metode ilmiah analisis akar masalah

1
METODE
ANALISIS AKAR MASALAH
(ROOT CAUSE ANALYSIS)
Setiap masalah selalu mempunyai akar masalah. Akar masalah sangat
penting diketahui untuk melakukan tindakan perbaikan dan pencegahan
secara efektif. Untuk mengukur efektifitas tindakan perbaikan, tips berikut
ini mungkin dapat dipakai sebagai acuan untuk menetapkan kriteria efektif:
 tidak berulangnya kasus yang sama
 bisa diterapkan
 tidak membutuhkan investasi yang sangat tinggi
 fleksibel dengan komponen lainnya
 mudah dievaluasi
 dll
Jika saat ini efektif, mungkinkah bulan depan atau tahun depan bisa muncul
kembali masalah yang sama? sangat mungkin, karena faktor variasi akan
muncul secara alami dari faktor man, material, method, and machine.
A process improvement and error or defect prevention tool that examines
the individual processes within a system, identifies the control or decision
points, and uses a series of why? questions to determine the reasons for
variations in the process paths.
Contoh Definisi :
 In normal chaotic organizational environments it is often quite
difficult to find candidates for root cause analysis because the
situations which repeat are either distributed over time so one
doesn't realize they are actually recurring, or the situation happens
to different people so there isn't an awareness of the recurring
nature of the situation (systems-thinking.org).
 On receipt of initial notification, the department will provide the
hospital with a sentinel event reference number to be indicated on
the root cause analysis, risk reduction action plan summary and
other correspondence about the episode (Victorian State
Government – Health).
 Root cause analysis (RCA) is a methodology for finding and
correcting the most important reasons for performance problems. It
differs from troubleshooting and problem-solving in that these
disciplines typically seek solutions to specific difficulties, whereas
RCA is directed at underlying issues (bill-wilson.nrt).
2
Root cause analysis (RCA) merupakan metode untuk menemukan dan
mengoreksi alasan-alasan yang paling penting bagi masalah-masalah kinerja.
Metode RCA lebih diarahkan pada isu-isu berikut ini.
 Dalam kaitannya dengan proses bisnis, metode RCA mencari
kendala-kendala yang dianggap tidak perlu dan control yang tidak
memadai.
 In safety and risk management, it looks for both unrecognized
hazards and broken or missing barriers.
 It helps target CAPA (corrective action and preventive action) efforts
at the points of most leverage.
 RCA is an essential ingredient in pointing organizational change
efforts in the right direction.
 Finally, it is probably the only way to find the core issues
contributing to your toughest problems.
 While it is often used in environments where there is potential for
critical or catastrophic consequences, this is by no means a
requirement. It can be employed in almost any situation where
there is a gap between actual and desired performance.
Furthermore, RCA provides critical info on what to change and how
to change it, within systems or business processes.
 Significant industries using root cause analysis include
manufacturing, construction, healthcare, transportation, chemical,
petroleum, and power generation. The possible fields of application
include operations, project management, quality control, health and
safety, business process improvement, change management, and
many others.
 Your problems may not be as spectacular as the ones pictured
above, but they probably have many similarities under the surface.
This is the point of root cause analysis -- to dig below the symptoms
and find the fundamental, underlying decisions and contradictions
that led to the undesired consequences. If you want your problems
to go away, your best option is to kill them at the root.
Teknik analisis akar masalah merupakan teknik analisis yang bertahap dan
terfokus untuk menemukan akar masalah suatu problem, dan bukan hanya
melihat gejala-gejala dari suatu masalah.
Contoh Definisi:
 Saat ini Pendekatan Analisis Akar Masalah banyak di gunakan di
lingkungan pelayanan kesehatan / rumah sakit untuk menyelesaikan
masalah akibat Kejadian Tidak Diharapkan (KTD) dan Sentinel Event
3
untuk
Program
Keselamatan
Pasien
(
Institut Manajeme
http://pusdiknakes

Institut Manajemen Resiko KliniS)
Metode Analisis Akar Masalah dan Solusi (MAAMS) ini menyajikan
suatu cara berpikir yang diperagakan dengan tata-alir (flow chart),
disertai dengan beberapa contoh. Penerapan MAAMS membantu
penggunanya untuk berpikir induktif maupun deduktif, kualitatif
maupun kuantitatif, lebih mendalam dan menyeluruh, serta
mempermudah kerjasama inter, multi, atau transdisiplin (Jurnal
Jurnal Universitas http://journal.ui.ac

Universitas Indonesia)
Untuk masalah sosial dan humaniora bisa digunakan metode
analisis akar masalah dan solusinya (MAAMS), yang mencari sebabdari-sebab sekaligus berpikir out of the box. Pengalaman
mempraktikkan MAAMS di kelas ilmu sosial dasar sejak pertengahan
1990-an menunjukkan mahasiswa mampu memahami secara
metodis bahwa banyak masalah sosial berakar pada korupsi (harta,
takhta, cinta asmara, dan gabungannya) dan mengajukan solusi
dasarnya. Maraknya korupsi pada bangsa ini merupakan indikasi
banyaknya
http://pojokantikor
keterbelahan
kepribadian.
Pojok Anti Korups
-
Definition from Wikipedia:
Analisis akar penyebab ialah cara mengatasi masalah yang bertujuan untuk
mengenali akar penyebab masalah atau kejadian.
Contoh definisi:
 Salah satu teknik analisis yang biasa digunakan dalam menganalisa
kegagalan suatu sistem adalah analisis akar penyebab (Root Cause
Analysis). RCA adalah sebuah metode yang terstruktur yang
digunakan untuk menemukan akar penyebab dari masalah
LP Universitas Ha http://w w w .unha

