / dr n FMj 3 / 2o 3 exp( v̂||2 v̂ 2 ) v tj 1 2 q2 n e n i e n e [1 (2)1/ 2 ] et d3v h i J o (k i v̂ ) Te n o Ti , Assumption :small larmor 4 radius EIGENMODE EQUATION [ d2 dz 2 Q( z )] ( z ) 0 with Q(z) A(z) [1 (1 DT ) / ] 1 1 ( B' (z) ) 2 2 2 bŝ B(z) ŝ / B 4 B(z) 2 2 [ 1 ( v̂ v̂ i i || 3 / 2)]FMi A(z) dv̂|| dv̂ 2 zv̂ 0 B(z) dv̂|| dv̂ 2 0 ti di || i [1 i ( v̂ 2 v̂||2 3 / 2)] v̂ 2 FMi , ti = vti/(Rq), di zv̂|| 2 1 2 , q 1 r dq b k̂ 2i2 , ŝ 2 q dr T Ln v̂ 2 LT e 2 , T d dBi ( ) dci ( v̂ ) , dBi dci ,k̂ k , n , Ti 5 || R R 2 Analysis of the integrals A(z) and B(z) in ion response: dc v̂||2 zv̂|| dc( v̂|| v ) (( v̂|| v ) zv|| -- Landau resonance ( k||v ||) dominate in RFP dc v||2 -- magnetic drift resonance zv|| dcv||2 --magnetic drift-transit resonance 1 z (z)2 4dc 2dc 1 A(z ) [ i (1 i )] T( v , v ) 2 1 B(z ) [ i (1 i )] T( v , v ) 2 1 T( v , v ) [Z( v ) Z( v )] dc ( v v ) v Z( z ) t2 1 e dt t z i i ( v v ) vv 1 [ v Z ( v ) v Z ( v )] [ Z ( v ) Z ( v )] dc v v v v 6 EIGENMODE EQUATION Trapped electron response 1 d n eT e(2p ) 1/ 2 e() (2) DT () g ( , 2 p ) d g ( , ) no Te 8 K ( ) Te p 0 with E ( ) e 1 Te DT () (2)1/ 2 dEE1/ 2 de i eff E 3 / 2 0 0 d ( ) g( , ) 2 2 1/ 2 0 ( sin / 2) eff ei / 0 sin(0 / 2) (Krook collision operator has been used) de de 0 d d / | v|| | 0 v|| 0 deB k̂ v ete 1 ( ) e L B deB E dec E [4( 2 1 E ( ) )] K ( ) 7 Fluid theory and kinetic theory FLUID ANALYSIS (Ignores the effects of wave–particle resonances) Provides the analytical results, which demonstrate the physical feature of the mode in many aspects. the analysis is valid only when the temperature gradient scale length is well below the threshold Tic, where the kinetic resonance effects can be ignored. The validation condition of the fluid limit indicates the parameter region where the kinetic effects become dominant and the threshold value should be usually presented. KINETIC THEORY The aim of the kinetic calculation is to provide the precise stability threshold values by taking into account the effects of wave-particle resonance which indeed, ultimately determine the threshold values. The kinetic result obtained in this work consistently shows the agreement with the prediction of the fluid limit. 8 SOLUTIONS IN FLUID APPROXIMATION (Adiabatic electrons) By making large argument expansion of z(v+) and z(v-) or by taking the ordering of (v|| ·)2/2 ~d / << 1 , solving gyrokinetic equation. 1 D T i ( ) 2 dc d 1 z (z) 0 2 2 2 2 dz 2bŝ 2bŝ bŝ 2 [1 i (1 i )] ŝ 2 b q i 2 n Kinetic effects are lost Eigenfunction : = Hl exp(-z2/s2) dc 2b q s2 i 2b | ŝ | b q q q b( ) i | ŝ | l=0,1, 2.. 1 2 n q n T 2( b ) q q q 1 q q 1 / 2 2 {[ b( ) i | ŝ |] 4( b)[( ) i | ŝ | ( )]} n n T q n T n T 9 1 LOCAL DISPERTION RELATION pi k||2 v2thi Ti pi d pi ni 2 (1 ) 2 (1 DT ) (1 ) (k i ) (1 )0 Te (3) (1) (2) Three Branches: (1). Negative compressibility mode, ( k 2 v 2ti ni i )1 / 3 || (2). Curvature-driven mode (dnii )1/2 (3). Drift electron mode & Trapped Electron Mode *ni ne & ne (1 DT ) Since K|| 1/ Rq, and d (1/ r), the mode growth rate will be much larger than that in Tokamaks However, Landau damping ~k||v || is also stronger due to larger k||. 