kerusakan poros (LP UNHAS).
Untuk membedakan antara modus kegagalan (modes of failure),
penyebab (cause of failure), dan efek (effect of failure), maka
diambil 3 kotak terakhir dari tiap-tiap analisis akar penyebab
masalah masing-masing sebagai cause of failure, mode of failure
dan effect of failure (Mercu Buana).
Mercu Buana
Metode 5 Why dalam Analisis Akar Masalah
http://74.125.153.
4
Banyak yang mengatakan bahwa analisa akar masalah itu adalah
suatu aktivitas yang rumit dan kompleks, well, ada benarnya, tetapi ada juga
cara untuk melakukannya dengan cara yang sangat sangat mudah.
Hal penting yang harus diketahui adalah 5-Why, terjemahan bebasnya “5Kenapa” atau “5-Mengapa”. Jika terlihat ada masalah oli tercecer di lantai,
apa yang harus dilakukan? Tentu saja, yang pertama kali dilakukan adalah
untuk membersihkannya.
Langkah berikutnya, adalah bertanyalah MENGAPA oli bisa tercecer di
lantai? Jawabannya adalah karena oli ini merembes dari tangki oli yang
bocor. Tindakan kita adalah perbaiki tangki oli tsb.
Apakah sudah Cukup jawabannya? Cobalah bertanya lagi KENAPA tangki oli
bocor. Jawabannya adalah karena tangki ini tidak ada pemeriksaan berkala
untuk kebocoran. Tindakan yang diperlukan adalah memasukkan hal
pemeriksaan kebocoran tangki di jadwal pemeliharaan rutin.
Cukup? Coba tanyakan lagi KENAPA tidak ada pemeriksaan berkala untuk
kebocoran? Ternyata jawabannya adalah tidak ada aktivitas identifikasi
mengenai apa saja check-point (poin pemeriksaan) dari tiap peralatan.
Tindakan kita adalah memperkenalkan aktivitas identifikasi check point
untuk tiap peralatan.
Apa yang kita lakukan untuk mendapatkan akar masalah dan peluang
perbaikan sebanyak diatas? Well, hanya bertanya, simply by asking.
Cara menjalankannya, kumpulkan orang-orang yang relevan dan punya
semangat perbaikan. Anda tentu saja tidak memerlukan seorang skeptis dan
pesimis yang meragukan setiap action-plan kita. Kedua, lakukan dalam
waktu yang singkat. Jika dibutuhkan waktu sampai 2 jam untuk menjawab,
mungkin diperlukan perangkat (tools) yang lebih bagus, misalnya diagram
tulang ikan (Fishbone diagram).
Diagram Tulang-Ikan
Dr. Kaoru Ishikawa seorang ilmuwan Jepang, telah memperkenalkan
konsep user friendly control, Fishbone cause and effect diagram,
emphasised the ‘internal customer’ kepada dunia. Ishikawa juga yang
pertama memperkenalkan 7 (seven) quality tools: control chart, run chart,
histogram, scatter diagram, pareto chart, and flowchart yang sering juga
disebut dengan “7 alat pengendali mutu/kualitas” (quality control seven
tools). Diagram Fishbone dari Ishikawa menjadi satu tool yang sangat
populer dan dipakai dalam mengidentifikasi faktor penyebab masalah.
Fishbone diagram tergolong praktis, dan memandu setiap orang untuk
terus berpikir menemukan penyebab utama suatu permasalahan.
Diagram “tulang ikan” ini dikenal dengan cause and effect diagram. Kenapa
Diagram Ishikawa juga disebut dengan “tulang ikan”? Kangka analisis
diagram Fishbone bentuknya ada kemiripan dengan tulang-ikan, dimana
ada bagian kepala (sebagai effect) dan bagian tubuh ikan berupa rangka
5
serta duri-durinya digambarkan sebagai penyebab (cause) suatu
permasalahan yang timbul.
Dari contoh gambar berikut terlihat bahwa faktor penyebab problem
antara lain (kemungkinan) terdiri dari : material/bahan baku, mesin,
manusia dan metode/cara. Semua yang berhubungan dengan material,
mesin, manusia, dan metode yang “saat ini” dituliskan dan dianalisa faktor
mana yang terindikasi “menyimpang” dan berpotensi terjadi problem.
Ingat,..ketika sudah ditemukan satu atau beberapa “penyebab” jangan
puas sampai di situ, karena ada kemungkinan masih ada akar penyebab di
dalamnya yang “tersembunyi”. Bahasa gaulnya, jangan hanya melihat yang
gampang dan nampak di luar.
Ishikawa mengajarkan untuk melihat “ke dalam” dengan bertanya
“mengapa?……mengapa?…dan mengapa?”. Hanya dengan bertanya
“mengapa” beberapa kali seorang peneliti mampu menemukan akar
permasalahan yang sesungguhnya. Penyebab sesungguhnya, bukan gejala
yang tampak. Dengan menerapkan diagram Fishbone ini dapat menolong
peneliti untuk dapat menemukan akar “penyebab” terjadinya masalah
khusus khusus yang akan ditelitinya, karena memang banyak ragam faktor
yang berpotensi menyebabkan munculnya permasalahan. Apabila
“masalah” dan “penyebab” sudah diketahui secara pasti, maka tindakan
dan langkah penelitian akan lebih mudah dilakukan. Dengan diagram ini,
semuanya menjadi lebih jelas dan memungkinkan peneliti untuk dapat
melihat semua kemungkinan “penyebab” dan mencari “akar”
permasalahan sebenarnya.
Diagram tulang ikan (Sumber: http://hardipurba.com/2008/09/25/diagramfishbone-dari-ishikawa.html)
Diagram Lingkar Sebab-Akibat:
SISTEM PERIKANAN TANGKAP DI WILAYAH PALABUHANRATU
6
Identifikasi kebutuhan adalah langkah awal mengkaji kebutuhankebutuhan yang diperlukan oleh para pelaku sistem kegiatan perikanan
tangkap. Analisis kebutuhan diperoleh dari kebutuhan semua orang atau
institusi yang terkait dengan sistem, dengan diketahuinya pelaku dan
kebutuhan pelaku sistem, maka hal tersebut dapat digunakan dalam
mengetahui sistem perikanan tangkap di Palabuhanratu. Para pelaku yang
terlibat adalah pemerintah daerah, dinas perikanan dan kelautan, nelayan,
pengusaha, dan pedagang, kebutuhan dari masing-masing sistem perikanan
tangkap di PPN Palabuhanratu dapat dilihat sebagai berikut:
No
1
Pelaku
Pemda
2
Dinas Perikanan
dan Kelautan
3
Nelayan
4
Pengusaha
5
Pedagang/Bakul
Kebutuhan
-Peningkatan
pendapatan
Daerah-Peningkatan
Lapangan Kerja-Peningkatan kesejahteraan nelayan
-Produksi Hasil Tangkapan memenuhi kebutuhan
pasar-Menjaga potensi sumberdaya perikananPeningkatan sumber informasi perikanan
-Bantuan modal untuk biaya operasi-Penambahan
unit penangkapan
-Peningkatan jumah alat tangkap-Tersedianya BBMPabrik es
-Bantuan modal-Fasilitas untuk berdagang-Mutu
ikan yang bagus
Formulasi Masalah
Formulasi masalah adalah suatu upaya untuk pendefinisian
permasalahan secara spesifik, sehingga masalah tersebut mencapai suatu
individu yang dimungkinkan dilaksanakannya usaha ke arah pemecahannya.
Formulasi masalah didasarkan pada penentuan informasi yang terperinci
yang dihasilkan selama identifikasi sistem. Adapun beberapa masalah yang
berkaitan dengan sistem perikanan tangkap di PPN Palabuhanratu,
diantaranya :
1). Nelayan. Nelayan Palabuhanratu memiliki kesulitan dalam
mengakses modal, sehingga para nelayan harus mencari modal
sendiri. Tidak hanya itu, tingkat pendidikan yang rendah dan
kulturnya yang tidak mudah menerima perubahan mengenai
gaya hidup yang boros.
2). Unit penangkapan ikan. Alat tangkap secara umum memiliki
beberapa permasalahan, misalnya umur teknis yang rendah
sehingga membutuhkan perawatan yang ekstra, kondisi yang
7
dipengaruhi oleh kondisi alam (arus perairan) dan hasil
tangkapan yang tidak stabil.
3). Perahu.
Perahu yang digunakan untuk mengoperasikan
beberapa alat tangkap terkadang tidak mampu untuk
menjangkau daerah penangkapan yang lebih jauh.
Identifikasi Sistem
Identifikasi sistem berhubungan dengan kebutuhan-kebutuhan yang
dibutuhkan oleh pelaku dalam system perikanan tangkap dengan masalahmasalah yang dihadapinya. Kebutuhan tersebut ebeliputi input-output yang
terkendali dan input-ouput yang tidak dapat dikendalikan. Input yang
terkendali merupakan faktor yang mempengaruhi pemasukkan dari suatu
sistem yang dapat dikendalikan, seperti nelayan, kapal, bahan bakar, es, dan
pasar. Adapun input yang tak terkendali yang merupakan faktor yang
mempengaruhi sistem yang tidak dapat dikendalikan, seperti sumber daya
ikan, iklim, dan musim. Sedangkan, output terkendali merupakan faktor
yang mempengaruhi keluaran dari suatu sistem yang dapat dikendalikan,
seperti harga ikan, upah ABK, retribusi, dan biaya perawatan kapal. Adapun
output yang tak terkendali merupakan faktor yang mempengaruhi keluaran
suatu sistem yang tidak dapat dikendaikan, seperti kenaikkan harga BBM,
dan hasil tangkapan yang didapatkan.
Diagram Lingkar Sebab-Akibat
Diagram lingkar sebab akibat merupakan penjelasan sederhana dari
sistem perikanan yang menjelaskan tentang hubungan dari sub-sub sistem
yang ada. Dari diagram sebab akibat, sumber daya alam merupakan sub
sistem utama yang sangat berpengaruh terhadap sub-sub sistem yang lain.
8
Diagram lingkar sebab-akibat (Sumber:
http://akhmadsyahbana.wordpress.com/2011/06/18/sistem-perikanan-tangkap-diwilayah-palabuhanratu/)
9
Model Sistem dalam Pengendalian Pencemaran Danau:
Diagram Lingkar Sebab-Akibat
Pendekatan sistem merupakan suatu metodologi pemecahan
masalah yang dimulai dengan mengidentifikasi serangkaian kebutuhan
sehingga dapat menghasilkan suatu operasi dari sistem yang dianggap
efektif. Pendekatan sistem ini dilakukan untuk menunjukkan kinerja
intelektual berdasarkan perspektif, pedoman, model, metodologi dan
sebagainya yang diformulasikan untuk perbaikan secara terorganisir dari
tingkah laku dan perbuatan manusia. Oleh karena itu, pada pendekatan
sistem dalam penyelesaian suatu masalah selalu ditandai dengan: (1)
pengkajian terhadap semua faktor penting yang berpengaruh dalam rangka
mendapatkan solusi untuk pencapaian tujuan, dan (2) adanya model-model
untuk membantu pengambilan keputusan lintas disiplin, sehingga
permasalahan yang kompleks dapat diselesaikan secara komprehensif.
Analisis Kebutuhan
Analisis kebutuhan pada dasarnya merupakan tahap awal
pengkajian dalam pendekatan sistem, dan sangat menentukan kelaikan
sistem yang dibangun. Analisis kebutuhan juga merupakan kajian terhadap
faktor-faktor yang berkaitan dengan sistem yang dianalisis. Oleh karena itu,
dalam penelitian ini analisis kebtutuhan diarahkan pada pihak-pihak yang
mempunyai kepentingan dan keterkaitan baik secara langsung maupun
tidak langsung terhadap pengendalian pencemaran perairan danau.
Dalam pengendalian pencemaran perairan danau, pihak yang
mempunyai kepentingan dan terkait secara langsung adalah
(1)
(2)
(3)
(4)
(5)
Masyarakat lokal yaitu masyarakat yang tinggal di sekitar danau yang
memanfaatkan perairan danau untuk berbagai kepentingan,
Dinas instansi terkait yaitu semua dinas instansi pemerintah daerah
yang mempunyai hubungan keterkaitan dengan perairan danau baik
langsung mapun tidak,
Akademisi (peneliti) yaitu orang yang melakukan penelitian pada
perairan danau,
Lembaga Swadaya Masyarakat (LSM) yaitu lembaga yang dibentuk
masyarakat setempat yang mempunyai kepedulian terhadap
kelestarian perairan danau, dan
Badan usaha milik negara yaitu perusahaan yang melakukan kegiatan
usaha di perairan danau.
Dalam analisis kebutuhan dilakukan inventarisasi kebutuhan setiap
pelaku yang terlibat dalam sistem. Inventarisasi ini dilakukan dengan
wawancara secara terbatas. Sebagai contoh misalnya, hasil wawancara
menunjukkan kebutuhan pelaku usaha seperti disajikan pada tabel berikut.
10
Sumber:
http://menyelamatkandanaulimboto.wordpress.com/pengendalianpencemaran-danau/marganof/3-metode-penelitian/
Formulasi Permasalahan Sistem
Permasalahan sistem pada dasarnya adalah terdapatnya gap antara
kebutuhan pelaku dengan kondisi yang ada (reel). Pada kondisi nyata di
lapangan, permasalahan sistem ditunjukan oleh adanya isu yang
berkembang sehubungan dengan terjadinya pencemaran di perairan danau.
Formulasi sistem di sini adalah merupakan aktivitas merumuskan
permasalahan dalam pengendalian pencemaran di perairan danau yang
berkaitan dengan adanya perbedaan antara kebutuhan pelaku dengan
kondisi yang ada.
Berdasarkan pada analisis kebutuhan para pelaku yang terlibat
dalam pemanfaatan perairan danau dan kondisi yang dijumpai di perairan
danau saat ini, maka permasalahan pengendalian pencemaran di perairan
danau dapat diformulasikan sebagai berikut:
1. Tidak diperhatikannya limbah dari aktivitas KJA yang ditunjukan dengan
tidak adanya pemahaman mengenai dampak dari limbah KJA terhadap
kualitas air.
2. Tidak tersedianya sistem pengolahan limbah penduduk, menyebabkan
buangan limbah dari permukiman akan langsung mengalir ke perairan
danau, sehingga kualitas perairan danau menjadi turun.
3. Tidak diperhatikannya pemanfaatan tata guna lahan di kawasan
sempadan danau yaitu banyaknya pengembangan permukiman, hotel,
restoran, dan home stay serta pembukaan lahan pertanian yang
tercermin dari tingginya padatan tersuspensi di perairan danau.
11
4. Tidak diperhatikannya persepsi masyarakat di sekitar perairan danau
dalam upaya pengendalian pencemaran yang terjadi di perairan danau.
5. Tidak adanya zonasi (penataan ruang) kawasan danau yang tercermin
dari penyebaran atau letak keramba jaring apung yang tersebar hampir
di seluruh tepian atau keliling perairan danau.
Identifikasi Sistem
Identifikasi sistem merupakan suatu rantai hubungan antara
pernyataan dari kebutuhan dengan pernyataan khusus dari masalah yang
harus dipecahkan untuk memenuhi kebutuhan-kebutuhan tersebut. Hal ini
sering digambarkan dalam bentuk diagram lingkar sebab-akibat (cousal loop
diagram) . Diagram tersebut merupakan pengungkapan interaksi antara
komponen di dalam sistem yang saling berinteraksi dan mempengaruhi
dalam kinerja sistem. Disamping itu, hubungan antara input (masukan) dan
output (keluaran) dalam suatu sistem digambarkan dalam sebuah diagram
inputoutput (masukan-keluaran) seperti disajikan pada gambar berikut.
Diagram lingkar sebab-akibat merupakan gambaran dari struktur model
pengendalian pencemaran di perairan danau yang dibuat berdasarkan
diagram input-output.
Diagram lingkar sebab-akibat (cousal-loop diagram) sistem pengendalian pencemaran
perairan danau. Sumber: http://menyelamatkandanaulimboto.wordpress.com/pengendalianpencemaran-danau/marganof/3-metode-penelitian/
12
Secara garis besar ternyata variabel yang mempengaruhi kinerja
sistem ada 6 variabel yakni:
(1) variabel output yang dikehendaki; ditentukan berdasarkan
hasil analisis kebutuhan,
(2) variabel input terkontrol, variabel yang dapat dikelola untuk
menghasilkan perilaku sistem sesuai dengan yang diharapkan,
(3) variabel output yang tidak dikehendaki; merupakan hasil
sampingan atau dampak yang ditimbulkan bersama-sama
dengan output yang diharapkan,
(4) variabel input tak terkontrol,
(5) variabel input lingkungan; variabel yang berasal dari luar
sistem yang mempengaruhi sistem tetapi tidak dipengaruhi
oleh sistem, dan
(6) variabel kontrol sistem; merupakan pengendali terhadap
pengoperasian sistem dalam menghasilkan output yang
dikehendaki.
Diagram masukan-keluaran (input-output diagram)
pengendalian pencemaran perairan danau adalah berikut ini.
sistem
Sumber: http://menyelamatkandanaulimboto.wordpress.com/pengendalianpencemaran-danau/marganof/3-metode-penelitian/
13
PENGANTAR METODE RCA (ROOT CAUSE ANALYSIS)
(= ANALISIS AKAR MASALAH =)
There's a lot of information on Root Cause Analysis available on the web.
Unfortunately, if someone a beginner, finding useful, easy-to-use
information can be difficult. That's why it is the list of 4 useful web resources
for an Introduction to Root Cause Analysis.
 Root Cause Analysis for Beginners - Article from the July 2004 issue
of Quality Progress, provides an overview of the purpose and
justification for Root Cause Analysis, and demonstrates application.
 Events and Causal Factors Analysis - Detailed guidance on the Event
and Causal Factor method for event sequencing. Provides charting
symbol standards and tips for application.
 Control of Change Cause Analysis - Manual for performing "3CA"
analysis of root causes, which seeks to identify changes that could
have been controlled, or where controls failed.
 Root Cause Live - Community site for users and providers of
performance improvement, failure analysis, and incident
investigation services. Non-proprietary and non-industry-specific.
Analisis masalah adalah penguraian masalah-masalah pokok yang
teridentifikasisampai ke akar penyebabnya. Analisis masalah ini dalam Permendagri
66/2007 terdiri dari empat tahap, yaitu pengelompokan masalah, penentuan peringkat
masalah, pengkajian tindakan pemecahan dan penentuan peringkat tindakan. Ada dua
alternative metode yang dapat digunakan untuk melakukan analisis masalah, yaitu
pohon masalah dan sistem masalah.
Pohon Masalah
Untuk mencari MASALAH POKOK, metode pohon masalah ini mencobamenelusuri
masalah hingga ke AKAR MASALAH. Harapannya, jika akar masalahtersebut bisa
terpecahkan maka masalah utama akan terpecahkan.Instrumen yang paling umum
digunakan adalah pohon masalah.
1. Tuliskan satu MASALAH POKOK pada selembar kartu dan tempelkan
padapapan tulis atau pinboard
2. Carilah penyebab langsung terjadinya masalah pokok tersebut
denganmenelusuri hubungan SEBAB AKIBAT
3. Telusuri SEBAB AKIBAT sampai ke akar penyebabnya, sampai
POHON MASALAHterbentuk secara lengkap
4. Tulislah satu pernyataan yang dianggap sebagai penyebab langsung
terjadinyaMasalah Pokok
5. Begitu seterusnya sampai tidak ada lagi yang masih dapat
diidentifikasi sebagaipenyebab langsung terjadinya keadaan
14
6. Tempelkan semua kartu pada papan tempel dan tunjukkan
hubungan SEBAB-AKIBAT dengan tanda panah
7. Tanpa harus menjadi terlalu rinci, periksa kembali DIAGRAM pohon
masalahuntuk melihat apakah pernyataan SEBAB-AKIBAT atas setiap
keadaan yangditulis pada setiap kartu telah lengkap
8. Sepakati DIAGRAM Pohon Masalah sebagai hasil kerja bersama.
Contoh Pohon Masalah.
sampahkurangterawat
Pokok Masalah
Banjir
Ht gundul
Akar Masalah
Pembalakan
Irigasi
Tdk ada
reboisasi
Sampa
h
Tdk
terawat
SISTEMIK MASALAH
Berbeda dengan Pohon Masalah, metode ini melihat bahwa masalah itu saling
bertautan dan saling mempengaruhi. MASALAH POKOK merupakan masalah yang
mempunyai pengaruh terbesar terhadap MASALAH lainnya.
Tahap-tahap yang harus dilalui adalah:
1. Menuliskan MASALAH-MASALAH masing-masing pada selembar
kartu
2. Menempelkan semua kartu yang bertuliskan MASALAH pada
papan
3. Menunjukkan SEBAB AKIBAT antar masalah-masalah tersebut
denganmenggunakan TANDA PANAH
15
4. Begitu seterusnya sampai dapat diidentifikasi MASALAH yang
mempunyai pengaruh terbanyak
5. Tanpa harus menjadi terlalu rinci, periksa kembali DIAGRAM
SISTEM MASALAHuntuk melihat apakah pernyataan SEBABAKIBAT atas setiap keadaan yang ditulis pada setiap kartu telah
lengkap
6. Menyepakati DIAGRAM SISTEMIK MASALAHsebagai hasil kerja
bersama
Contoh Sistemik Masalah
Sekala Usaha Kecil
Sekala
Akses
modal
Usaha
Kecil
lemah
Investasi
Kecil
Daya tawar
lemah
Profit Kecil
“ Analisa akar permasalahan adalah suatu penyelidikan /
pengusutan yang terstruktur yang bertujuan untuk mengidentifikasi
penyebab sesungguhnya dari suatu masalah, dan tindakan-tindakan
yang dibutuhkan untuk mengeliminasi / menghilangkan”
Walau kedengarannya agak terus-terang, akan dapat dilihat bahwa analisa
akar masalah tidak dilaksanakan dengan menggunakan satu alat atau
strategi tunggal, tetapi dengan sejumlah alat yang sering dikombinasikan.
Analisa akar masalah adalah suatu istilah yang kolektif yang digunakan untuk
menggambarkan berbagai pendekatan, alat serta teknik yang digunakan
untuk membongkar sebab-sebab suatu masalah, sebagian pendekatan lebih
diarahkan untuk mengidentifikasikan akar-akar masalah yang sesungguhnya
daripada lain-lainnya.
Ada pendekatan yang lebih berupa teknik-teknik umum untuk pemecahan
masalah, adalagi yang hanya menawarkan dukungan pada aktivitas inti dari
analisa akar masalah. Ada alat-alat yang bercirikan pendekatan terstruktur,
adapula yang lebih kreatif (dan serampangan / sembrono ).
16
Hal yang penting adalah bukan mempelajari dan menggunakan semua alat
in, tetapi lebih untuk mengenal alat-alat analisa akar masalah dan
mengaplikasikan teknik-teknik atau alat yang sesuai untuk menangani suatu
masalah tertentu.
Alat-alat Analisa Akar Masalah
Beberapa alat analisa akar masalah telah dikelompokkan sesuai dengan
tujuan (dan dititik mana alat itu digunakan).
Untuk alasan-alasan berikut:
1. Ada sedemikian banyak alat sehingga perlu menjaga kejelasan
selama presentasi alat- alat itu.
2. Meraka secara alami akan masuk ke kategori-kategori alat yang
berfungsi untuk tujuan-tujuan yang agak berbeda.
Kelompok-kelompok alat, sesuai dengan tujuannya adalah sbb:
PEMAHAMAN MASALAH
1. FLOWCHART : Chart / Grafik yang digunakan untuk ‘melakukan
gambar’ tentang proses dunia.
2. Kejadian yang kritis : Pendekatan yang anggun digunakan untuk
mengeksplorasi / menyelidiki isu-isu yang paling kritis dalam
suatu situasi.
3. Grafik Laba-laba / Spider Chart : Sebuah grafik perbandingan
untuk menandai sebuah masalah-masalah.
4. Matriks Penampilan : Digunakan untuk membantu menentukan
pentingnya masalah-masalah atau sebab-sebab.
ASAL TIMBULNYA PENYEBAB DAN PENCAPAIAN MUFAKAT
1. Brainstorming. Suatu pendekatan resmi yang dapat digunakan
selama analisa akar masalah bila dibutuhkan banyak ide.
Brainwriting. Sebenarnya merupakan sesi brainstorming tertulis.
2. Teknik kelompok nominal : Teknik yang digunakan untuk
membantu sebuah kelompok dalam memprioritaskan berbagai
alternatif – misalnya, sebab-sebab masalah.
3. Perbandingan berpasangan : Suatu teknik yang digunakan untuk
mencapai mufakat dengan memperoleh partisipan atau peserta
memilih antara dua alternatif yang dibandingkan.
17
PENGUMPULAN DATA PENYEBAB DAN MASALAH
1. Sampling/Contoh : Digunakan untuk mengumpulkan data disuatu
populasi yang besar dengan mengambil sedikit sample / contoh.
2. Survey : Digunakan untuk mengumpulkan data tentang
pendapat-pendapat dan sikap-sikap dari pelanggan , pegawai dll.
3. Check sheet : Suatu pendekatan yang secara sistematis
mengumpulkan data berdasarkan pada sheet (lembaran) yang
sudah dibuat dulu yang digunakan selama periode pengumpulan
data.
ANALISA PENYEBAB YANG MUNGKIN
1. Histogram : Suatu diagram yang mudah digunakan yang
membantu mengidentifikasi pola-pola atau anomali / kelainankelainan.
2. Pareto Chart : Alat visual lain yang digunakan untuk memberi
ilustrasi penyebab-penyebab dominan yang menimbulkan efek /
pengaruh paling besar.
3. Scatter Chart : Digunakan untuk memberi ilustrasi hubungan
antara dua sebab atau variable-variable lain dalam situasi
bermasalah.
4. Diagram hubungan (Relation’s Diagram) : Suatu alat yang
digunakan untuk mengidentifikasi hubungan logis antara
berbagai ide atau isu dalam suatu situasi yang rumit atau
membingungkan .
5. Diagram Afinitas (tarik-menarik) : Suatu pendekatan grafik (chart
approach) yang membantu mengidentifikasi ide-ide, sebab-sebab
atau konsep-konsep yang kelihatannya tidak berkaitan sehingga
mereka semua bisa dieksplorasi / ditinjau lebih lanjut.
Diagram Hubungan
Diagram hubungan antara iklim dan tanaman.
Pengaruh cuaca terhadap tanaman berbeda dengan pengaruh iklim.
Suatu wilayah pusat produksi tanaman yang telah berlangsung
puluhan hingga ratusan tahun, kondisi iklimnya jelas sesuai bagi
kultivar yang dibudidayakan. Walau demikian sesekali mengalami
cuaca ekstrim selama beberapa hari sehingga gagal panen. Jadi,
keadaan cuaca menentukan kondisi aktual hasil panen sedangkan
kondisi iklim menentukan kapasitas dan rutinitas panen.
18
Kondisi iklim /cuaca mikro secara langsung mempengaruhi proses fisiologi
karena berhubungan dengan atmosfer di lingkungan tanaman sejak
perakaran hingga puncak tajuk. Unsur yang berpengaruh kuat terutama
radiasi surya, suhu udara, suhu tanah, kelembapan, kecepatan angin,
presipitasi dan evapotranspirasi. Mekanisme pengaruh faktor pengendali
dan unsur iklim terhadap tanaman dan lingkungan dapat dilihat pada
gambar berikut.
Diagram hubungan antara iklim dan tanaman. (Sumber:
http://rudikomarudin.blogspot.com/2011/03/hubungan-antara-iklim-dan-tanaman.html)
19
DIAGRAM LINGKAR HUBUNGAN SEBAB AKIBAT:
SISTEM AGRIBISNIS
Diagram lingkar sebab akibat selain menggambarkan hubungan
antar elemen, pengaruh hubungan, juga membantu untuk melakukan
identifikasi sistem. Inventarisasi hubungan dapat dilakukan menggunakan
bantuan dafta atau tabel sebab akibat. Sebagai contoh hubungan sebab
akibat adalah Sumber Daya Alam merupakan penyebab tumbuh
berkembangnya IPTEK yang lebih efisien dan efektif untuk memanfaatkan
Sumber Daya Alam. Ketersediaan, kesesuaian Sumber Daya Alam juga akan
menyebabkan bertambahnya jumlah Agribisnis, demikian seterusnya.
Sumber: http://taman-agribisnis.blogspot.com/2010_02_01_archive.html
20
DIAGRAM AFINITAS (Affinity Diagram)
Diagram afinitas (affinity diagram) merupakan suatu diagram atau
tabel yang diperoleh sebagai hasil dari suatu tata cara pengumpulan ide,
dimana sejumlah atau sekumpulan ide yang tidak beraturan dikelompokkan
berdasarkan jenisnya. Kumpulan ide tersebut biasanya diperoleh dari
brainstorming. Dengan demikian diagram afinitas adalah suatu alat analisis
manajemen yang diterapkan untuk menjaring ide-ide yang diperoleh dari
aktifitas brainstorming, Namun demikian, kumpulan ide yang akan
dikelompokkan menjadi beberapa group kecil (misalnya 5 group) tidaklah
mesti merupakan kumpulan ide yang diperoleh sebagai keluaran dari suatu
aktifitas brainstroming. Misalkan dari suatu aktifitas brainstroming yang
bertujuan untuk menjaring ide terhadap pertanyaan: Bagaimana
mempertahankan kesuksesan proses yang telah berhasil diterapkan ?, maka
kira-kira akan diperoleh hasil berupa daftar ide seperti yang diperlihatkan
pada tabel berikut.
Apabila dilakukan pengamatan yang saksama terhadap ide-ide tersebut,
maka akan terlihat bahwa diantara ide-ide tersebut terdapat ide-ide yang
mempunyai tema yang sama, misalnya tema tentang training dan
keterampilan, tema tentang manajemen, tema yang menyangkut konsumen
dan sebagainya. Oleh karena itu sekumpulan ide tersebut dapat
dikelompokan menjadi sejumlah kecil kelompok ide yang lebih bermakna.
Diagram afinitas terutama bermanfaat jika digunakan dalam
kondisikondisi seperti:
a). tidak ada kepastian akan fakta dan pemikiran/opini yang
terkumpul sehingga perlu pengorganisasian akan hal tersebut,
b). jika terdapat suatu ide atau paradigma yang dianut sebelumnya
dan perlu untuk diantisipasi,
c). jika terdapat ide-ide yang perlu diklarifikasi dan
d). jika ingin diciptakan keutuhan tim.
Penting untuk diingat bahwa penamaan terhadap kelompok ide (atau tema
dari kelompok) sebaiknya dicantumkan setelah dilakukan proses
pengelompokkan dan bukan sebelumnya. Sehingga dengan demikian tema
kelompok ide akan relevan dengan ide-ide yang terkumpul pada kelompok
tersebut. Sebagai contoh, kumpulan ide hasil brainstorming seperti yang
diperlihatkan pada tabel berikut, setelah dilakukan penyaringan dan
pengelompokan akan tampak seperti yang diperlihatkan pada tabel.
Diagram afinitas merupakan suatu teknik pengambilan keputusan
yang digunakan/diterapkan pada sekelompok orang (grup), yang
didesain sedemikian rupa untuk menyeleksi sejumlah besar ide
(termasuk pula: variabel proses, konsep dan opini) yang saling
berhubungan, sejenis atau memiliki tema yang sama ke dalam
sejumlah kecil grup ide.
21
Tabel kumpulan ide hasil brainstorming
Bagaimana mempertahankan kesuksesan proses yang telah berhasil diterapkan ?
Mengetahui
Menyediakan training
Menerapkan
Mendapatkan
kebutuhan konsumen
pengawasan;
komitmen
pemeriksaan dan
manajemen
pengendalian mutu
Mewawancarai
Mengetahui alat alat
menerapkan tata
melibatkan top
konsumen
pengembangan dan
cara analisa dan
manager dan middle
perbaikan mutu
pengukuran
manager sebagai
steering commitee
Mengidentifikasi
konsumen
Melakukan
investigasi terhadap
usaha usaha tentang
perbaikan mutu
secara terus menerus
Mengembangkan tata
cara koreksi yang
efektif terhadap
penyimpangan
Menerapkan sistem
rewarding yang
konsisten
membuat defenisi
operasional
mengenai pengetian
out-put
Melibatkan karyawan
Menerapkan
pengembangan
berdasarkan project
by project
membuat defenisi
operasional
mengenai pengetian
proses
menyediakan job
security, seperti
freedom to fail
Menghitung process
capability.
membuat program
goals yang jelas
meningkatkan
komunikasi di semua
sektor
menyediakan
waktu bagi middle
manager untuk
berpartisipasi
Membentuk steering
committee dengan
wewenang yang jelas
Menciptakan
keakraban dengan
jalan menghilangkan
penghalang diantara
kariawan
akses yang luas
terhadap informasi
Menyediakan support
staff bagi middle
manager
Tabel Penyaringan dan pengelompokan ide hasil brainstorming ke dalam 5
kelompok
Bagaimana mempertahankan kesuksesan proses yang telah berhasil diterapkan ?
Pengetahuan
Training
Pemeriksaan
Mendapatkan
Meningkatkan
tentang
perbaikan dan
dan
komitmen dari
komunikasi
konsumen
peningkatan
pengendalian
manajer
mutu
mutu
Mengetahui
Menyediakan
Menerapkan
Mendapatkan
Meningkatkan
kebutuhan
training
pengawasan,
komitmen
komunikasi di
konsumen
pemeriksaan dan manajemen
semua sektor
pengendalian
mutu
mewawancarai
Mengetahui alat- menerapkan
melibatkan top
akses yang luas
konsumen
alat
tata cara analisa
manager dan
terhadap
pengembangan
dan pengukuran
middle manager
informasi
dan perbaikan
sebagai steering
mutu
commitee
22
Mengidentifikasi konsumen
membuat
defenisi
operasional
mengenai
pengetian output
melakukan
investigasi
terhadap
usahausaha
tentang
perbaikan mutu
secara terus
menerus
mengembangkan
tata cara koreksi
yang efektif
terhadap
penyimpangan
menerapkan
system
rewarding yang
konsisten
melibatkan
karyawan
menerapkan
pengembangan
berdasarkan
project by
project
menyediakan
job security,
seperti freedom
to fail
menciptakan
keakraban
dengan jalan
menghilangkan
penghalang
diantara
kariawan
membuat
defenisi
operasional
mengenai
pengetian
proses
menyediakan
support staff
bagi middle
manager
menghitung
process
capability.
Membuat
program goals
yang jelas
Menyediakan
waktu bagi
middle manager
untuk
berpartisipasi
membentuk
steering
committee
dengan
wewenang yang
jelas
Penerapan diagram afinitas bertujuan untuk menyaring dan
mengelompokkan sejumlah besar ide ke dalam kelompok yang lebih kecil
berdasarkan jenis, tema atau kesamaan lainnya.
Dalam pelaksanaannya terdapat beberapa hal yang perlu diperhatikan
dalam penyaringan dan pengelompokan ide ke dalam diagram afinitas, di
antaranya:
a. Memastikan bahwa ide-ide yang terkumpul terdeksripsikan
dengan kalimat atau frasa yang jelas maknanya
b. Melakukan pengelompokan ide-ide yang kelihatannya memiliki
kesamaan secara cepat
c. Melakukan klarifikasi terhadap ide-ide yang tidak jelas, sehingga
dengan demikian dapat digolongkan ke dalam salah satu
kelompok.
23
d. Jika suatu ide dapat digolongkan ke dalam lebih dari satu
kelompok, buatlah copy atas ide itu dan tempatkan ke dalam
kelompok-kelompok itu
e. Mengitung jumlah ide yang telah digolongkan ke dalam masingmasing kelompok
f. Mempertimbangkan untuk memasukkan anggota kelompok kecil
ke dalam kelompok yang anggotanya lebih besar, demikian juga
sebaliknya, membagi suatu kelompok menjadi dua bila ide yang
terkumpul di dalamnya terlalu banyak.
g. Setelah semua ide habis dan selesai digolongkan, buatlah judul
untuk masing-masing kelompok.
24
ANALISIS SEBAB-AKIBAT
1. Cause and effect chart (CE diagram). Suatu alat yang mudah
diaplikasikan / digunakan untuk menganalisa sebab-sebab yang
mungkin dari suatu masalah.
2. Matrix Diagram. Suatu teknik visual untuk mengatur potonganpotongan informasi sesuai dengan aspek-aspek tertentu.
3. Five whys (Lima Mengapa). Suatu pendekatan yang digunakan untuk
menyelidiki lebih mendalam tentang hubungan-hubungan sebab
(causal relationships).
Contoh CE-diagram:
How to draw CE diagram
Step 1
Write down the effect to be investigated and draw the 'backbone' arrow to it.
In the example shown below the effect is 'Incorrect deliveries'.
Step 2
Identify all the broad areas of enquiry in which the causes of the
effect being investigated may lie. For incorrect deliveries the diagram
may then become:
25
For manufacturing processes, the broad areas of enquiry which are most
often used are Materials (raw materials), Equipment (machines and tools),
Workers (methods of work), and Inspection (measuring method).
Step 3.
This step requires the greatest amount of work and imagination
because it requires you (or you and your team) to write in all the
detailed possible causes in each of the broad areas of enquiry. Each
cause identified should be fully explored for further more specific
causes which, in turn, contribute to them.
Sumber: http://www.hci.com.au/hcisite3/toolkit/causeand.htm
26
RCA – Seni atau Sain?
There are many commonly held beliefs about root cause analysis
that bother people. Perhaps the single most irksome is the statement "it's
an art, not a science." We don't have anything against art, but we don't
believe that this statement does justice to the practice of root cause
analysis. In fact, we believe it is one of the most damaging perceptions that
can be held by an investigator or be communicated to others.
So, why do people believe this? One widely-held perception is that root
cause analysis is not repeatable, i.e. the belief that different analysts
performing independent investigations of the same issue will not arrive at
identical results. Another commonly-stated reason is that it can be difficult
to state the results of a root cause analysis with much precision, especially if
issues of human or organizational performance are involved.
In addition, we believe that many people instinctively recognize that some
aspects of root cause analysis are inherently subjective. By necessity, RCA
requires that an analyst compare that which is to that which ought to be...
and what ought to be is often a matter of opinion. Furthermore, the
development of recommendations (the most obvious outcome of root cause
analysis) is certainly subjective in nature, as there is rarely an absolute
standard to determine which solution is best, even for purely technical
issues.
However, we don't believe any of the above justify characterizing root cause
analysis as an art, or as "more art than science." In general, art is the
application of creativity for its own sake without any objective criteria for
judging quality. In contrast, root cause analysis, while containing elements of
creativity, is rarely (if ever) applied without a specific purpose, or without
objective criteria for what constitutes a quality outcome.
We would argue that root cause analysis is a science, or is at least a process
that must be performed scientifically. The following description of scientific
method from Wikipedia provides a good summary of my viewpoint:
Scientific method is a body of techniques for investigating
phenomena and acquiring new knowledge, as well as for
correcting and integrating previous knowledge. It is based
on observable, empirical, measurable evidence, and subject
to laws of reasoning.
Note the emphasis on the use of evidence and reasoning for investigating
and acquiring knowledge: this could very well serve as a working description
of the root cause analysis process. Consider also that science can refer to
27
both natural (or "hard") sciences like physics and chemistry, or social ("soft")
sciences like economics and sociology.
The following description of social science from Wikipedia provides
additional insight:
The social sciences are groups of academic disciplines that study
the human aspects of the world. They diverge from the arts and
humanities in that the social sciences emphasize the use of the
scientific method and rigorous standards of evidence in the study
of humanity, including quantitative and qualitative methods.
So, even root cause analysis efforts that delve into issues of human and
organizational performance must be performed scientifically and be subject
to rigorous standards of evidence. (Of course, this has little bearing on the
parts of a root cause analysis that deal solely with physical/technical issues.)
In summary, the root cause analysis process contains many elements that
are not consistent with the belief that it is an art. These elements (evidence,
reasoning, objective standards), however, are fully consistent with the
characterization of root cause analysis as a science, or at least as a process
dominated by scientific thinking. While certain aspects of the process may
be subjective in nature, even these must be performed within an objective,
scientific framework for the process to have any validity. Thus, the assertion
that RCA is "more art than science" is not justified, and should not be
promoted.
Makna Akar Masalah
In the practice known as Root Cause Analysis (RCA), we are generally
looking for reasons to explain why a problem occurred. In most cases, we
find that there are many reasons for any given problem. Some (or most?) of
them may be far removed in time, space, and subject from the problem
itself. We typically call such reasons Root Causes, and according to theory,
correcting these Root Causes will prevent future occurrences of this
problem, and potentially many others.
The basic RCA method is to simply ask "Why" over and over again
until you arrive at a Root Cause. The real question then becomes: how do
we know when to stop asking "Why"? At what point are we satisfied that
we've identified a Root Cause? What is a Root Cause? These are questions
that constantly spark disagreement among RCA practitioners. While there is
some disagreement as to what constitutes a Cause, the real fireworks begin
when you try to define the word Root.
28
Dictionary.com has a rather lengthy definition of Root. I won't reproduce it
here, but it should suffice to say that there are many different definitions.
However, there are a few common meanings that run through most of
them:
 Akar-akar seringkali tersembunyi di bawah permukaan.
 Akar menyediakan dukungan atau berfungsi sebagai basis.
 Akar berhubungan dengan asal-usul dan sumber-sumber.
 Akar adalah primer dan fundamental.
 Roots are established and entrenched.
What about the etymology of Root? According to the Online Etymology
Dictionary, Root comes from the Old Norse word rot for "underground part
of a plant." The current meanings of Root make sense in this respect. The
etymology tells us that when we use the word Root today, we are basically
using it as a metaphor to suggest the qualities of plant roots. In addition to
the list above, the following qualities come to mind.
 Akar-akar dapat menyebar lebih jauh dari perkiraan.
 Akar-akar mungkin sulit ditemukan dan lebih sulit to get rid of.
 Akar-akar yang tidak dihilangkan dapat melangsungkan
pertumbuhan.
 Akar seringkali sangat kotor.
When RCA practitioners talk about Root Causes, they are basically talking
about Causes that have all the qualities listed above. They want you to
understand that problems are like plants that you don't want, i.e. weeds. If
you leave a weed alone, you will end up with more weeds. If you try to
remove a weed by cutting it off at the surface, your weed will grow back.
The part of a weed you have to kill or remove to prevent future weeds is the
root. The best overall solution would be to treat the soil so weeds don't take
root in the first place!
So, back to the real questions at hand: what is a Root Cause? At what point
are you satisfied that you've found one? When can you stop asking "Why"?
Here's a short answer: you're right next to a Root Cause for your problem
when you reach a fundamental force, law, or limit that cannot be removed
by any action taken within your system. The actual Root Cause is the
contradiction between your system's values (purpose, rules, culture, etc.)
and these fundamental forces, laws, or limits.
That's all I'm going to say for now, but I'll be exploring this topic in more
detail in the future. Keep watching my blog for more articles on this topic.
It has been discussed the definition of the word root as it applies to the
concept of root cause. However, that article did not provide a definition for
29
the word cause. While the meaning of cause may seem obvious to the casual
observer, this article will develop a very precise definition that is useful for
the incident investigator or root cause analyst.
The general definition of cause is the producer of an effect. This
isn't a very precise definition, but we can use it to get at something
more useful. Let us break it down into components with that goal
in mind.
First, consider the concept of an effect. The word itself is fairly ambiguous,
because it is so often tied to the word cause, as in cause and effect. Looking
at the concept intuitively, however, yields some insight. What is the
difference between having an effect, versus having no effect?
In a situation where some action was taken, but there is no effect, then
nothing changed. If there was an effect, then something must have changed.
The difference is then the presence or lack of a change. In essence, an effect
is a change.
The definition for cause can now be written as the producer of a
change. Let us now try to refine this by expanding upon the
concept of a producer. What is required to produce a change?
A change requires that there be a discrete difference between initial and
final states. Except for processes like radioactive decay, where the impetus
driving the change of state is completely internal, there must be an external
driver. Additionally, there are usually other factors required to exist
coincident with the driver.
What is required, then, is a set of factors sufficient to drive a particular
change of state. One or more of these factors may be active in nature, such
as an action or another change. Others may be passive or constant, such as
local ambient conditions or object properties.
Given a set of factors sufficient to drive a change, it would be instructive to
ask what happens if one or more of the factors were not present. If the
factor is not necessary, then it doesn't matter whether it does or does not
exist. However, if the factor truly is necessary but not present, then the
change cannot happen.
So, in order for a change to be produced, we must have a sufficient set of
factors in which all necessary factors are present. If any of the necessary
factors are not present, the change does not occur -- each of the necessary
factors is a sort of on/off switch for the given change. In this sense, each of
the necessary factors can be considered a cause of the effect.
30
Incorporating all the points discussed above leads to the following definition
for cause:
A cause is any necessary component of a set of factors sufficient to
drive a change.
This definition is somewhat wordy, but is very precise. It is also valuable
because it provides a clear test of whether an action or condition is in fact a
cause for a given effect. Using this definition, it is possible to screen out
factors that are irrelevant. Conversely, this definition can be used to identify
missing evidence or even rule out invalid hypotheses.
Hubungan antara sebab dan akibat yang ditimbulkannya dapat
dilukiskan dalam bentuk diagram tulang ikan , seperti contoh
berikut:
Sumber: http://syque.com/quality_tools/toolbook/cause-effect/example.htm
31
Tahapan dalam RCA (Root Cause Analysis)
Root Cause Analysis (RCA) is generally conducted in several phases. I've seen
some methodologies that break down the RCA process into as many as a
dozen different steps. In reality, however, there are just three main phases
we need to be concerned about. More importantly, these three phases are
very different from each other... so different that they should always be kept
distinctly separate. I've designated these phases Investigation, Analysis, and
Decision. Read on to see why.
Tahap 1: Investigation
The purpose of the investigation phase is to discover facts that show HOW
an incident occurred. During investigation, we are not concerned with what
didn't happen, or what should have happened -- the only concern is what
actually happened, without any judgement of value. Investigation deals with
facts in a value-neutral manner.
During the investigation phase, if you find yourself using words like "not",
"should", "error", "incorrect", "inappropriate", etc., STOP! You are injecting
value judgements into a practice that requires absolute neutrality. Facts
exist regardless of what we think or feel about them. Jumping too early into
what should have happened will obscure your vision of what did happen.
There may be times when required facts simply aren't available -- critical
evidence was destroyed in the process, or there were no witnesses to a
critical event. In such cases, you have some options. Consider secondary
sources that may not be conclusive, but could provide enough circumstantial
evidence to guide further investigation. Attempt to reconstruct the event
using plausible scenarios and then perform controlled tests to confirm or
deny the most likely explanations.
Regardless of the tools you use, the final product of the investigation phase
should be a factual representation of the incident. If some facts were not
available, and theory (backed up by testing) had to be used instead, ensure
this is clearly evident in the representation of the incident. This
representation should then be thought of as a complete script or plan for
reproducing the incident in detail. Only after you've reached this point
should you progress to the next phase, Analysis.
Tahap 2: Analysis
The purpose of the analysis phase is to discover reasons that explain WHY an
incident occurred. This is when you take the purely factual representation of
the incident and view it within the context of the system (or organization)
that created it. The values of the system (purpose, rules, culture, etc.) can
now be used to compare what actually happened against what should have
happened, at any point during the incident.
32
During the analysis phase, do not let yourself fall into the trap of believing
that the values of the system are always correct! You are not just analyzing
the incident itself, but also the system that created it. Mentally place
yourself within the incident, watch events unfold, and then determine if the
system's values were, for example: correct but inadequately applied,
insufficient to prevent the incident, or incorrect such that the system's
values actually created (or contributed to) the incident.
Don't get too caught up in the mechanics of the analysis tool being used.
Many tools are available to aid the analysis phase. Each has it's own
strengths and weaknesses, and preferred realms of application. For
example, if you're not getting any insight using barrier analysis, switch over
to change analysis. The point of any analysis tool is to provide insight, and in
some situations, one tool may be vastly superior to another.
Finally, do not let questions like "how can I fix this? ..." be considered during
the analysis phase. It is all too easy to let desired corrective actions colour
your perceptions of an incident's causes. However, analysis is about
discovering conditions that exist now or existed in the past. The future must
not enter into the equation. Jumping too early into what could be risks
obscuring your vision of what is.
Regardless of the tools you use, the final product of the analysis phase
should be a finite set of root causes for the incident that show why it was
inevitable. Yes, inevitable -- these are fundamental, latent conditions that
were just laying around waiting for some kind of trigger to activate. Only
after you've reached this realization should you progress to the next phase,
Decision.
Tahap 3: Decision
The purpose of the decision phase is to develop recommendations that
identify WHAT should be learned and WHAT needs to be done. In this phase,
we are concerned with correcting or eliminating the root causes of an
incident. This can only be accomplished if both learning and action occur.
Learning without action is mere mental trickery, while action without
learning is simply useless physical exercise. Both are required for long-term,
effective results.
During the decision phase, beware of overly-specific, conditional corrective
action recommendations! It is often tempting to save effort by cramming
one more feature or condition into an existing mechanism. However, doing
so often just adds complexity to a situation that has already shown itself to
be prone to failure. Do not be afraid to recommend complete redesign in
such situations.
In some situations, there may be several options available to correct or
eliminate a root cause. In such cases, a structured decision analysis method
should be used to gauge competing recommendations against criteria such
33
as simplicity, effectiveness, longevity, cost, etc. However, do not forget to
consider potential risks or side-effects of each recommendation as well. In
correcting one set of root causes, be sure you are not creating another set of
latent conditions or weaknesses that could lead to future (perhaps
completely different) incidents.
Finally, once it is decided which lessons must be learned and which actions
must be taken, make one final check. Evaluate the recommendations
against the original incident. Ask yourself "if we had known these lessons,
and had these measures in place, would the incident still have occurred?"
Similarly for the root causes, ask "... would these root causes still exist?"
Only when you can honestly answer "NO" to both of these questions do
you have a plan that has a good chance of being effective.
Diagram Pohon Keputusan dalam pengendalian bising (Sumber:
http://www.dot.ca.gov/ser/vol1/sec3/physical/ch12noise/chap12noise.htm
34
Catatan Penutup
Hopefully, by this point you have begun to understand why I've identified
three different phases of Root Cause Analysis and why they should be kept
separate. I hope this one final thought will help you understand completely:
the three phases of Root Cause Analysis differ in their balances of objectivity
versus subjectivity. Moving subjectivity too early into the process ultimately
destroys it's integrity.
 Investigation must be completely objective, in order to expose only
factual relationships.
 Analysis can be subjective, but only to the extent that different
systems or organizations have different values, some of which may
be contradictory or incorrect.
 Decision is subjective in that multiple options may exist to correct or
eliminate root causes, and selection of the right options must be
coloured by what we want our values to be in the future.
Finally, note that in this whole article, I've not taken us past the point of
deciding what to do. In other words, what about actually doing? In my
opinion, that's a completely different process, perhaps the subject of a
future article. All I will say at this point is that the Root Cause Analysis
philosophy outlined above fulfills the "Plan" portion of the "Plan-Do-CheckAdjust" cycle (PDCA). Hopefully, what I've written here will help you Plan
better!
Implementtation of the PDCA
PDCA cycle (Plan-Do-Check-Adjust) is broken down into 7 steps.
1.
2.
3.
4.
Problem Statement
The Problem Statement is a clear, concise and measurable description
of waste, rework or deviation from a standard (the norm). It should
explain WHO is experiencing the problem, WHEN they experienced the
problem, and WHERE they experienced the problem. The description
must be measurable, and should refer to the standard.
Goal Statement
The Goal Statement is the clear, concise, measurable and attainable
objective. It must include a precise target date to accomplish the goal.
The Goal Statement must mirror the problem statement.
Point of Cause
Think Cause and Effect. If the problem is waste or the deviation from
standard, then the point of cause is the physical time and/or location
the deviation is occurring. Apply the Because Equation to the problem
to help define the Point of Cause (The problem occurs BECAUSE of the
point of cause).
Root Causes
35
5.
The root cause is the underlying reason – often hidden or obscure –
that is creating the problem. If the PDCA does not identify and
eliminate the true root cause (or causes, there could be several of
them) then the problem will most likely come back. You get to root
causes through 5-Why Analysis and other PDCA tools.
Counter Measures
Counter measures — the “do” phase of the PDCA — are the actions
the PDCA group will take to eliminate the root causes, and ultimately
prevent the problem from recurring. These actions are specific
activities that have a clear function, a beginning and an end. Each
counter measure must tie back to a root cause, and each counter
measure must support achieving the goal statement. A counter
measure must have a begin date and a target date (or expected date
to complete). One member of the PDCA group is responsible for
ensuring the counter measure is implemented by the target date; that
group member may only assist in doing the actual work or many not
even be involved in the actual work, but he or she is ultimately
responsible to ensure that it happens.
Diagram PDCA (Sumber: http://www.yml.cc/en/pdca.html)
6.
Follow Up
This is the “Check and Adjust” phase of the PDCA. When the group first
plans the counter measures to be taken, they should schedule a time
to return to check on their success. This can be a week into the future,
a month, six months, a year – depending on the target date set in the
36
goal statement. If the counter measures were successful, standardize.
If the problem still exists – which happens – then adjust. That may
mean simply modifying the counter measure or stepping back and
reviewing the Point of Cause and Root Causes.
Follow-up is often the most ignored step in a PDCA cycle, and is
arguably the most critical.
7.
Standardization
Standardization is developing the logistics of the process so that work
is performed the same way across communities, companies, cities and
states. Standardization includes communication and education. The
group communicates the standard through sharing the PDCA, creating
a Standardized Work Instruction Sheet (SWIS), creating a Value Stream
or Process Map, updating a manual, among other tools. The group
educates through reviewing a SWIS at a team meeting, creating a
certification program, one-on-one coaching, and so on.
PDCA, singkatan dari "Plan, Do, Check, Act" (Indonesia: Rencanakan,
Kerjakan, Cek, Tindak lanjuti), adalah suatu proses pemecahan masalah
empat langkah iteratif yang umum digunakan dalam pengendalian kualitas.
Metode ini dipopulerkan oleh W. Edwards Deming, yang sering dianggap
sebagai bapak pengendalian kualitas modern sehingga sering juga disebut
dengan siklus Deming. Deming sendiri selalu merujuk metode ini sebagai
siklus Shewhart, dari nama Walter A. Shewhart, yang sering dianggap
sebagai bapak pengendalian kualitas statistis. Belakangan, Deming
memodifikasi PDCA menjadi PDSA ("Plan, Do, Study, Act") untuk lebih
menggambarkan rekomendasinya.
Plan (Rencanakan)
Meletakkan sasaran dan proses yang dibutuhkan untuk memberikan
hasil yang sesuai dengan spesifikasi.
Do (Kerjakan)
Implementasi proses.
Check (Cek)
Memantau dan mengevaluasi proses dan hasil terhadap sasaran dan
spesifikasi dan melaporkan hasilnya.
Act (Tindak lanjuti)
Menindaklanjuti hasil untuk membuat perbaikan yang diperlukan.
Ini berarti juga meninjau seluruh langkah dan memodifikasi proses
untuk memperbaikinya sebelum implementasi berikutnya.
37
Metode-metode untuk RCA
Maslow's Law of Problem Solving: If the only tool you have is a
hammer, every problem looks like a nail.
Wilson's Corollary: Even if a problem really is a nail, you've still got to know
whether to bang it in or yank it out.
This is a constant work in progress... the only root cause analysis tools
available for review at the moment are:
 Barrier Analysis: Analisis Kendala
 Change Analysis : Analisis Perubahan
 Causal Factor Tree Analysis: Analisis Pohon Faktor-Penyebab
 ...
Komparasi alat-alat analisis RCA
As a discipline, Root Cause Analysis (RCA) has been approached from
two different areas, industrial safety or performance improvement. The
industrial safety viewpoint is oriented primarily at preventing bad things,
while the performance improvement viewpoint is aimed at producing good
things. There is overlap between the two priorities, but overall, the differing
viewpoints have led to the development of different "schools" of RCA, with
different tools and philosophies.
There has historically been extensive research and development dedicated
to RCA tools for industrial safety (worker safety, process safety). The
requirements are well-known, a wide variety of tools have been developed,
and the strengths and weaknesses of specific approaches are understood.
(This is not to say that the tools are perfect, because they're not.) However,
the story is a little different in the performance improvement area. The
theoretical underpinnings are generally not as well-developed, and while
there are a number of tools available, there is less knowledge about the
usefulness of the various tools.
A recent study by Dr. Anthony Mark Doggett [Ref 1] tries to improve the
state of knowledge regarding three tools used widely in the performance
improvement school of RCA: the cause-effect diagram (CED), the
interrelationship diagram (ID), and the current reality tree (CRT). The
purpose of the study was to "...compare the perceived differences... with
regard to causality, factor relationships, usability, and participation." In
doing so, Doggett attempts to address the perception that "...one tool is as
good as another tool."
Note: Please have a look at my RCA Tools page if you're interested in
detailed information on other tools.
38
Hasil-hasil Statistik
A key feature of this study is that it is qualitative, and measures
perceived differences between the tools. The measurements were obtained
by having several groups of college students actually perform RCAs. They
were introduced to the tools, given opportunities to ask questions, and then
presented with a problem and asked to "...find the perceived root cause of
the problem." Afterwards, the students' perceptions were captured using
question surveys and analyzed statistically.
 Participation: No statistical differences (between the 3 tools) were
perceived regarding the ability to spark constructive discussion in a
group setting.
 Causality: No statistical differences were perceived regarding the
ability to identify interdependencies between causes, or to find root
causes.
 Factors: No statistical differences were perceived regarding the
ability to find factors (causes, effects, or both), or relationships
between them. However, post-hoc testing showed that the CED was
perceived to be better at categorizing factors.
 Usability: There were significant statistical differences observed in
this area. Generally, the CRT was judged to be much harder to use
than both the CED and the ID.
Contoh Analisis Faktor
Dalam kajian-kajian social seringkali peneliti membutuhkan pengembangan
pengukuran untuk bermacam-macam variabel yang tidak dapat diukur
secara langsung, seperti persepsi, perilaku, pendapat, intelegensi,
personality dan lain-lain. Faktor analisis adalah metode yang dapat
digunakan untuk pengukuran semacam itu. Tujuan dari analisis faktor
adalah untuk menggambarkan hubungan-hubungan kovarian antara
beberapa variabel yang mendasari tetapi tidak teramati, kuantitas random
yang disebut faktor. Vektor random teramati X dengann p komponen,
memiliki rata-rata μ dan matrik kovarian. Model analisis faktor adalah
sebagai berikut :
X 1  1   11 F1   12 F2  ....   1m Fm   1
X p   p   p1 F1   p 2 F2  ....   pm Fm   p
Atau dapat ditulis dalam notasi matrik sebagai berikut :
39
X pxl  μ( pxl )  L( pxm) F( mxl )  ε pxl
Dimana:  i  rata-rata variabel i ;  i  faktor spesifik ke – i;
faktor ke- j; dan  i j  loading dari variabel ke – i pada faktor ke-j
F j  common
Bagian dari varian variabel ke – i dari m common faktor disebut
komunalitas ke – i yang merupakan jumlah kuadrat dari loading variabel ke – i pada
m common faktor, dengan rumus :
hi2   2i 1   2i 2  ....   2i m
Tujuan analisis faktor adalah menggunakan matriks korelasi hitungan untuk
(1) Mengidentifikasi jumlah terkecil dari faktor umum (yaitu model faktor yang
paling parsimoni) yang mempunyai penjelasan terbaik atau menghubungkan
korelasi diantara variabel indikator. (2) Mengidentifikasi, melalui faktor rotasi, solusi
faktor yang paling masuk akal. (3) Estimasi bentuk dan struktur loading, komunality
dan varian unik dari indikator. (4) Intrepretasi dari faktor umum. (5) Jika perlu,
dilakukan estimasi faktor skor.
Kaiser Meyer Oikin (KMO)
Uji KMO bertujuan untuk mengetahui apakah semua data yang telah
terambil telah cukup untuk difaktorkan. Hipotesis dari KMO adalah sebagai berikut :
Hipotesis
Ho : Jumlah data cukup untuk difaktorkan
H1 : Jumlah data tidak cukup untuk difaktorkan
Statistik uji :
p
p
r
KMO =
i 1 j 1
p
p
r
i 1 j 1
2
ij
2
ij
p
p
   a ij2
i 1 j 1
i = 1, 2, 3, ..., p dan j = 1, 2, ..., p
rij = Koefisien korelasi antara variabel i dan j
aij = Koefisien korelasi parsial antara variabel i dan j
Apabila nilai KMO lebih besar dari 0,5 maka terima Ho sehingga dapat
disimpulkan jumlah data telah cukup difaktorkan.
40
Uji Bartlett (Kebebasan Antar Variabel)
Uji Bartlett bertujuan untuk mengetahui apakah terdapat hubungan antar
variabel dalam kasus multivariat. Jika variabel X1, X2,…,Xp independent (bersifat
saling bebas), maka matriks korelasi antar variabel sama dengan matriks identitas.
Sehingga untuk menguji kebebasan antar variabel ini, uji Bartlett menyatakan
hipotesis sebagai berikut:
H0 : ρ = I
H1 : ρ ≠ I
Statistik Uji :
rk 
ˆ 
1 p
 rik , k = 1, 2,...,p
p  1 i 1
2
r
 rik
p( p  1) i  k