10 SALUTION IN FLUID APPROXIMATION RFP ordering : ~ |s| ~q~ O(1), (and T <0 ) (1) In the limit of i >>1/b >>1 and b2 << 4 |T/|1 usually corresponding to n>> , (very flat density profile) b q q [ (b ) ( i | ŝ | )1/ 2 ] 2 2 T T T s 2 | ŝ | b | | T The fluid approximation is valid if [/(4 sˆ 2 | T |)]1/ 4 [/(4 | T |)]1/ 4 1 For i >>1/b >>1 and 1 >> b2 >> |4T|/ b q 1 [b i | ŝ | ( 1)] 2 T b (for very small T or b ≤ 1) q s | ŝ | b T 2 2 The fluid approximation requires |bq/T|1/2 >>1 11 SALUTION IN FLUID APPROXIMATION (2) In the limit of 1<<i << 1/b and 1 , 4 n (1 i ) usually corresponding to n ≤ ,(peaked density profiles) b q i | ŝ | [ 2 n n q (1 i ) i | ŝ | q (1 i )]1 / 2 n s b | ŝ | [ (1 i )]1 / 2 n 2 Condition for the fluid approximation: (|1+i)4|n|)1/4 >>1, i.e. i >>1 1 (very peaked density profiles) (3) For |n | << , and 4 n (1 i ) b q 1 Electron drift wave { i | ŝ | [1 (1 i )]} s 2 b | ŝ | q Unstable for i <-(1+) 2 n n ic =-(1+) Fluid condition: (/ )1/2 >> 1 n 2b [ (1 i ) i | ŝ | (1 i )] q s2 b (1 i ) q Fluid condition: i >>1. May not exist in real RFP plasmas Ion wave 12 SOLUTIONS IN FLUID APPROXIMATION 1,5 1,5 1 1 Im() 0,5 0 -0,5 -0,5 -1 Re() -1,5 -1,5 -2 -2 -2,5 -0.01 -0.1 -1 -2,5 -10 10 n (2) in/T >>1 Im() 0,5 0 -1 =0.2, q=0.15, T=0.01, =1 Re() 1 0,1 n (1) (4|T|)1/4 >>1 (2) (4|T|)1/4 1 Fluid approximation Breaks down (3) i >>1 n / 1 3)ic = -(1+) Fluid mode Condition of the Fluid approximation in/ T 1 0,01 i1 n/ 1 13 ITG STABILITY THRESHOLD (adiabatic electrons) Numerically solving kinetic eigenmode equation with Y0 for Z b=0.1q=0.15, =0.2, =s=1 1000 0.035 0.03 1000 0.035 0.03 - | | ic Tc 100 0.025 ic ic | | Tc 0.025 100 ic stable stable 0.02 0.02 | | Tc 10 0.015 Unstable 0.01 0.005 1 -0.01 -0.1 -1 -10 10 0.015 Unstable 0.01 0.005 10 1 0.1 1 0.01 n n (4|T|)1/41.3 ic2 LTc/ r0.1 ic-1.5 ic= -2 14 Results of integral equation: comparison with Tokamak Fluid theory predicts: 1 1 k|| O( ) RFP Rq r 1 1 k|| O( ) Tokamak Rq R 0.20 [ /(4 | Tc |)]1 / 4 O(1) Tc [1 /(4 | Tc |)]1 / 4 O(1) Tc ks=0.4, |s|==1, Tokamak: q=1.5; RFP: q=0.15, B=-1.0, =0.2 Tokamak: | T c | 65 60 55 50 0.15 45 RFP: i c 40 |Tc| 35 30 0.10 ic 25 Tokamak: i c 20 15 10 0.05 RFP: | T c | 5 0 0.0 0.5 1.0 | n | 1.5 2.0 By S. F. Liu , J.Q. Dong 15 The typical eigenfunction corresponding to the threshold ( n=2.0) t=-0.0191 bs=0.1n=2.0 =(-1.03848,0.0007) 1,2 1 (z) 0,8 0,6 0,4 0,2 0 -0,2 0 0,5 1 z 1,5 2 2,5 16 Validation of small Larmor radius assumption 1 b k̂ 2i2 1 2 1 d FLR k 2i2 b(1 ŝ2 2 ) 1 4 dz Threshold Growth rate Etc(En=-0.6) Etc(En=2.0) Etc_bs_en_-0_6,2.0_dat et=-0.012 en=-0.6 0.03 2 1 i 0.025 Tc 0 0.02 -1 0.015 -2 r 0.01 -3 0.005 -4 0,1 0,2 0,3 0,4 b 0,5 0,6 0,7 0,8 0 0.01 b 0.1 1 17 ITG IN CURRENT RFP PLASMAS For a typical shot: Ip=1.5MA, n0=4.5x1019 m-3 , Many thanks to A.Alfer D.Terranova, P.Innocente, R, lorenzini for