( p  1) 2 1  (1  r ) 2
p  ( p  2)(1  r ) 2

Dengan :
r k = rata-rata elemen diagonal pada kolom atau baris ke k dari matrik R
(matrik korelasi)
r = rata-rata keseluruhan dari elemen diagonal
Daerah penolakan :
tolak H0 jika
T
p
2

(n  1) 
ˆ
(
r

r
)


(r k  r ) 2    2 ( p 1) ( p  2) / 2;

2  ik
(1  r )  i  k
k 1

Maka variabel-variabel saling berkorelasi hal ini berarti terdapat hubungan
antar variabel. Jika H0 ditolak maka analisis multivariat layak untuk digunakan
terutama metode analisis komponen utama dan analisis faktor.
41
Hasil-hasil Akar-Penyebab (Akar-Masalah)
Beyond the statistical results, the study examined the ability of the
students to identify root causes that were specific and reasonable. Note that
this factor was examined separately from the usability factor discussed
above.
 CED: In general, students using the CED were not able to identify
specific root causes, even though they perceived it to be better at
"... facilitating productive problem-solving activity, being easier to
use, and more readable."
 ID: Students using the ID were able to find (i.e., identify and agree
upon) root causes, but they were of mixed quality as regards
specificity and reasonability. Otherwise, the ID was perceived to be
no worse than the CED, in general.
 CRT: The students perceived the CRT as complex and difficult to use.
However, even though most students using the CRT were
uncomfortable doing so, the quality of their outputs was better.
They were able to find root causes most of the time, and with high
integrity in over half the cases.
Contoh CED = cause-effect diagram
Diagram CED Degradasi mangrove (Sumber:
http://thesisondisastermanagement.blogspot.com/2011_04_01_archive.html
42
Contoh aplikasi ID :
An Interrelationship Digraph is used to analyze the cause and effect relationships
that exist between ideas so that the key drivers and outcomes can be determined.
An Interrelationship Digraph consists of circularly positioned ideas with arrows
indicating the direction of influence of one idea upon another. Only the dominant
direction of influence is drawn, therefore arrows pointing in both directions
between ideas are not present in a traditional Interrelationship Digraph (ID).
The following steps show how a traditional ID is constructed.
1. Define an issue or problem and collect the related ideas (5 to 25 ideas).
2. Write the ideas on cards in large letters and arrange them in a large
circular pattern on a wall or other surface such that arrows can be easily
drawn between them.
ID untuk isu kemacetan lalu lintas (Sumber: http://www.sorach.com/items/pid/pid.php)
Contoh CRT = current reality tree
CRT pada dasarnya tool untuk mencari akar masalah seperti halnya fishbone
diagram. Bedanya crt digambarkan dari atas ke bawah.pada top diagram terdapat
gejala masalah. Pertanyaan why-why dapat kita angkat untuk mendapatkan apa
penyebabnya. Penyebabnya diletakkan di bawahnya dengan arah panah menuju
akibat (dalam hal ini gejala masalah). Hal ini terus dilakukan sehingga kita tidak
dapat lagi menemukan jawaban terhadap why. Dengan demikian tidak ada
pengelompokkan masalah seperti 4m / 5m dalam fishbone. Semuanya dibiarkan
bebas agar keterkaitannya dapat dilihat dengan jelas.
Pada prinsipnya “sebab” yang paling akhir di setiap ujung diagram akan menjadi
akar masalah yang harus dicari solusinya. Mungkin saja CRT berujung pada satu akar
masalah, mungkin juga banyak akar-masalah. Jika yang belakangan terjadi, dalam
terminologinya ada yang dikenal dengan core problem, yaitu akar yang
43
menyebabkan dampak terbesar ~ 80%. Walau angka ini bisa diperdebatkan, kalau
bercermin dari konsep pareto, maka kita tidak perlu ragu menggunakannya.
Pada prakteknya, diagram yang digunakan mirip dengan fault tree analysis, setiap
node dalam cabang masalah ini dikenal dengan UDE – undesireable effect. Solusi
atau injection (meminjam istilah pengobatan) pada akar dapat juga disertai injection
pada UDE karena boleh jadi ada prasyarat agar hasilnya lebih optimal.
Biasanya CRT digunakan untuk menggambarkan kondisi saat ini (as-is). Oleh
karenanya dengan CRT kita dapat mengetahui kondisi pencemaran lingkungan pada
saat ini. Kalau ingin membangun kondisi yang seharusnya (to-be or should be) maka
CRT dapat dimodifikasi dengan memberikan injection di bagian tertentu plus
wording-nya diubah sesuai dengan kondisi yang diinginkan (kalimat positif). Diagram
baru ini disebut FRT (future reality tree).
Sumber: http://www.pinnacle-strategies.com/
Theory%20of%20Constraints%20Jonah%20Thinking%20Processes.htm
Current Reality Tree (CRT, similar to the current state map used by many
organizations) — evaluates the network of cause-effect relations between the
undesirable effects (UDE's, also known as gap elements) and helps to pinpoint the
root cause(s) of most of the undesirable effects.
Future Reality Tree (FRT) - Once some strategies (injections) are chosen to
solve the root cause uncovered in the evaporating cloud and current reality
tree, the FRT maps the future states of the system to identify all
44
components of the solution required to completely eliminate the
undesirable effects.

Negative Branch or Branch - A subset of the Future Realty Tree, it
identifies potential negative outcomes of any action. The goal of the
Negative Branch is to understand the causal implications between
the action and negative outcomes so that the negative effect can be
avoided.
Sumber: http://www.pinnacle-strategies.com/
Theory%20of%20Constraints%20Jonah%20Thinking%20Processes.htm
45
Prerequisite Tree (PrT) - states that all of the intermediate objectives
necessary to carry out an action chosen and the obstacles that will be
overcome in the process.
Sumber: http://www.pinnacle-strategies.com/
Theory%20of%20Constraints%20Jonah%20Thinking%20Processes.htm
46
Transition Tree (TrT) - describes in detail the actions that will lead to the
fulfillment of a plan to implement a certain outcome, the expected
intermediate states and the assumptions of why one believes the actions
will work.
Sumber: http://www.pinnacle-strategies.com/
Theory%20of%20Constraints%20Jonah%20Thinking%20Processes.htm
47
Strategy & Tactics Tree (S&T) - a tool to develop and integrate
strategy and tactics to achieve significant objectives. It uses many of
the underlying logic structures of the thinking process tools to
create synchronized implementation tactics that can be evaluated
and tested.
Sumber: http://www.pinnacle-strategies.com/
Theory%20of%20Constraints%20Jonah%20Thinking%20Processes.htm
48
Checklists Akar-Masalah
Visi Akar-Masalah (The Root Cause Vision)
A vision of how an organization would look if it had a fully developed culture
of continuous improvement, from The Root Cause Vision.
1. Continuous improvement is acknowledged by all as a core business
activity.
2. Root cause thinking has permeated all levels of the organization.
3. The seeking out of underlying truths has become instinctual.
4. We respond to problems quickly and rationally, with appropriate
focus and engagement.
5. We do not waste time or energy on blame; learning is the focus.
The Root Cause Way
One expression of the basis for root cause analysis, from The Root Cause
Way.
1. Problems occur as a result of cause and effect.
2. The severity (or significance) of a problem is more dependent on the
system landscape than on the nature of the initiating disturbance
(the immediate active and permissive causes).
3. The immediate causes of a problem are usually caused by something
else that is more important.
4. Causes almost always come in groups (or, it is rare that any given
effect is the result of just a single isolated cause).
5. Cause and effect form a continuum that can be traced from the
point of occurrence, back to some underlying, fundamental cause or
set of causes.
6. Some of the fundamental causes for a given problem may be very
far removed from the point of occurrence.
7. The fundamental causes shape the landscape in which our systems
and processes operate.
8. The fundamental causes can be found through investigation and
analysis.
9. If fundamental causes are modified appropriately, the conditions
necessary for occurrence of the problem will cease to exist...
thereby preventing recurrence of the problem.
10. The activity by which fundamental causes are found and corrected is
called Root Cause Analysis.
49
Incident Response
Initial questions to ask the next time you experience a problem, from
Patterns of Response.
1. What is the current, actual impact of the problem?
2. What is the potential impact if the problem is not solved?
3. What level of risk are we willing to live with, that is also supportable
from a moral/legal/contractual viewpoint?
4. What would be an acceptable outcome that balances risk, cost, and
benefit?
Uji Logika Faktor-Penyebab (Akar-Masalah)
Fundamental logic checks to employ for verification of any and all causal
claims arrived at through investigation or analysis, from Five-by-Five Whys.
1. What proof do I have that this cause exists? (Is it concrete? Is it
measurable?)
2. What proof do I have that this cause could lead to the stated effect?
(Am I merely asserting causation?)
3. What proof do I have that this cause actually contributed to the
problem I'm looking at? (Even given that it exists and could lead to
this problem, how do I know it wasn't actually something else?)
4. Is anything else needed, along with this cause, for the stated effect
to occur? (Is it self-sufficient? Is something needed to help it along?)
5. Can anything else, besides this cause, lead to the stated effect? (Are
there alternative explanations that fit better? What other risks are
there?)
Pertanyaan tentang Human Error
Questions for probing the reasons for events that appear to be caused by
human error, from Human Error.
1. Was the possibility of the error known? *
2. Were the potential consequences of the error known? *
3. What about the activity made it prone to the occurrence of the
error?
4. What about the situation contributed to the creation of the error?
5. Was there an opportunity to prevent the error prior to it's
occurrence? *
50
6. Once the error was committed, was there any way to recover from
it? *
7. What about the system sustained the error instead of terminating
it?
8. What fed the error, and drove it to become a bigger problem?
9. What made the consequences as bad as they were?
10. What (if anything) kept the consequences from being worse?
* If YES, why did the event proceed beyond this point? If NO, why not?
The BOGUS Test
A simple test for evaluating the quality / believability of root cause
statements, from The BOGUS Test.
1. Beyond Control: Some conditions are beyond our control, like
stupidity, gravity, or the weather. We can't make them go away, nor
can we change their fundamental natures. The problem is that by
identifying such a condition as a cause, we run the risk of deciding to
ignore it because its "beyond our control." The attribution of cause
should instead be made to a lack of protection against a hazard.
2. Obvious: At times, the cause of a problem seems completely
obvious -- so obvious that we can't resist naming it. Items that fall in
this category often involve actions by people, including "operator
error" and "lack of procedure compliance." Stopping at this point is
akin to finger-pointing, though. People do what they do for a reason,
good or bad... dig deeper and find out why.
3. Grandiose: Sometimes you hear cause statements that make you
wish you knew what the investigator was smoking. "We did not
leverage our core competencies to instill a culture of knowledge
discovery and effect a paradigm shift to agile performance..." is an
example of a grandiose cause statement. It would be better to say
something like "... we don’t learn from our past mistakes, and that is
hurting us." There is virtue in simplicity -- try to distill cause
statements down to their pure essence.
4. Unrelated: We often have more than one problem to deal with, and
it can be tempting to tie one problem to another in order to save
time and effort. However, in doing so we must ensure that we do
not attempt to "force-fit" an unrelated cause onto a different
problem. In trying to kill two birds with one stone, we might later
find that both birds are alive and well, and happily making new baby
birds that can't wait to grow up and come peck your eyes out.
5. Simplistis: Earlier I said that there is virtue in simplicity. However,
there is danger in being overly simplistic. We must recognize that
51
some problems are more complex than others, and may result from
the interaction of several different causes. If we don't identify all the
relevant interactions, we may miss something truly important.
The fields of incident investigation and root cause analysis are overabundantly supplied with acronyms, like E&CF, ETBA, MORT, MES, etc. After
much investigation, I've determined that to become really famous in this
business, you've got to have at least one acronym attributed to you.
Therefore, I hereby unleash the BOGUS test upon the world at large, as
defined by these five factors:
 Beyond Control
 Obvious
 Grandiose
 Unrelated
 Simplistic
Obviously, BOGUS is an acronym. What makes BOGUS better than most
acronyms, however, is that it is easily pronounceable, is spelled the same as
a real English word, and the meaning of that word is applicable to the
concept. In other words, it is the perfect acronym, and it is all mine! Well,
okay... you can use it too, but you should first read the explanatory text
below.
Beyond Control: Some conditions are beyond our control, like stupidity,
gravity, or the weather. We can't make them go away, nor can we change
their fundamental natures. The problem is that by identifying such a
condition as a cause, we run the risk of deciding to ignore it because its
"beyond our control." The attribution of cause should instead be made to a
lack of protection against a hazard.
Obvious: At times, the cause of a problem seems completely obvious -- so
obvious that we can't resist naming it. Items that fall in this category often
involve actions by people, including "operator error" and "lack of procedure
compliance." Stopping at this point is akin to finger-pointing, though. People
do what they do for a reason, good or bad... dig deeper and find out why.
Grandiose: Sometimes you hear cause statements that make you wish you
knew what the investigator was smoking. "We did not leverage our core
competencies to instill a culture of knowledge discovery and effect a
paradigm shift to agile performance..." is an example of a grandiose cause
statement. It would be better to say something like "... we don’t learn from
52
our past mistakes, and that is hurting us." There is virtue in simplicity -- try
to distill cause statements down to their pure essence.
Unrelated: We often have more than one problem to deal with, and it can
be tempting to tie one problem to another in order to save time and effort.
However, in doing so we must ensure that we do not attempt to "force-fit"
an unrelated cause onto a different problem. In trying to kill two birds with
one stone, we might later find that both birds are alive and well, and happily
making new baby birds that can't wait to grow up and come peck your eyes
out.
Simplistic: Earlier I said that there is virtue in simplicity. However, there is
danger in being overly simplistic. We must recognize that some problems
are more complex than others, and may result from the interaction of
several different causes. If we don't identify all the relevant interactions, we
may miss something truly important.
The best defenses against BOGUS cause determinations are rigorous
application of necessary and sufficient logic during an investigation, and
requiring corroborating evidence for every causal claim. Then when you're
done investigating, use the BOGUS test as a final check of root cause
statements, prior to developing corrective actions. Think of it as a quality
control check of your root cause analysis.
Alternatively, you might want to use the BOGUS test if you're responsible for
giving final approval for implementation of a corrective action plan. Please
do me a favour, though... if you do decide to reject a report because of the
BOGUS test, don't tell the report's author about me. I don't need that kind
of attention!
53
ANALISIS KENDALA (BARRIER ANALYSIS)
Deskripsi
Barrier analysis is an investigation or design method that involves the tracing
of pathways by which a target is adversely affected by a hazard, including
the identification of any failed or missing countermeasures that could or
should have prevented the undesired effect(s).
Pros and Cons
Pros




Conceptually simple, easy to grasp.
Easy to use and apply, requires minimal resources.
Works well in combination with other methods.
Results translate naturally into corrective action recommendations.
Cons




Sometimes promotes linear thinking.
Sometimes subjective in nature.
Can confuse causes and countermeasures.
Reproducibility can be low for cases that are not obvious or simple.
Definisi-definisi
Barrier: A construct between a hazard and a target, intended to prevent
undesired effects to the target. A barrier is often passive, i.e. it’s protective
nature is inherent to it’s structure, and no additional action on the part of
any agent is required to afford this protection.
Control: A mechanism intended to prevent undesired effects to the target. A
control is often active, i.e. it’s protective nature is brought into being
through the actions of an agent.
Countermeasure: A barrier or control intended to cut off a pathway
between hazard and target.
Hazard: An agent that can adversely affect a target.
Pathway: A route or mechanism that provides the means, or medium,
through which a hazard can affect a target.
Target: An object that requires protection, or needs to be maintained in a
particular range or set of conditions.
Diskusi
At the heart of barrier analysis is the concept of the target. The primary
quality of a target is that it exists under a specified range or set of
conditions, and that we require it to be maintained within that specified
54
range or set of conditions. This very general quality means that almost
anything can be a target -- a person, a piece of equipment, a collection of
data, etc.
Given the concept of the target, we then move to the means by which a
target is adversely affected. By adverse effect, we mean that the target is
somehow moved outside of it's required range or set of conditions. Anything
that does this is called a hazard. This is a very general quality -- almost
anything can be a hazard. However, it is possible to uniquely define
hazard/target pairs by the pathways through which hazards affects targets.
Having identified hazards, targets, and the pathways through which hazards
affect targets, we arrive at the concepts of barriers and controls. These are
used to protect and/or maintain a target within it's specified range or set of
conditions, despite the presence of hazards. The primary quality of a barrier
or control is that it cuts off a pathway by which a hazard can affect a target.
Barriers and controls are often designed into systems, or planned into
activities, to protect people, equipment, information, etc. The problem is
that design and planning are rarely perfect. All hazards may not be identified
beforehand, or unrecognized pathways to targets may surface. In both of
these cases, appropriate barriers and controls may not be present. Even if
they are present, they may not be as effective as originally intended. As a
result, targets may lack adequate protection from change or damage.
The purpose of barrier analysis is thus to identify pathways that were left
unprotected, or barriers and controls that were present but not effective. All
pathways relate to specific hazard/target pairs, and all barriers and controls
relate to specific pathways. Success in barrier analysis depends on the
complete and thorough identification of all pathways.
Konsep-konsep
Energi dan Perubahan
The concept of energy has historically been used to characterize the
pathways by which hazard affects target. Very generally, energy is any
physical quantity that can cause harm. There are many types of energy,
including electrical, mechanical, hydraulic, pneumatic, chemical, thermal,
radiation, etc. Note again that these are all physical quantities, and can only
be used to describe physical hazards. Consequently, the types of barriers
and controls that can be considered are primarily physical in nature, or
relate to physical harm.
More recently, hazard pathways have been characterized by the concept of
change. This concept is based on the recognition that any change in a
target's condition, physical or otherwise, could be detrimental or undesired.
This allows us to consider hazards and damage mechanisms other than the
purely physical, and can lead us into areas that are more administrative,
55
knowledge based, or policy based in nature. Furthermore, the concept of
change does not prevent us from investigating purely physical phenomena.
The pathway characterization (or viewpoint) affects the types of hazards,
targets, and damages that will be seen and considered during investigation
and analysis. Investigation from a purely energy-based viewpoint will tend to
concentrate on physical, energy-based hazards and damage mechanisms.
Alternatively, a change-based viewpoint can be used to find both physical
and non-physical damage pathways. For this reason, it is recommended that
a change-based characterization for hazard/target pathways be adopted for
general usage.
Efektivitas Umpan-balik
Recall that the purpose of a barrier or control (i.e., countermeasure) is to cut
off a pathway by which hazard affects target. Many options may be available
for cutting off a hazard/target pathway, and some options may be more
effective than others. Some variables that can be used to differentiate
various countermeasures include action, placement, function, and
permeability.
Action: This refers to whether the countermeasure is passive or active.
Passive constructs (i.e., barriers) tend to be more effective than those
requiring action or intervention (i.e., controls).
Placement: This refers to the location (in space, time, sequence, etc.) of a
countermeasure along the hazard/target pathway. Those located closer to
the hazard end of the pathway are often more effective than those located
closer to the target.
Function: This refers to how the countermeasure cuts off the hazard/target
pathway. Those that prevent creation, accumulation, or release of a hazard
tend to be more effective than those that harden, warn, or rehabilitate the
target.
Permeability: This refers to the extent that the countermeasure cuts off the
hazard/target pathway. Those that completely cut off the pathway tend to
be more effective than those that only limit or reduce the hazard.
Given the variables above, it is easy to say that the most effective
countermeasure against a potential hazard would be a hard, passive barrier
at the source that completely prevents creation of the hazard. This is rarely
(if ever) practical, however. We are then forced into designing or planning
countermeasures that merely reduce risk. This means that no single
countermeasure can ever be 100% effective.
Reduction of risk to acceptable levels often requires the use of multiple,
diverse countermeasures. Multiple, because usually no single
countermeasure can provide the required risk reduction. Diverse, because
56
the possibility of common-mode failure itself increases overall risk. Barrier
analysis thus needs to consider all the following:
where countermeasures should have been provided, but were not;
how existing countermeasures failed to prevent undesired change;
whether an appropriate mix of multiple and diverse countermeasures was
provided;
and
if the overall risk of undesired change was acceptable.
Kelemahannya
The use of barrier analysis presupposes that countermeasures were
considered during the design of a system, or planning of an activity. The
results of a complete and thorough barrier analysis may identify many
opportunities to create new countermeasures, or to improve existing
countermeasures. However, given the same consequence to investigate,
different investigators might propose any of the following (or variations
and/or combinations thereof) as root causes:
 preliminary hazard analysis was inadequate;
 appropriate countermeasure was not provided;
 inappropriate countermeasures were provided;
 existing countermeasure was inadequate;
 existing countermeasure was not properly employed;
 existing countermeasure was rendered inoperative;
 hazard was not controlled;
 target should not have been exposed to hazard;
 etc.
All these statements may be true. However, such variability makes it
extremely difficult to rely on barrier analysis alone as a root cause analysis
tool. It is therefore recommended that barrier analysis results always be
reviewed independently, and that barrier analysis never be used as the sole
method for determining root causes.
In the opinion of the author, the only statement above that qualifies as a
potentially valid root cause statement is the first, "preliminary hazard
analysis was inadequate." This statement could then be qualified with
supporting evidence and analysis; in fact, all the other items listed might be
provided to illustrate how the preliminary hazard analysis failed.
57
ANALISIS PERUBAHAN (CHANGE ANALYSIS)
Deskripsi
Change analysis is an investigation technique that involves the precise
specification of a single deviation so that changes and/or differences leading
to the deviation may be found by comparison to similar situations in which
no deviation occurred.
Pros and Cons
Pros




Conceptually simple, easy to grasp.
Works well in combination with other methods.
Results translate naturally into corrective action recommendations.
Can be used to find causes that are obscure, or that defy discovery
using other methods.
Cons





Requires some basis for comparison.
Resource intensive, requires exhaustive characterization
deviation.
Applicable only to a single, specific deviation.
Provides only direct causes for a deviation.
Results may not be conclusive; testing usually required.
of
Definisi
PERUBAHAN: A discrete difference between an occurrence exhibiting the
deviation, and a similar occurrence that did not exhibit the deviation.
DEVIASI: A situation in which actual results or actual performance differed
from what was expected.
Diskusi
As suggested by the name of the technique, change analysis is based on the
concept that change (or difference) can lead to deviations in performance.
This presupposes that a suitable basis for comparison exists. What is then
required is to fully specify both the deviated and undeviated conditions, and
then compare the two so that changes or differences can be identified. Any
change identified in this process thus becomes a candidate cause of the
overall deviation.
What is a suitable basis for comparison? There are basically three types of
situations that can be used. First, if the deviation occurred during
performance of some task or operation that has been performed before,
then this past experience can be the basis. Second, if there is some other
58
task or operation that is similar to the deviated situation, then that can be
used. Finally, a detailed model or simulation of the task (including controlled
event reconstruction) can be used, if feasible.
Once a suitable basis for comparison is identified, then the deviation can be
specified. Various schemes exist for performing this specification. Perhaps
the most useful scheme (attributed to Kepner and Tregoe) involves four
dimensions (WHAT, WHERE, WHEN, and EXTENT) and two aspects (IS and IS
NOT). Regardless of the scheme used, the end result should be a list of
characteristics that fully describe the deviated condition.
Given the full specification of the deviated condition, it becomes possible to
perform a detailed comparison with the selected undeviated condition. Each
difference between the deviated and undeviated situations is marked for
further investigation. In essence, each individual difference (or some
combination of differences) is a potential cause of the overall deviation.
After the potential causes are found, each is reviewed to determine if it
could reasonably lead to the deviation, and under what circumstances. The
most likely causes are those that require the fewest additional conditions or
assumptions. In this way, a large list of potential causes can be whittled
down to a short list of likely causes. Finally, given the likely causes, the
actual or true cause(s) must be identified. Generally speaking, the only way
to verify which likely cause is the true cause is by testing.
The purpose of change analysis is thus to discover likely causes of a
deviation through comparison with a non-deviated condition, and then to
verify true causes by testing. True causes found using change analysis are
usually direct causes of a single deviation; change analysis will not usually
yield root causes. However, change analysis may at times be the only
method that can find important, direct causes that are obscure or hidden.
Success in change analysis depends ultimately on the precision used to
specify a deviation, and in verification of true cause through testing.
Konsep-konsep
Perubahan (Change)
Change is introduced in all factors of life continuously. Some sources of
change are planned, as in deliberate actions taken to achieve a purpose.
Other sources of change are unplanned, as in natural, random variation, or
as in factors introduced unintentionally due to outside influences or as the
result of error. Whatever the source, change is often a source of disruption
in the normal, expected, or usual flow of events. When change is not
accounted for or compensated, it can lead to deviations.
As discussed above, change analysis depends on the recognition of changes
or differences that could have led to a specific deviation. Sometimes,
however, multiple changes may have occurred over time that combine to
59
cause the deviation. Therefore, it is important for the investigator to
consider combinations of changes or differences as potential causes, in
addition to individual changes or differences.
Kesamaan (Kemiripan, Similarity)
Change analysis is heavily dependent on comparison with similar situations.
However, there are varying degrees of similarity, depending on how close
the undeviated condition is to the deviation under investigation. The best
case scenario for change analysis is when you have previous operational
history for the exact same task or operation. In this case, changes or
differences that could have contributed to the deviation are easily
identifiable.
The problem with trying to compare situations that are less similar is that
other, inherent differences in underlying conditions may mask differences
that were responsible for the deviation. Since each difference identified in
the change analysis procedure is considered a potential cause, the list of
potential causes may include some of these inherent differences -- which
may or may not bear any causal relation to the specific deviation under
investigation.
It therefore is critical that an appropriate basis for comparison be selected
when performing change analysis. Furthermore, inherent differences
between the actual deviated condition and the situation chosen for
comparison must be fully identified and handled with extreme care. Finally,
when verifying true cause by testing, the test condition must be made as
identical to the actual deviated condition as possible.
60
ANALISIS POHON-PENYEBAB (Causal Factor Tree Analysis)
Deskripsi
Causal factor tree analysis is an investigation and analysis technique used to
record and display, in a logical, tree-structured hierarchy, all the actions and
conditions that were necessary and sufficient for a given consequence to
have occurred.
Pros and Cons
Pros
 Provides structure for the recording of evidence and display of what
is known.
 Through application of logic checks, gaps in knowledge are exposed.
 Tree structure is familiar and easy to follow.
 Can easily be extended to handle multiple (potential) scenarios.
 Can incorporate results from the use of other tools.
 Works well as a master investigation/analysis technique.
Cons