providing the experimental data Assuming Ti≈0.8Te , LTi≈ LTe 1200 30 T 1000 e 25 |L |(cm) T (ev) e T 800 20 Stable 600 15 400 |L Tic | 10 200 |L Unstable 0 -200 -1 -0,5 ex T 0 0,5 r/a(a=459mm) | 5 1 0 18 EFFECTS OF TRAPPED ELECTRONS ON ITG MODE ● In RFPs, B ~O(B), both fields contribute to the mirror effect Model of toroidal RFP equilibrium: B Bo (r)(1 cos ) B Bo (r)(1 (r) cos ) B B2 B2 Bo (1 cos ) Where ( r ) Bo Bo, Bo --- cylindrical equilibrium r 8p 1 r 2 (r ) (16p Bo )rdr 1 R o Bo2 r 2 Bo2 0 B2 B2 Bo2 Bo2 Bo2 f t 2 since r),< ● Banana orbits are modified by the chaotic field only at very large values of fluctuations. ● In RFX-mod we can expect bananas are not affected by chaos, even in the MH state. M.Gobbin et al, ICPP 2008 Fukuoka, Japan 19 EFFECTS OF TRAPPED ELECTRONS ON ITG MODE (preliminary result) •Trapped electron response: 3 [ 1 ( E )] e e 2 2 eE DT dE E 0 de E i eff E 3 / 2 Since <0, de>0, no ~de resonance exists, trapped electrons have little influence on ITG instabilities. =0 =0 eff 1000 0,035 etaic(with TE) etaic(no TE) ic eff 0 WR(withTE) Wr (No TE) 0,03 ETC(with TE) ETC(no TE) 100 -0,2 ic 0,025 | | rc -0,4 Tc 10 | | Tc 0,02 -0,6 0,015 -0,8 0,01 1 -0.01 -0.1 (=Ln/R) n -1 0,005 -10 -1 -1,2 -0.01 -0.1 (=Ln/R) n -1 -10 20 Summary and discussion ● The stability threshold of ITG mode in the RFP configuration is investigated by the linear gyrakinetic theory ● Compared to tokamak, RFP configuration has a shorter connection length and stronger magnetic curvature drift, which lead to a stronger instability driving mechanism in the fluid limit. However, the kinetic Landau damping effects also become stronger than those in tokamak due to the short connection length, which ultimately determine the stability threshold. ● the ITG (adiabatic electrons) instability in RFPs requires a rather steep temperature profile, which may only be found in the very edge of the plasma or near the board of the dominant magnetic island during the QSH state of the discharge ● The preliminary results about the effect of the trapped electrons on ITG and TEM are presented. ● A numerical study by the integral-differential equation for ITG and TEM is in collaboration with IFTS. ● TRB code has been modified for RFP configuration and the comparison with above theory is under progress. ● Note: all of the results valid when B field decorrelation time de >> -1, g-1 21 SOLUTIONS IN FLUID APPROXIMATION Typical eigenfunction of the fluid mode eigenf_fluid =-1.0, =0.01 n T 1,2 1 z) 0,8 0,6 0,4 0,2 0 -0,2 0 0,5 1 2 1,5 2,5 3 3,5 4 z 22 ITG instability in current RFP plasmas For a typical shot: Ip=1.5MA, n0=4.5x1019 m-3 En_te_23977.dat 20 10 0,8 1200 0,7 Te (ev) 0,6 n e ss__En_23977.dat 1000 Te 800 2 1000 1,5 0,5 0,4 100 n 1 600 e 0,5 0,3 400 ss 10 - n 0 0,2 200 0,1 n 1 ss -0,5 0,1 0 0 -1 -0,5 0 0,5 r/a -1 1 0,01 -1,5 -2 Many thanks to A.Alfer, D.Terranova, P.Innocente, R, lorenzini for providing the experimental data 0,001 -1 -0,5 0 0,5 r 1 23
© Copyright 2025 Paperzz