Cannot easily handle or display time dependence.
Sequence dependencies can be treated, but difficulty increases
significantly with added complexity.
Shows where unknowns exist, but provides no means of resolving
them.
Stopping points can be somewhat arbitrary.
Definisi
CABANG: A cause-effect link from one item in the tree to another
immediately above it. This assumes the tree is drawn from the top down, i.e.
consequence on top and causes below it.
RANTAI: A continuous sequence of branches from one item that is lower in
the tree, through one or more intervening items, to one item that is higher
in the tree.
TITIK-AKHIR: An item in the tree that has no branches leading into it; the first
(or lowest) item in a chain leading to the final consequence.
A tree diagram, probability tree, or root cause analysis is geared more
towards thinking in terms of causality, while using a fishbone diagram tends to
make people think in terms of categorization. Using the fish bone diagram
loosely may result in a combination of the two approaches as the group
61
oscillates between categorizing different causes and asking "Why?" or "Why
else?".
Although It have never seen any reference for this technique, the following
rule can be used to distinguish between categorization vs. causality when
using a fishbone diagram:
Just as the main categories (Equipment, People, etc.) are highlighted by
placing a circle or box around them, if you include sub-categories in your
cause-and-effect diagram, circle the sub-category so you can distinguish
between categorization vs. causality.
The following tree diagram shows the difference between categorization
(grouping of causes) and causality (the tree).
Diagram Pohon untuk identifikasi “penyebab” (Sumber:
http://www.vertex42.com/ExcelTemplates/fishbone-diagram.html)
Diskusi
Tree structures are often used to display information in an organized,
hierarchical fashion: organization charts, work breakdown structures,
genealogical charts, disk directory listings, etc. The ability of tree structures
to incorporate large amounts of data, while clearly displaying parent-child or
other dependency relationships, also makes the tree a very good vehicle for
incident investigation and analysis. Combination of the tree structure with
cause-effect linking rules and appropriate stopping criteria yields the causal
factor tree, one of the more popular investigation and analysis tools in use
today.
Typically, a causal factor tree is used to investigate a single adverse event or
consequence, which is usually shown as the top item in the tree. Factors
62
that were immediate causes of this effect are then displayed below it, linked
to the effect using branches. Note that the set of immediate causes must
meet certain criteria for necessity, sufficiency, and existence. More
information on what constitutes a necessary and sufficient cause can be
found in this article on the definition of cause. Proof of existence requires
evidence.
Once the immediate causes for the top item in the tree are shown, then the
immediate causes for each of these factors can be added, and so on. Every
cause added to the tree must meet the same requirements for necessity,
sufficiency, and existence. Eventually, the structure begins to resemble a
tree's root system. Chains of cause and effect flow upwards from the
bottom of the tree, ultimately reaching the top level. In this way, a complete
description can be built of the factors that led to the adverse consequence.
Often, an item in the tree will require explanation, but the immediate causes
are not yet known. The causal factor tree process will only expose this
knowledge gap; it does not provide any means to resolve it. This is when
other methods such as change analysis or barrier analysis can be used to
provide answers for the unknowns. Once the unknowns become known,
they can then be added to the tree as immediate causes for the item in
question.
Each new cause added to the tree should be evaluated as a potential
endpoint. When can a cause be designated as an endpoint? This is an object
of some debate. Several notable RCA practitioners use some version of the
following criteria:
 The cause must be fundamental (i.e. not caused by something more
important), AND
 The cause must be correctable by management (or does not require
correction), AND
 If the cause is removed or corrected, the adverse consequence does
not occur.
These three criteria, taken together, are basically just a statement of the
most-widely used definition for "root cause". An alternate set of criteria,
preferred by the author, is presented below. Note that these are all
referenced to the system being analyzed. (An article deriving and explaining
these criteria is forthcoming.)
 The cause is a system response to a requirement imposed from
outside the system, or
 The cause is a contradiction between requirements imposed from
within the system, or
 The cause is a lack of control over system response to a disturbance,
or
 The cause is a fundamental limit of the system design.
63
A causal factor tree will usually have many endpoints. The set of all
endpoints is in fact a fundamental set of causes for the top consequence in
the tree. This fundamental set includes endpoints that would be
considered both beneficial or detrimental; every one of them had to exist,
otherwise the consequence would have been different. Endpoints that
require corrective action would typically be called root causes, or root and
contributing causes if some scheme is being used to differentiate causes in
terms of importance.
Creative Root Cause Analysis “Terminology” (Jack Oxenrider, 2011)
The imagery and metaphor of the Creative Root Cause Analysis (CRCA) logo
presents a symbol of a team working together to solve a complex problem,
with a clump of crabgrass representing a systemic problem. The
“terminology” of Creative Root Cause Analysis offers insight into the
process.
Sumber: http://www.oxenrideronsynergy.com/2011/09/creative-root-cause-analysisterminology/
Creative: A new and different approach through insight and intuition
Team:
Two or more people working together to accomplish a common
goal
Surface Problem: Obstacle that blocks the expectation
Root Causes: Factors that fuel (feed) the surface problem
Analysis: Logical, rational, viable inquiry
Solution: The course of action chosen to address causes and eliminate the
problem.
64
Diagram lingkar sebab-akibat perkembangan kota dengan permasalahan obesitas (Sumber:
Br J Sports Med 2009;43:109-113 doi:10.1136/bjsm.2008.054700)
The built environment and physical activity agenda provides a unique
opportunity for public health, physical activity and planning researchers to be
front and centre of a movement aimed at creating healthier and more
sustainable environments. However, in order to optimise environments that
encourage physical activity across the life course, researchers in this field need
to think beyond their “square” —that is, the target group, setting and physical
activity behaviour with which they work. We suggest that researchers working
in this field need a better understanding of systems theory to appreciate that a
change to one part of a complex system can positively and negatively influence
other parts of the system. An understanding of systems theory would help
minimise unintended negative consequences to other population subgroups or
to other types of physical activity from the implementation of our research
findings. In this way, a more comprehensive set of research, practice and
programme-related activities may emerge, which will advance physical activity
research and practice, and improve population health across the life course.
In summary, the causal factor tree is an investigation/analysis tool that is
used to display a logical hierarchy of all the causes leading to a given effect
or consequence. When gaps in knowledge are encountered, the tree
exposes the gap, but does not provide any means to resolve it; other tools
are required. Once the required knowledge is available, it can be added to
the tree. A completed causal factor tree provides a complete picture of all
the actions and conditions that were required for the consequence to have
occurred. Success in causal factor tree analysis depends on the rigour used
in adding causes to the tree (i.e., ensuring necessity, sufficiency, and
existence), and in stopping any given cause-effect chain at an appropriate
endpoint.
65
Contoh penggunaan Diagram-Pohon:
Sustainable development indicators: a scientific challenge, a
democratic issue (Paul-Marie Boulanger, 2008)
Social indicators, and therefore sustainable development indicators also, are
scientific constructs whose principal objective is to inform public policymaking. Their usefulness is dependant on trade-offs between scientific
soundness and rigor, political effectiveness and democratic legitimacy. The
paper considers in this perspective three important stages in the building of
sustainable development indicators: the identification of the various
dimensions underlying the concept of sustainable development, the process
of aggregating lower dimension indicators in higher level composite indices
and the attribution of weights at various levels of the indicators hierarchy.
More specifically, it assesses the relative fruitfulness for indicators
construction of the four most widespread conceptions of sustainable
development, in terms of domains or pillars (economy, society, and
environment), in terms of resources and productive assets (manufactured,
natural, human and social capitals), in terms of human well-being (needs,
capabilities) or in terms of norms (efficiency, fairness, prudence…). It
concludes with a plea for the construction of synthetic indices able to
compete with and complement the GNP as an indicator of development.
The construction of indicators: The successive phases - From concept to indices
66
The first phase consists in identifying the various dimensions constituting
the concept, given that these are always multidimensional. The concept of
poverty, for example, covers a material dimension, but also a social one
(exclusion, marginalisation) and also a cultural dimension (level of
education, means of expression). The material dimension is itself multifaceted; it includes financial components (income, level of indebtedness,
other financial burdens) and non-financial ones (health, housing, rights).
Each of these material dimensions is itself more or less composite. Income,
for instance, may or may not be monetary. A further point is that the
regular or precarious nature of income matters more sometimes than the
level of income at any particular time.
Agregasi
Aggregation is the operation consisting in condensing the information contained in
each criterion into one single item of information. This supposes that the following
questions receive an answer. Should the same weight be given to all the criteria
constituting the index? Or should they be given different weights? And if so, how?
What is the relationship between the index and the indicators? Is it a sum, a
product, or something more complicated?
In practice, both questions usually come down to a dilemma between a simple and a
weighted average. The question of weighting is a crucial and distinctly difficult one.
It consists in attributing a weight, and therefore a specific value to the various
dimensions of the concept. For instance, in the case of a poverty index, it could
consist in giving more weight to the material dimension than to the social (isolation,
exclusion) or cultural dimensions.
Dimensions and indicators making up an index can be represented in the form of a
tree diagram, the concept being the trunk of the tree and each branch representing
one of the dimensions, with each branch breaking down into sub-branches ending
up with the leaves representing the actual indicators. At each branching out, a
weighting can be attributed to the branches arising there, with at the end the leaves
to which is attached a weight equal to the product of the coefficients of the subbranches and the branches from which they arise.
67
Tree diagram of dimensions and indicators (Sumber:
http://sapiens.revues.org/166#tocfrom2n3)
It is an example of a tree diagram of this kind where the concept of sustainable
development is broken down into three dimensions corresponding to the famous:
Economic, Social and Environmental pillars. Only the Economic branch is further
developed, with two constituting dimensions, Performance and Resilience.
Performance is evaluated with the help of two indicators: two growth rates (GDP
and Productivity). The Resilience sub-branch also gives rise to two dimensions:
Diversity and Innovation. The cascading weighting process is illustrated by the final
weight of each indicator, which is the product of all the previous weights and its
own. Thus the GDP growth rate is given a 0.16 weighting, i.e. the product of its own
specific weight 0.8, of the 0.6 weight of the "Performance" branch, and the 0.33
weight of the "Economics" branch.
Contoh Penggunaan Diagram Pohon:
Analisis Pencemaran Sungai
Analisis akar masalah dan Pohon-Masalah
In order to understand a situation to be influenced by a project, it is essential to be
aware of problem conditions which constitute development constraints as well as
their causes. Problem analysis identifies the negative aspects of an existing situation
and establishes the « cause-effect » relationship between the problems identified.
Precise description of problems as deviations between some desired conditions and
68
the status quo, and the major root causes of the situation need to be identified in
order to devise effective ways of dealing with them. Problems and their interrelationships can be identified and visualized using the so-called “problem tree”.
The problem tree is a diagram showing the cause–effect relationships between
problem conditions in a defined contest.
How to proceed:
1. Define precisely the situation (sector, subsector, area, and so on.) to be
analysed;
2. Define some (approximately five) major problem conditions related to the
selected situation;
3. Organize the problem conditions according to their cause –effect
relationships;
4. Add additional problems, thus describing causes and effects; and
5. Check the diagram (tree) for completeness (most relevant conditions) and
logical order.
Berikut adalah contoh “Pohon-Masalah” pencemaran sungai menurut pedoman EC
PCM:
Analisis Tujuan dan Pohon-Tujuan
It is important to identify, on the basis of the problem analysis, the objectives and
results that the project is intended to achieve. If there is no secure commitment
from all the parties concerned to the project’s objectives and results, then friction
69
may occur among stakeholders, leading to poor project implementation. The
problem structure shown in the problem tree can serve as a basis to identify and
visualize potential objectives a project might want to achieve. The objective tree is
created by transforming the hierarchy of problems into a hierarchy of objectives
describing future conditions which are desirable and realistically achievable. The
objective tree can form the basis for further decision -making on alternative
interventions (projects) that would aim to influence a given situation.
Bagaimana proses selanjutnya:
1. Reformulate the problems as objectives;
2. Check the logic and plausibility of the means- to-ends relationship;
3. Adjust the structure wherever necessary and revise statements;
4. Delete objectives that are not desirable;
5. Check whether rewording will lead to meaningless or ethically questionable
statements; in that case, reformulate the objective or indicate that this
problem cannot be solved in the given context; and
6. Add new objectives if they appear to be relevant and necessary in order to
achieve the stated objective at the next higher level.
Berikut ini adalah contoh Pohon-Tujuan untuk pencemaran sungai dari Pedoman EC
PCM:
The situation analysis is concluded with the selection strategy, i.e. the exercise of
synthesising a significant amount of information then making a complex judgement
about the best implementation strategy (or strategies) to pursue. The figure below
summarizes the passage from the situation analysis to planning:
70
71
SEKUENS PROBLEM-SOLVING YANG SISTEMATIK
“Masalah” dapat terjadi sepanjang waktu. How we choose to respond is a
major factor in determining how badly we will be affected by any given
problem. I would argue that a systematic response is best, and furthermore,
It is proposed a 9-stage sequence as discussed in this article.
If you are already familiar with other problem-solving methodologies, like
8D or DMAIC, some aspects of the recommended sequence may seem
familiar to you. I believe the sequence proposed below is more
comprehensive than either of those, but is also compatible with them.
Ada Sembilan tahapan yang berurutan, dan semuanya itu dapat
dikelom[pokkan menjadi tiga kelompok, yaitu:
RESPOND MITIGATE ASSESS... (Problem Response)
INVESTIGATE ANALYZE DESIGN... (Root Cause Analysis)
EXECUTE REVIEW ADJUST... (Corrective Action)
Much more could be written about these groupings, and the problem
solving sequence in general, but I'll let it go for now. Just keep in mind the
intent of presenting such a thing is to provide a structured framework for
solving problems, not to box you in or limit you unnecessarily. Please use
this if you think it will be helpful; otherwise, ignore it!
1. RESPOND - Respond to the problem: address injury/damage that
has already been caused, make appropriate notifications,
preserve/quarantine evidence to the extent possible, initiate
cleanup actions.
2. MITIGATE - Mitigate the immediate causes: take action to reduce
the production and/or release of the bad thing, enhance protections
against it, find a way to eliminate it or minimize it.
3. ASSESS - Assess risk: determine extent of condition, review
adequacy of measures in place, assess risk of further harm, decide if
deeper analysis required.
4. INVESTIGATE - Investigate the how: track the actual sequence of
events, figure out what changes of state took place, determine the
script behind the problem.
5. ANALYZE - Analyze the why: break down the script and determine
critical points, figure out what should have happened, find the gaps
between actual and expected, uncover key forcing factors,
determine extent of cause.
6. DESIGN - Design the solution: find the weaknesses, pick the points
of most leverage, develop solution options, decide on best
combination of actions, validate the plan, get buy-in and funding.
72
7. EXECUTE - Execute the plan: develop timeline, obtain materials,
marshall resources, initiate action, monitor performance, verify
completion.
8. REVIEW - Review effectiveness: check for recurrence of original
problem, check for instances of related problems, verify actions
taken still relevant, assess continued risk.
9. ADJUST - Adjust the plan: address deficiencies in execution, assess
effects of changes from outside the plan, identify new/revised
actions needed to ensure effectiveness.
Stages 4 - 6 above are discussed more thoroughly in Phases of Root Cause
Analysis... however, note that the phase previously referred to as Decide is
now designated Design. I just thought Design captured the intent better.
73
METODE RCA - PERISTIWA BESAR ATAU KECIL ?
Root Cause Analysis (RCA) can be applied to events of any size or
significance. However, it's usually applied to large events, i.e. those with
serious consequences. Even so, it can and should be applied to smaller
events as well. Statistically, smaller events are more likely to occur than
larger events. Thus, application of RCA to small events may identify many
significant opportunities for improvement.
Given that smaller events are more likely to occur, should we focus our RCA
efforts solely on smaller events? This would have the advantage of ensuring
that we have a statistically significant sample from which to draw learning
opportunities. Why, then, do we expend so much effort applying RCA to
large events if we can get the same (or better) benefits by focusing on small
events? This idea could be expressed as follows:
Little events happen all the time. We should analyze each little event. After
we have enough observations, we will have a statistically significant sample.
This should be the basis for our learning.
Instead, we analyze the big events because they catch our attention. Big
events come around only once in a while. We spend a lot of time
investigating them. However, we have only one sample point. Therefore, our
results have little statistical significance.
By emphasizing investigation of the big events, we are potentially learning
the wrong things because we may be placing too much emphasis on issues
that have very little statistical significance.
Is this a valid idea? Should we emphasize RCA of small events, and perhaps
do away with RCA of large events altogether? I'll try to answer that question
in this article.
There is a common belief that large events and small events have the same
causes. Therefore, it is assumed that by analyzing small events and applying
lessons learned from them, we prevent large events as well. However, using
this strategy, do we limit the severity of potential future events?
Suppose we analyze only small events. We'll have a lot of data on common
event initiators and latent conditions. As we'll have a lot of data,
we'll develop a very good understanding of the events and our corrective
actions will be very good. We'll knock down the frequency of these events
by a significant amount, perhaps even eliminate them completely.
Again, we have to ask the question, have we limited the severity of potential
future events? If we assume that all events, large and small, have the same
root causes, then the answer is yes. Is this true though? What makes a small
event different from a large event?
74
Speaking very generally, it's the interaction of various latent conditions.
Some of these latent conditions may be deeply embedded in the operations
of our systems. They may be very subtle conditions that will not be activated
very often. With a low probability of occurrence, we won't have much data
on them and we may not have any protections against them.
They may be very simple conditions that, under ordinary circumstances,
cause no problems for us. Its when circumstances change in unexpected
ways that these kinds of conditions become a real danger. An event that
might ordinarily terminate with very low consequences could, under less
common circumstances, terminate with very serious consequences.
Consider a condition like grinder kickback. This can occur when using a
grinder because the grinder "catches" on whatever's being worked on, and
the rotational force of the spinning grinder wheel causes the entire tool to
kick back toward the operator. Standard safety precautions while using such
a tool include maintaining a proper stance and appropriate distance from
the grinder. Kickback is a known condition, and under most conditions, is
easily compensated for.
Now, throw in a twist. A worker decides that, in a standing or kneeling
position, he can't get a good angle on whatever he's grinding. He decides
that the best, fastest way to get the job done is to lie down on the floor, and
hold the grinder above him to get at the bottom of the piece he's grinding.
He has every intention of being very careful. However, he has just removed
his ability to avoid a kickback if it occurs. The weight of the grinder is now
working against him, as well.
The job starts out fine. Then the grinder catches on something. It kicks back.
The worker can't avoid it. The mechanics of the event are such that the
grinder moves laterally towards the worker's head. The worker receives an
extremely serious laceration to his face.
This is a "large" event. You would never have expected it to happen. The
circumstances of the event were unusual. The probability of the event
happening again appears to be low. Should we subject this event to a
detailed root cause analysis?
Of course we should! We should investigate and analyze the heck out of this
event. However, we must not limit ourselves to the question of "why did the
worker use the grinder that way." We must instead find out "what is it about
the way we do business that: set up this situation, forcing the worker to
make this choice; convinced the worker that he needed to do the job this
way; kept him from taking more time to get a different tool or to rotate the
piece he was working on."
I'm not making this up. It actually happened two years ago. The worker
required extensive reconstructive surgery to one side of his face. It was pure
luck that he didn't lose his nose or one of his eyes.
75
In conclusion, my belief is that we must investigate and analyze the
sporadic, large events. So what if the probability of occurrence is low?
Remember that risk is probability times consequences. If the potential
consequences are high, we must do what we can to prevent those
consequences from occurring -- even if it is a low probability event.
Sometimes, a sample of one is more significant than a sample of thousands.
76
MODEL DALAM RCA
Model merupakan representasi dari realita. Model ini dapat rinci atau
abstrak, komplex atau sederhana, akurat atau misleading. Whether we
realize it or not, everything we perceive is processed using models.
Therefore, it is important for us to understand how models can help us to
understand reality, yet may also mislead us if not used with appropriate care
and attention.
Model digunakan secara luas dalam analisis akar masalah. Probably the
most fundamental of these is the model of causation. There are models
based on manipulability, probability, counterfactual logic, etc. This is an area
of considerable complexity, as no single model seems to address all possible
situations.
The counterfactual logic model of causation is used most often in root cause
analysis, as it is the easiest to grasp and is generally the most useful. It is the
model that gives us the necessary and sufficient test, and for this alone, it's
usefulness to the investigator or analyst is boundless. However, even this
model fails under certain circumstances.
Consider the statement "smoking causes cancer" -- can this statement be
proven (or disproved) using the necessary and sufficient test? Not really.
However, despite it's difficulties in certain areas, the counterfactual logic
model of causation is sufficient in the overwhelming majority of cases. This
is because it:
 easily guides our thought processes in a predictable way,
 provides rules that can be applied unambiguously and repeatably,
 helps us ensure completeness in causal reasoning, and
 becomes unworkable in those special cases where it does not
provide good answers.
This last point might initially seem to be a disadvantage. How can a model
that becomes unworkable ever be beneficial? Consider it this way -- what if
we used an alternate model that happily gave us answers, well outside it's
range of applicability? We might very well continue using the model without
realizing that it no longer applied.
What other types of models do we employ in root cause analysis? In some
cases, we may develop engineering models for physical processes, in order
to understand how a failure occurred. In others, we might model an
industrial processes to show where bottlenecks are constraining throughput.
These types of models are used quite frequently, and generally require
77
specialized knowledge to use properly. However, the difficulty of developing
and using such models may actually pale in comparison to the modeling of
human behaviour.
The Three B Model of Human Behavior
The three B model of human behavior has three components that
coincidently start with B. Beliefs, Behaviors and Benefits.
Sumber: http://www.reallysimplebusinesstools.com/content/simplemodel-human-behavior)
Beliefs - Beliefs are determined by an individuals past experiences - the
past positive and negative benefits that have been recieved - or by the
expected future benefit. For example I believe that I will get a bonus if I
work very hard because I did last time (or the negative I believe I will be
ignored and no one will care if I work hard because that is what happened
last time). There are very strongly held beliefs (values) and weaker ones.
You aren't going to change someone's core beliefs without momentous
effort, so you should focus on the weaker held beliefs. Hire for the strong
beliefs and coach and guide someone to change the weaker ones such as
the example above.
Behaviors - Behaviors are beliefs in action. These actions are visible, and
can be observed. For example Sue stays late to get a project done and
completed to high quality.
Benefits - Benefits can be either positive or negative. The more immediate
the benefit, the more powerful the impact on beliefs and future behaviors.
It is important to note that benefits can be intrinsic or extrinsic and that the
benefit is only what the person persieves the benefit to be. So if you give
someone a bonus but this person doesn't value money as much as praise
they won't get the benefit you intended them to get. Also people can get
intrinsic benefits such as feeling proud for their work.
78
We need models of human behaviour because humans are so incredibly
complicated. Such models must account for information input and
processing, communication, motivation, learning, decision, fatigue... the list
goes on and on. Then, on top of models for individual human behaviour, we
must add models for group, organizational, and societal behaviour and
interaction. The problem seems intractable. Nonetheless, several
generalized models do exist.
One step above the models of human and organizational behaviour are
models of accident initiation and propagation. The driver for research
interest in this area is obvious, as industrial accidents are potentially the
most damaging events that can occur. Death and destruction, possibly on a
large-scale, are the consequences. It is hoped that by understanding how
accidents occur, we can find strategies to reduce the risk of such events.
Accident models, in fact, tend to be models of human and organizational
behaviour. What makes accident models different is the sharp focus on
failure propagation. The underlying assumption tends to be that accidents
start as relatively simple, minor events that eventually spiral out of control.
In fact, most recently developed accident models tend to be system models
that focus attention on complex interactions between multiple, lower-level
failures or infractions.
In the end, we are left with models upon models upon models... each with
their own rules and assumptions, strengths and weaknesses. As stated
previously, models are useful because they help us abstract away
unimportant data so we can increase our focus on useful information. This is
the strength of using models; unfortunately, it is also the main weakness. If
models are used without knowledge of their assumptions and limitations,
we could end up discounting potentially important facts and misdirecting
our investigations.
There is no single "model of everything" we can rely upon to provide good
answers in all cases. However, we shouldn't be fooled into thinking that the
various models can't help us achieve better root cause analysis results.
Models can guide us to possibilities we might have missed, and provide
insights that we might not have seen. The key success strategy may well be
to have knowledge of a wide variety of models that can be used in a variety
of situations. Then, as with anything else in life, we must simply ensure that
we understand the tools we use, before we use them.
79
MODEL: What is an Ecosystem?
An ecosystem is a group of living and non-living components interacting
together on a given physical landscape. The size of an ecosystem is arbitrary
and could be as small as a few square centimeters if you are looking at a soil
microbial ecosystem; as large as thousands of square kilometers if you are
looking a biome like the Great Plains ecosystem; or a few hectares if you are
looking at a single forest stand ecosystem.
One way to learn more about how a forested ecosystem works is to build a
model.
An ecosystem model is an accurate but simplified representation of an
ecosystem that can be very useful in thinking about or simulating the actions
of a real ecosystem. Because any ecosystem has many different but
interrelated components, the best way to understand the system is to break
it down into its component parts. To get an introduction to a very simplified
forest model, see our Forest Ecosystem Gamewhich gives participants and
introduction to how a hardwood forest ecosystem works before and after
exotic earthworms invade.
Step One:
The first step in building a graphical model of a hardwood forest ecosystem
is to identify its major components.
The components of any ecosystem are those physical things that contain
energy and nutrients. In a graphical Forest Ecosystem, these components
are often illustrated using boxes like in Figure 1 below.
Some components of a graphical forest ecosystem illustrated using boxes
A forested ecosystem, by definition contains trees, so that is our first
component. In addition to the various species and layers of trees in a forest,
there are other distinct ecosystem components. For example, the
80
understory contains most of the visible plant life found between the sapling
layer and forest floor. The forest floor is where one would find most of the
plant roots, bulbs, fungi, seeds, years of accumulated leaves and twigs. The
soil is the “dirt” under the forest floor and is composed largely of minerals of
various grain size (very small grain size = clay…very large grain size = sand)
and organic material that has been mixed in with the mineral component. In
addition, there are numerous animals that live in the forest, and of course
we cannot forget people. We will add those two components to our forest
ecosystem model later.
Step Two:
Once you have identified the components of your ecosystem model, you
need to define the processes that connect the components. This is
graphically done by using arrows to indicate the flow of nutrients or energy
among the different ecosystem components.
The components of our ecosystem model are now connected by processes that result in
the movement of energy or nutrients among the components.
One thing to notice in our ecosystem model is that there is no process
connecting the trees component with the understory plants component.
81
This is because there are no substantial processes that result in the flow of
nutrients directly from a tree to an understory plant or visa-versa (the flow
of nutrients always goes through the forest floor first!). In a conceptual
diagram, there would be important relationships between the trees and
understory plants. For example, trees provide shade to the understory
plants. But remember, in an ecosystem model, only processes that result in
flow of energy or nutrients are represented. You will see why this is
important a little later.
Now let’s add the animals and the people components to our ecosystem.
You can see in Figure 3 below that energy & nutrients flow from the trees
and understory plants to the animals when they eat the leaves, twigs and
buds of trees or graze on understory plants; and when the animal excrete
waste products or die, energy & nutrients are returned to the forest floor
component. Since people are really just a special kind of animal, you can see
that energy & nutrients flow from the trees to people when they eat
something from a tree, like maple syrup… Read more.
We have added two components (people & animals) to our ecosystem model, along
with some processes connecting them to other components.
82
Step Three:
Determine the major inputs and outputs of your ecosystem. As you are
building your ecosystem model, one thing to think about is whether your
ecosystems could be opened or closed. A closed ecosystem is one that has
no inputs of energy or nutrients from outside the ecosystem and no outputs
of energy or nutrients leaving the system. The earth is an example of a
closed ecosystem with respect to nutrients and an open ecosystem with
respect to energy (see figure 4 below). All the nutrients that have ever been
on earth are here and simply continue to cycle, there are no additions or
losses. However, the earth is constantly getting inputs of energy from the
sun and simultaneously radiating energy back. The earth doesn’t heat up too
much or cool down too much because the earth’s energy balance is in a
relatively stable equilibrium, meaning that the amount of energy being input
and output are about equal.
The earth ecosystem and has no inputs or outputs of nutrients which are
constantly recycled within the global ecosystem, while the earth has both inputs
and outputs of energy that are in a relatively stable equilibrium.
Now, let’s examine some potential inputs and outputs of nutrients & energy
to our forested ecosystem (see Figure 5 below).
83
Just as the Earth ecosystem is closed with respect to nutrients, unmanaged
earthworm-free hardwood forest ecosystems are often very nearly closed
nutrient ecosystems that there are very few inputs or outputs of nutrients.
Rather the nutrients are constantly recycled among the various ecosystem
components. In contrast, most agricultural ecosystems require nutrient
inputs from outside to function properly.
Some typical inputs and outputs of nutrients and energy for forested ecosystems
include evapotranspiration, nutrient leaching, sunlight and rain.
Step Four:
Once you have identified the components, processes and major inputs and
outputs in your ecosystem model, then you can begin to add the actual
values to these parts of your ecosystem by measuring them. For example,
you could measure the amount of litter that falls to the forest floor each
year (a process), what the biomass of trees is in a given forest (a
component), how much light reaches the forest over a growing season (an
input), or how much nitrogen leaches from the forest (an output). Needless
84
to say, some of these things are easier to measure than others and for most
of these things it would be very hard to directly measure the value for a
whole forest. For example, it would be hard to catch every single leaf that
fell from the trees in a given year and weigh them all! So, researchers
estimate these values taking samples of the given measurement they want
to know. In the case of leaf litter, you can put out trays in the forest and
after all the leaves have fallen for the year, dry and weight the leaf liter in
your trays. They you can use that value to calculate an estimate of the total
leaf litter for your forest.
Step Five:
Use your ecosystem model to think about how changes can cascade through
an ecosystem or to ask specific questions that can be answered with further
research. When the major components, processes and inputs and outputs of
an ecosystem are understood, then you can use the model to see how
changing one part of the ecosystem affects other parts. For example, if you
harvest trees from your forest, that will decrease the amount of leaf litter
reaching the forest floor each year which may lead to decreases in available
nutrients for understory plants. This is the type of thing forest ecology
researchers often study.
For example, researchers may monitor soil nutrient levels for many years
after trees have been harvested to see how the real forest behaves
compared to what they thought might happen based on their forest model,
their understanding of how the forest works. If the results in the real forest
are very different than those predicted by their model, then they know that
they don’t have full understanding of how their forest works and they may
go back to try to improve their model.
85
An ecosystem that is in equilibrium doesn't gain or lose nutrients.
86
ANALISA AKAR MASALAH DENGAN WHY-WHY ANALYSIS
(Riyantono Anwar. 2011. http://belajarlean.blogspot.com/2011/09/analisa-akarmasalah-dengan-why-why.html)
Why why analysis (analisa kenapa kenapa) adalah suatu metode yang
digunakan dalam root cause analysis dalam rangka untuk problem solving
yaitu mencari akar suatu masalah atau penyebab dari defect supaya sampai
ke akar penyebab masalah. Istilah lain dari why why analysis adalah 5 whys
analysis. Metoda root cause analysis ini dikembangkan oleh pendiri Toyota
Motor Corporation yaitu Sakichi Toyoda yang menginginkan setiap individu
dalam organisasi mulai level top management sampai shopfloor memiliki
skill problem solving dan mampu menjadi problem solver di area masingmasing.
Metoda yang digunakan oleh why why analysis adalah dengan
menggunakan iterasi yaitu pertanyaan MENGAPA yang diulang beberapa kali
sampai menemukan akar masalahnya. Contohnya sebagai berikut:
Masalah: Mesin breakdown
1. Mengapa? Komponen automator tidak berfungsi
2. Mengapa tidak berfungsi? Usia komponen sudah melebihi batas
lifetime 12 bulan
3. Mengapa tidak diganti? Tidak ada yang tahu
4. Mengapa tidak ada yang tahu? Tidak ada jadwal rutin maintenance
5. Mengapa tidak ada jadwal rutin? Inilah akar masalahnya
Terkadang untuk sampai pada akar masalah bisa pada pertanyaan kelima
atau bahkan bisa lebih atau juga bisa bahkan kurang tergantung dari tipe
masalahnya. Metoda root cause analysis ini cukup mudah dan bisa sampai
pada akar masalahnya, bukan hanya di permukaan saja. Dan mencegah
masalah tersebut terulang lagi.
Tahapan umum saat melakukan root cause analysis dengan why why
analysis:
1. Menentukan masalahnya dan area masalahnya
2. Mengumpulkan team untuk brainstorming sehingga kita bisa
memiliki berbagai pandangan, pengetahuan, pengalaman, dan
pendekatan yang berbeda terhadap masalah
3. Melakukan gemba (turun ke lapangan) untuk melihat actual tempat,
actual object, dan actual data
4. Mulai bertanya menggunakan why why
5. Setelah sampai pada akar masalah, ujilah setiap jawaban dari yang
terbawah apakah jawaban tersebut akan berdampak pada akibat di
87
level atasnya. Contoh: apakah kalau ada jadwal rutin maintenance
maka akan mudah buat maintenance untuk melakukan penggantian
komponen secara rutin. Apakah hal tersebut paling masuk akal
dalam menyebabkan dampak di level atasnya. Apakah ada alternatif
kemungkinan penyebab lainnya?
6. Pada umumnya solusi tidak mengarah pada menyalahkan ke orang
tapi bagaimana cara melakukan perbaikan sistem atau prosedur
7. Jika akar penyebab sudah diketahui maka segera implementasikan
solusinya
Monitor terus performancenya untuk memastikan bahwa masalah tersebut
tidak terulang lagi.
Contoh Analisis Akar Masalah:
ANALISIS MASALAH DAN AKAR MASALAH PENANAMAN PADI
SAWAH IRIGASI (Oryza sativa) PADA TANAH SERI TLOGOREJO
Berdasarkan evaluasi kesesuaian lahan tanah di kawasan Dadapan,
Tlogorejo terhadap tanaman padi, dapat diketahui bahwa tanah tersebut
memiliki kelas kesesuaian lahan s3 dengan faktor pembatas tekstur,
persentase C-organik, dan kelerengan. Faktor-faktor pembatas tersebut
menyebabkan kurang optimalnya pertumbuhan tanaman padi, sehingga
produktivitasnya juga akan berkurang. Berikut ini adalah analisis
permasalahan dalam penanaman tanamanan padi sawah di tanah di
kawasan Dadapan, Tlogorejo yang dijabarkan dalam pohon permasalahan.
Permasalahan utama yang ditemukan pada lahan tersebut apabila
ditanami dengan tanaman padi sawah adalah produksi tanaman padi akan
tidak optimal dan tidak stabil.
Penyebab ketidakoptimalan dan ketidakstabilan produktivitas
tanaman padi tersebut adalah rendahnya ketersediaan unsur hara,
ketersediaan air yang terbatas, serta gangguan fungsi penunjang mekanik
tanah tersebut. Ketersediaan unsur hara yang rendah dapat disebabkan oleh
erosi, maupun karena rendahnya keragaman mikroorganisme di dalam
tanah tersebut. Penyebab utama erosi ialah kelerengan yang cukup curam
dan terjadinya pencucian hara akibat runoff. Hal ini disebabkan oleh
kurangnya penutup tanah, baik itu berupa pohon maupun seresah, di
permukaan tanah. Sedangkan rendahnya keragaman mikroorganisme dalam
tanah disebabkan oleh kandungan C-organik dalam tanah yang rendah pula.
Rendahnya kandungan C-organik tanah dapat disebabkan oleh pencucian
hara, kurangnya bahan organik dalam tanah, serta pengolahan tanah yang
terlampau intensif.
88
Sedangkan ketersediaan air yang terbatas disebabkan oleh tekstur
tanah yang kasar. Tekstur tanah yang kasar memiliki permeabilitas yang
tinggi sehingga air mudah mengalami infiltrasi. Hal ini akan menjadi tidak
optimal bila ditanami dengan tanaman padi sawah. Tanaman padi sawah
memerlukan penggenangan selama masa tanamnya, sehingga
membutuhkan tanah yang memiliki permeabilitas tidak terlalu tinggi
sehingga tidak banyak air yang hilang.
Sumber: http://meelaisme.wordpress.com/2011/10/19/analisis-masalah-dan-akar-masalahpenanaman-padi-sawah-irigasi-oryza-sativa-pada-tanah-seri-tlogorejo/)
Berdasarkan analisis akar masalah yang digambarkan dengan pohon
masalah di atas, dapat dilihat bahwa terdapat tiga akar masalah yang
menyebabkan tidak optimal dan tidak stabilnya produktivitas tanaman
padi sawah bila ditanam di lahan di kawasan Tlogorejo. Ketiga akar
masalah tersebut ialah kelerengan yang cukup curam, kurangnya
penutup lahan, serta tekstur tanah yang agak kasar.
89
DIAGRAM TULANG IKAN:
PERANGKAT ANALISIS AKAR MASALAH
Dalam zaman globalisasi dan turbulensi seperti sekarang ini, segala
sesuatu yang berhubungan dengan perilaku manusia dan hubungan antara
manusia seakan-akan dapat berlangsung tanpa batas. Dimana sepanjang
zaman hingga sekarang dan masa yang akan datang semakin cepat berubah.
Ungkapan presiden RI pertama dalam salah satu pidatonya “jika kita tidak
mengikuti perubahan maka kita adalah sejarah.” Setiap perubahan
senantiasa ada penyebabnya, dan akar-penyebab inilah yang harus dapat
diungkapkan.
During the Fishbone Diagram analysis, group causes in two groups:
1. External ( economy, weather, legislation ) just list them in Fishbone
Diagram, but do not focus too much about them, since it is hard or
impossible to influence them.
2. Internal ( productivity, discipline, high costs, ... ) are causes that you can
influence. Branch further the Fishbone Diagram for every cause.
Based on Route Cause Analysis ( Fishbone Diagram ) owner of the KPI (Key
Performance Indicator ) need to prepare Action plan with a purpose of
returning the result of process back on track, meaning to be on Target with
that specific KPI next time.
The action plan is focused on defining a 4 key points that are defines by
simple questions:
Who - The owner of the KPI is responsible for conducting the action plan
What - Action plan, specifying activities that will lead to achieving target
When - Time frame, deadline for the activities
How - Resources required for Action plan
The Fishbone Diagram is the practical tool for route causes analysis during
daily environmental management.
90
Diagram Tulang Ikan untuk mencari penyebab dari suatu perubahan atau
permasalahan (Sumber: http://www.bizdevelopment.com/PerformanceManagement/2.10.Ishikawa-FishboneDiagram.htm)
Konteks tersebut di atas mengarahkan pemikiran bahwa subjek dan
objek ada pada diri manusia. Hal ini bermakna bahwa manusia menciptakan
perubahan dan perubahan itu sendiri mengkreatur manusia itu sendiri.
Demikian hal dengan pendidikan sebagai apresiasi dari setiap perubahan
manusia dan hal yang mampu mengubah manusia. Oleh sebab itu tidak
sedikit para ahli yang mengungkapkan bahwa sekolah sebagai wahana
pendidikan merupakan agen perubahan.
Satu hal yang patut dipikirkan adalah bahwa pendidikan pun
demikian pada diri manusia. Yaitu sebagai objek dan subjek dari perubahan
manusia bahkan bisa mempercepat, mengoptimalkan setiap perubahan itu
sendiri. Pendidikan mampu mengubah manusia dan manusia itu sendiri yang
mampu mengubah pendidikan. Oleh sebab itu tidak sedikit kini muncul
berbagai paradigma baru dalam sistem pendidikan sebagai bukti nyata
bahwa pendidikan berubah seiring dengan perubahan manusia. Dan
manusia pun berubah seiring dengan perkembangan sistem pendidikan itu
sendiri.
Manusia senantiasa akan berupaya mengeksplorasi segala sumber
daya yang dimilikinya. Dengan cara mencurahkan segala daya dan
kemampuanya untuk selalu berinovasi menemukan sesuatu yang baru yang
dapat membantu hidupnya menjadi lebih baik. Jika manusia tidak menggali
segala kemampuanya maka ia akan tertinggal bahkan tergerus oleh zaman
yang selalu berkembang.
Dalam dunia penelitian dan pendidikan, Inovasi merupakan hal yang
mutlak dilakukan karena tanpa inovasi akan terjadi kemandekan pada dunia
91
pendidikan yang kemudian berimbas pada pada elemen-elemen kehidupan
yang lain seperti politik, ekonomi, sosial dan lain-lain. Pertanyaan yang
terbentuk kini adalah realisasi prinsip dasar inovasi untuk pemecahan
masalah atau kebermaknaan inovasi itu sendiri. Hal ini berangkat dari bahwa
segala macam proses berawal dari perencanaan yang matang “if you fail to
plan, you plan to fail” sehingga konteks analisis akar masalah lebih kentara
pada proses perencanaan inovasi demi memunculkan solving, perubahan
dan memunculkan inovasi. Meskipun tidak sellu “inovasi” adalah perubahan,
namun diyakini bahwa perubahan merupakan bagian dari inovasi.
Implementasi Fishbone Diagram
Merencanakan Inovasi Pendidikan.
(Kaoru
Ishikawa)
dalam
1. Merencanakan Inovasi Pendidikan
Berdasarkan pada 6 prinsip dasar inovasi pendidikan maka
setidaknya kita tidak akan semena-mena dalam merencanakan inovasi.
Kembali ketitik awal bahwasanya proses inovasi dapat bermula dari
munculnya kesenjangan (GAP), ketidaksesuaian sehingga diperlukan
pembaharuan, perubahan atau tindakan korektif atau kebijakan baru yang
sifatnya inovatif, meskipun setiap perubahan belum berarti inovasi namun
setiap inovasi meski di dalamnya adalah perubahan.
Singkatnya langkah langkah secara global sebagai berikut di bawah ini:
1. Dokumentasi gap atau kesenjangan dan ketidaksesuaian
(proses). Baik secara kuantitatif maupun kualitatif. Hingga
terbentuk prosses flowchart.
2. Identifikasi kebutuhan (demand) pelanggan dalam hal ini
pengguna jasa pendidikan.
3. Menganalisis gap dan kesenjangan dan ketidaksesuaian
(analisa proses) tersebut.
4. Pengembangan tindakan korektif (root causes analysis)
5. Implementasi inovasi.
6. Validasi.
Tahapan tersebut di atas menunjukkan bahwa root causes analysis
memegang peranan penting dalam menentukan kebijakan selanjutnya
(korektif/pembaharuan/inovasi).
Gejolak, Penomena, Gap, Ketidak sesuian yang terjadi dalam proses
pendidikan atau berbagai permasalahan yang aktual baik teoritis maupun
paraktis, baik dalam tatanan makro maupun mikro, bahkan skup yang lebih
kecil seperti permasalahan di dalam kelas dijadikan sandaran dalam
berinovasi di dunia pendidikan. Namun untuk kebermaknaan suatu inovasi
tetap harus mengusung prinsip-prinsip inovasi itu sendiri. Untuk itu salah
92
satunya, masalah yang diungkap haruslah terlebih dahulu dinalisis (akar
masalah) sehingga inovasi betul-betul berkenaan dan bermakna (mainfull).
Berikut di bawah ini adalah diagram framework dimana esensi analisis akar
masalah demi mewujudkan inovasi pendidikan yang penuh makna.
Kerangka Implementasi Fishbone Diagram dalam inovasi Pendidikan
2. Fishbone Diagram
Diagram ”Tulang Ikan” atau Fishbone diagram sering pula disebut Ishikawa
diagram sehubungan dengan perangkat diagram sebab akibat ini pertama
kali diperkenalkan oleh Prof. Kaoru Ishikawa dari Jepang.
Menurut Gasversz (1997),
”Diagram sebab akibat ini merupakan
pendekatan terstruktur yang memungkinkan dilakukan suatu analisis lebih
terperinci dalam menemukan penyebab-penyebab suatu masalah,
ketidaksesuaian, dan kesenjangan yang ada. Selanjutnya diungkapkan
bahwa diagram ini bisa digunakan dalam situasi:
1) Terdapat
pertemuan
diskusi
dengan
menggunakan
brainstorming untuk mengidentifikasi mengapa suatu masalah
terjadi,
2) diperlukan analisis lebih terperinci terhadap suatu masalah, dan
3) terdapat kesulitan untuk memisahkan penyebab dan akibat.
Berikut disarikan dari Gasversz (1997) tentang langkah-langkah penggunaan
diagram Fishbone:
93
1. Mendapatkan kesepakatan tentang masalah yang terjadi dan
diungkapkan masalah itu sebagai suatu pertanyaan masalah
(problem question).
2. Membangkitkan sekumpulan penyebab yang mungkin, dengan
menggunakan teknik brainstorming atau membentuk anggota
tim yang memiliki ide-ide berkaitan dengan masalah yang
sedang dihadapi.
3. Menggambarkan diagram dengan pertanyaan masalah
ditempatkan pada sisi kanan (membentuk kepala ikan) dan
kategori utama seperti: material, metode, manusia, mesin,
pengukuran dan lingkungan ditempatkan pada cabang-cabang
utama (membentuk tulang-tulang besar dari ikan). Kategori
utama ini bisa diubah sesuai dengan kebutuhan.
4. Menetapkan setiap penyebab dalam kategori utama yang sesuai
dengan menempatkan pada cabang yang sesusai.
5. Untuk setiap penyebab yang mungkin, tanyakan ”mengapa?”
untuk menemukan akar penyebab, kemudian daftarkan akarakar penyebab masalah itu pada cabang-cabang yang sesuai
dengan kategori utama (membentuk tulang-tulang kecil dari
ikan). Untuk menemukan akar penyebab, kita adapat
menggunakan teknik bertanya mengapa lima kali (Five Why).
6. Menginterpretasikan diagram sebab akibat itu dengan melihat
penyebab-penyebab yang muncul secara berulang, kemudian
dapatkan kesepakatan melalui konsensus tentang penyebab itu.
Selanjutnya fokuskan perhatian pada penyebab yang dipilih
melalui konsensus itu.
7. Menerapkan hasil analisis dengan menggunakan diagram sebabakibat itu dengan cara mengembangkan dan mengimplementasikan tindakan korektif, serta memonitor hasil-hasil
untuk menjamin bahwa tindakan korektif yang dilakukan itu
efektif karena telah menghilangkan akar penyebab dari masalah
yang dihadapi.
94
Fishbone Diagram (Gasversz, 1997)
Pada langkah ketiga 3 tersebut di atas kategori utama dapat
kita ubah menjadi sebab satu (Sb1) atau sebab 2 (Sb2) dan
selanjutnya hingga menjadi cabang-cabang kecil sebab Sb1a,
Sb1b dan seterusnya. Kita sepakati konteks korektif dalam
hal ini adalah produk atau proses perbaikan dalam bidang
pendidikan sehingga menghasilkan suatu pembaharuan/
inovasi pendidikan baik dalam bentuk discovery maupun
invention baik dalam tatanan mikro maupun makro.
Fishbone Diagram (Gasversz, 1997)
Pertanyaan Why?
Bercabang hingga mencapai lima yang menggambarkan sub tulang ikan itu
sendiri. Dimana kategori utama Manusia, Pengukuran, Metode, Materia,
Mesin dan Lingkungan dapat diganti sesuai kebutuhan misalkan, dalam
95
konteks permasalahan penurunan kualitas lulusan bisa diganti dengan:
Sarana Belajar, Orang tua, Teman Sekolah, Kurikulum, Guru, Kepala Sekolah,
Lingkungan Belajar, dll.
3. Implementasi Root Cause Analysis menggunakan Fishbone Diagram
dalam Perencanaan Inovasi Pendidikan
Penerapan atau implementasi Fishbone Diagram dalam analisis akar
masalah dalam berinovasi di bidang pendidikan, berikut di bawah ini
langsung disajikan dalam bentuk contoh root cause analysis dalam bidang
pendidikan.
Contoh 1.
Masalah: Mengapa Kualitas Lulusan SDM Rendah?
Kategori Utama
Sebab 1 (Sb1): Guru/Dosen
Sebab 2 (Sb2): Siswa
Sebab 3 (Sb3): Masyarakat
Sebab 4 (Sb4): Kurikulum
Five Why: Why Sebab 1 Sebab 2 Sebab 3 Sebab 4
1. Why 1. Guru/Dosen kurang kompeten/tidak banyak belajar.
Siswa input (lulusan sekolah sebelumnya) kurang berkualitas.
Masyarakat kurang peduli kualitas lulusan siswa. Kurikulum
kurang tepat atau salah arah.
2. Why 2. Guru/Dosen mengajar ditempat lain atau sibuk mencari
uang tambahan. Unit pemroses lembaga pendidikan
sebelumnya berkualitas rendah (guru, fasilitas, dll). Masyarakat
sudah menganggap biasa atau terbiasa dengan KKN Ada
kepentingan tidak etis dalam penyusunannya
3. Why 3. Kesejahteraan kurang. Anggaran APBN Rendah (BOS
tidak normal). Rekruitmen siswa dan SDM tidak bersih atau
transaparan . Tidak ada akses kontrol untuk masyarakat atau
pemerhati pendidikan
4. Why 4. APBN tidak mencukupi Pajak negara terserap sedikit.
Ada ketidak sesuaian penerapan kebijakan. Sistem demokrasi
anomali yang sarat akan KKN
5. Why 5. Pajak banyak hilang korupsi merajalela (temuan...).
Korupsi dan sadar pendidikan moral rendah. Korupsi dan sadar
pendidikan moral rendah. Korupsi dan sadar pendidikan moral
rendah.
96
Atau tampilan deskripsi dapat berupa catatan demikian yang jika diterapkan
dalam fishbone diagram memunculkan gambaran tulang besar dan tulang
kecil ikan. Sebagai berikut:
Sb1-1: Guru/Dosen kurang kompeten/tidak banyak belajar
Sb1-2: Guru/Dosen mengajar ditempat lain atau sibuk mencari
uang tambahan
Sb1-3: Kesejahteraan kurang
Sb1-4: APBN tidak mencukupi
Sb1-5: Pajak banyak hilang korupsi merajalela (temuan...)
Sb2-1: Siswa input (lulusan sekolah sebelumnya) kurang berkualitas
Sb2-2: Unit pemroses rendah (guru, fasilitas, dll)
Sb2-3: Anggaran APBN Rendah (BOS tidak normal)
Sb2-4: Pajak negara terserap sedikit
Sb2-5: Korupsi dan sadar pendidikan moral rendah
Sb3-1: Masyarakat kurang peduli kualitas lulusan siswa
Sb3-2: Masyarakat sudah menganggap biasa atau terbiasa dengan
KKN
Sb3-3: Rekruitmen siswa dan SDM tidak bersih atau transaparan
Sb3-4: Ada ketidak sesuaian penerapan kebijakan
Sb3-5: Korupsi dan sadar pendidikan moral rendah
Sb4-1: Kurikulum kurang tepat atau salah arah
Sb4-2: Ada kepentingan tidak etis dalam penyusunannya
Sb4-3: Tidak ada akses kontrol untuk masyarakat atau pemerhati
pendidikan
Sb4-4: Sistem demokrasi anomali yang sarat akan KKN
Sb4-5: Korupsi dan sadar pendidikan moral rendah
Fishbone Diagram Kegagalan Inovasi Kualitas SDM Indonesia
97
Pertimbangkan tentang kejujuran, konseptual yang kuat untuk mewujudkan
jawaban-jawaban, ”Mengapa?” sebanyak lima kali. Oleh sebab itu
dianjurkan untuk melaksanakan Brainstorming dengan kekuatan Tim, jadi
lebih dari satu orang pemikir. Dari contoh tersebut di atas, dapat
diinterpretasikan bahwa akar masalah adalah masalah perilaku negatif KKN
terutama korupsi dan pendidikan moral yang rendah sehingga untuk
meningkatkan kualitas SDM kita adalah memberantas perilaku KKN
terutama korupsi melalui perbaikan pendidikan moral atau penegakan
positif moral apapun caranya (jalur pendidikan maupun supremasi hukum).
Contoh 2.
Masalah: Mengapa Siswa SMA Kesulitan Menyerap Pelajaran Kimia ?
Kategori Utama
Sebab 1 (Sb1): Guru
Sebab 2 (Sb2): Siswa
Sebab 3 (Sb3): Masyarakat
Sebab 4 (Sb4): Kurikulum
Sebab 5 (Sb5): Sarana
Five Why
1. Why 1. Guru kurang kompeten. Siswa kuarang antuasias belajar.
Masyarakat kurang peduli kualitas jasa pendidikan. Membutuhkan
banyak praktek dan referensi. Referensi dan praktek kurang
memadai
2. Why 2. Fasilitas pendidikan dan pelatihan kurang. Teacher center
dan pembelajaran sering konvensional. Masyarakat hanya sekedar
berpifikir tentang lulus dan tidak lulus. Tujuan kurikulum banyak .
Buku, Alat dan bahan kurang memadai
3. Why 3 Tidak ada waktu dana pendukung. Kurangnya referensi atau
buku sumber dan praktek. Terlalu percaya pada sekolah. Materi
yang harus disampaikan banyak. Keterbatasan Dana
4. Why 4 Pendanaan dari pribadi, pemerintah dan komite sekolah
kurang lancar Kurangnya fasilitas. Membatasi diri hanya berpikir
tentang kelangsungan pendidikan siswa (ekonomi). Tuntutan
kelulusan untuk melanjutkan kuliah Keterbatasan bantuan dari
pemerintah maupun komite sekolah
5. Why 5 Alokasi dana pemerintah dan siswa terbatas. Alokasi dana
pemerintah dan siswa terbatas. Angapan ekonomi lebih utama
untuk kehidupan dibanding lainnya. Perbaikan pendidikan untuk
perbaikan ekonomi. Alokasi dana pemerintah dan siswa terbatas
98
Atau tampilan deskripsi dapat berupa catatan demikian yang jika diterapkan
dalam fishbone diagram memunculkan gambaran tulang besar dan tulang
kecil ikan. Sebagai berikut:
Sb1-1: Guru kurang kompeten
Sb1-2: Fasilitas pendidikan dan pelatihan kurang
Sb1-3: Tidak ada waktu dan cana dukungan
Sb1-4: Pendanaan pribadi, pemerintah dan komite sekolah kurang
Sb1-5: Alokasi dana pemerintah dan siswa terbatas
Sb2-1: Siswa kurang antusias belajar
Sb2-2: Teacher center
Sb2-3: Kurangnya referensi atau buku sumber dan praktek
Sb2-4: Kurangnya fasilitas
Sb2-5: Alokasi dana pemerintah dan siswa terbatas
Sb3-1: Masyarakat kurang peduli kualitas jasa pendidikan
Sb3-2: Masyarakat hanya berpikir tentang lulus dan tidak lulus
Sb3-3: Terlalu percaya pada sekolah
Sb3-4: Membatasi
diri
berpikir
tentang
kelangsungan
perekonomian
Sb3-5: Ekonomi lebih untuk kehidupan (sekolah pun untuk
perbaikan ekonomi)
Sb4-1: Membutuhkan banyak praktek dan referensi
Sb4-2: Indikator atau tujuan terlalu luas dan banyak
Sb4-3: Materi yang harus disampaikan banyak
Sb4-4: Tuntutan lulusan untuk melanjutkan ke jenjang pendidikan
yang lebih tinggi
Sb4-5: Perbaikan pendidikan untuk jenjang yang lebih tinggi.
Sb5-1: Referensi dan praktek kurang memadai
Sb5-2: Alat dan bahan serta buku sumber kurang memadai
Sb5-3: Keterbatasan dana
Sb5-4: Keterbatasan bantuan dana dari pemerintah dan komite
sekolah.
Sb5-5: Alokasi dana dari pemerintah dan siswa terbatas.
99
Diagram tulang-ikan: Rendahnya IPK mahasiswa (Sumber:
gkm1.blogspot.com)
Akar masalah dari suatu system pendidikan adalah keterbatasan pendanaan
baik dari pemerintah maupun komite sekolah untuk menunjang proses
belajar baik tingkat profesional/komptensi guru maupun siswa. Sehingga
solusinya adalah penggalangan dana atau pengalokasian/pendistribusian
dana yang diterima sekolah untuk menutupi kekurangan tersebut. Konteks
tersebut di atas tidak mutlak, artinya hasil analisis akar maasalah
bergantung pada individu/Tim melaksanakan Brainstorming. Bahkan kajian
seperti di atas (kesulitan belajar) bisa dipersempit skupnya dalam konteks
materi, metode mengajar, media, guru, siswa, dll, bergantung pada sudut
pandang Tim analisis akar masalah.
Analisis akar masalah sangat membantu dalam merencanakan tindak lanjut
atau tindakan pemecahan masalah. Dimana outcome-nya adalah dapat
dalam bentuk perubahan atau perbaikan bahkan inovasi baik discovery
maupun invention. Setidaknya hal ini membantu mahasiswa dalam upaya
membuat inovasi melalui jalur skripsi atau thesis, untuk guru membantu
dalam memperlancar penilitian tindakan kelas. Selain itu lembaga
pendidikan baik pusat maupun daerah serta sekolah itu sendiri sebagai
wujud organisasi dimana di dalamnya terjadi proses manajemen sudah
selayaknya berinovasi yang berbasis pada 6 prinsip inovasi untuk lebih
bermakna setidaknya dapat menjauhi untuk mengeluarkan kebijakankebijakan pendidikan yang tidak bijaksana.
100
Diagram Tulang-Ikan Consumer Debts (http://zenduse2.blogspot.com/2007/12/causes-ofconsumer-debt.html)
Causes of Consumer debt and their categories:
1. Economic and Investment Climate
a. Uncertainty in financial market causes interest rates hike and in effect
affects interest on personal loans and various lines of credit.
b. Overconfidence in the economy encouraging people to borrow more.
c. False hope from the economic growth and forecast
d. Supply of finance where banks are more willing to lend people with bad
credit histories.
e. Lower interest rates induce people to borrow more.
2. Income
a. Same level of income over the years while loans keep on going up
b. Limited opportunity to increase personal income
c. People are surviving on disposable income making them vulnerable to
interest rates fluctuations
d. Reduced income specially when a person becomes less marketable in a
competitive labor market
e. Saving too little or none at all.
3. Culture and Lifestyle
a. No money communication skills. Spouses have differences in the way
they spend their money. Most of the time spouses are hiding from each
other their expenditures.
b. Addicted to entertainment including but not limited to watching movies,
playing games, video-karaoke, and other form of entertainment.
c. Divorce and marital break-ups
d. Financial Illiteracy
4. Cost of Living
101
a. Hand phones, which in fact are becoming more fads and crazes instead of
necessity.
b. Rising cost of healthcare as reflected in medical expenses.
c. Rising cost of education.
d. Hike in transport fare
e. GST hike
f. Rising cost of housing
g. Needs for broadband connection to gain access to the World Wide Web.
5. Employment
a. Automation displaces human labor.
b. Company mergers and acquisition causing lay offs on redundant
workforce.
c. Underemployment
d. Downsizing of companies
e. Managerial jobs are taken over by intelligent systems.
f. Job losses
g. Retrenchment
6. Behavior (Psychological)
a. Financial phobia where people keep on denying their
indebtedness.
b. Banking on windfall.Compulsive shopping.
Perubahan zaman sekarang menjadikan perubahan kehidupan dunia yang
semakin kompleks permasalahannya dimana “ekonomi” sebagai sebuah
sistem
mangghasilkan
permasalahan
dari
subsistem-subsistem
pendukungnya dari mulai tatanan kebijakan hingga empris praktis, baik dari
level makro hingga mikro. Hal ini mampu mengaburkan inti permasalahan
sehingga diperlukan analisis akar masalah untuk menghasilkan tindakan
korektif, pembaharuan bahkan inovasi baik discovery maupun invention.
Root Causes Analysis melalui perangkat Fishbone Diagram (Diagram
Ishikawa) membantu inovator untuk menginventarisir, menghindari
keragaman masalah dan menemukan akar masalah untuk berinovasi,
sehingga inovasi itu sendiri manifull (sangat bermakna).
102
Penggunaan Diagram Tulang ikan dalam Metode RCA (Sumber:
http://www.reproline.jhu.edu/english/6read/6pi/ppt/maqpi/gifs/slide16.gif)
The fishbone diagram, is an example of one technique for graphically
organizing ideas by category for root-cause (cause-and-effect) analysis.
The fishbone can broaden thinking about potential causes and facilitate
further examination of individual causes. Causes are usually
brainstormed by a group. A place can be found on the diagram for
everyone’s suggestions. The “effect” or performance problem is written
on the right. Here, the category labels are performance factors. Note
that ”information” is broken out into two items—performance feedback
and job expectations. The group should choose the categories of cause
that are most relevant to them and can add or drop categories as
needed. For each cause ask, “Why does it happen?” and list responses as
branches off the major causes. Push the causes back as far as possible.
It is important to remember that the diagram is a structured way of
expressing hypotheses about the causes of a performance problem or
about why something isn’t happening as desired. It cannot replace
empirical testing of these hypotheses. The diagram alone does not tell
which is the root cause.
103
DAFTAR PUSTAKA
Danim, Sudarwan. 2010. Manajemen dan Kepemimpinan Ytransformasional
Kekepala Sekolahan. Jakarta: Rineka Cipta.
Danim, Sudarwan. 2010. Inovasi Pendidikan Dalam Upaya Peningkatan
Profesionalisme Tenaga Kependidikan. Bandung: Pustaka Setia.
Gaspersz, Vincent. 1997. Manajemen Kualitas Penerapan Konsep-Konsep
Kualitas Dalam Manajemen Bisnis Total. Jakarta: PT. Gramedia
Pustaka Utama.
Harsono, Ari. 2008. Metode Analisis Akar Masalah dan Solusi. MAKARA,
SOSIAL HUMANIORA, VOL. 12, NO. 2, DESEMBER 2008: 72-81
Kusmana, Suherli. 2010. Manajemen Inovasi Pendidikan, Ciamis:
PascasarjanaUnigal Press.
Mulyasa, E. 2008. Menjadi Guru Profesional Menciptakan Pembelajaran
Kreatif dan Menyenangkan. Bandung: Rosda.
Su’ud, Udin Syaefudin. 2010. Inovasi Pendidikan. Bandung: Alfabeta.