7t52 Reprinted from the Journal of the American Chemical Society, 1991, l.lJ. by permission of the copyright Copyright O 1991 by the American Chemical Society and reprinted owner. Comparisonof the Structuresand Wetting Propertiesof Monolayersof n-Alkanethiolson the Coinage Self-Assembled Metal Surfaces,Cu, Ag, Aul DavidL. Allara.*'t Yu-Tai Tao,l'$ Paul E. Laibinis,t'2GeorgeM. Whitesides,*'t Atul N. Parikh,l and RalphG. Nuzzo*'# Contributionfrom the Departmentof Chemisny,Haruard Uniuerstty, Cambridge,Massachusetts02l,38,Departmentsof Materials Scienceand Chemisty, 16802,Departmentsof Materials Pennsyluania State Uniuersity,UniuersityPark, Pennsylt',ania Scienceand Chemistry,Uniuersityof Illinois at Urbana-Champaign,Urbana,Illinois 6/,80/,,and January14, I99l AT&T Bell Laboratories, Murrav Hill, NewJerser'07974.Receiued Abstrect Long-chainalkanethiols,HS(CH2)nCHl, adsorbfrom solutiononto the surfacesof gold, silver,and copperand form monolayers.Reflectioninfrared spectroscopy indicatesthat monolayerson silverand on copper(when carefully prepared) havethe chainsin welldefined molecularorientationsand in crystalline-likephasestates,as hasbeenobservedon gold. Monolayers on silverare structurallyrelatedto thoseformedby adsorptionon gold,but differentin detailsof orientation.The monolayers formedon copperare structurallymore complexand showa pronouncedsensitivityto the detailsof the samplepreparation. Quantitativeanalysisof the IR data usingnumericalsimulationsbasedon an averagesinglechain modelsuggeststhat the alkyl chainsin monolayers on silverare all-transzig-zagand cantedby - l2o from the normalto the surface.The analysis a twist of the planecontainingthe carbonbackboneof -45o from the planedefinedby the tilt and surfacenormal alsosuggests vectors.For comparison, asjudgedby their vibrational cn goldsurfaces, the monolayers that form on adsorptionof alkanethiols . a v ea c a n ta n g l e s p e c t r aa,r ea l s ot r a n sz i g - z a ge x t e n d ebdu t .w h e ni n t e r p r e t eidn t h ec o n t e r to f t h es a m es r n g l ec h a i nm o d e l h of -2'7o and a twistof the planeof the carbonbackbone of -53o The monolarcrsiormedon copper(whentheyare obtained i n h i g h q u a l i t y )e x h i b i ti n f r a r e ds p e c t r ae f i e c t i v e l iyn d i s t i n g u r s h a bi rloen rt h o s co n : r l i e r a n d t h u sa p p e a rt o h a v et h e s a m e andappearto containsignificant densities structure.Filmson @pperarealsocommonllobtainedthatarestructuraii\ill-det'ined from wettingand XPS of gaucheconformations. Thesespectroscopically'based interpretations arecompatible*rth inferences of the alkyl groups measurements. The structureof the substrate-sulfur interfaceappearsto controlmolecularorientations in thesefilms. An improvedstructuralmodel,incorporatinga two-chainunit cell and allowingfor the temperature-dependent populationof gaucheconformations,is presentedand appliedto the specificcaseof the structuresformed on gold. Introduction This paperdescribes the preparationand characterization of (SAMs) formedby the chemisorption self-assembled monolayers (HS(CHz),R)on surfaces of alkanethiols of copperand silver. Bothof thesemetalsurfaces arehighlyactivein thechemisorption of organosulfur compounds.HTheyofferan excellent opportunitl to studytheinfluences of thesubstrate in defrningandcontrolling the orderof self-assembled monolayer films. A centralobjective of this studywasto comparethe structures of the monolayers formedon silverand copperwith thoseformedby chemisorption of alkanethiols on Bold.r-rr The molecular orientation andorderingof long-chain alkyl thiolatemonolayers on goldreflects the epitaxialbondingof the sulfur atoms(or, perhapsmore precisely,of gold thiolates)to the surfacelattice plane. For long-chainalkyl disulfidesand thiolschemisorbed on Au( I l I ) (the preferredcrystallographic textureof typicalpolycrystalline samples), electrondiffraction(TEM and LEED)r0hasestablished that the sulfuratomsin the adsorbates form (V3 x y'3)R30' werlaycn. Thisepitaxialoverlayer resultsin an interchainspacing of 4.99A andis wellsuitedto the formationof close-packed, and thereforeordered,organicsurfacephaseswhenthe alkyl chain is long (n > 15)and the R grouproughlycommensurate in size with the polymethylene chain.ll'12Severalrecentstudiesdiscuss theseissues.?-13 Copper,silver,andgoldhavenearestneighborspacings in the ( l l l ) p l a n eo f 2 . 5 6A , 2 . 8 9A , a n d2 . 8 8A , r e s p e c t i v e l y .Irfa structures form on copperand silverthat are analogous to those on gold(i.e.,(y'3 x /3)R30o), we expectthe molecular orient HarvardUniversity. I Pcnnsylvania StateUnivcrsity. I Pcrmanent Address:Institutcof Chemistry, Academia Sinica,Taipei, Taiwan,ROC. # AT&T Bcll Laboratories; corrcspondcncc shouldbc addrcssed to Departmcntof MatcrialsScience and Engineering, University of lllinoisat Urbana-Champaign, Urbana,IL 61801. (tona tationsof the chainsto differ significantlysincethe averagechain densityon copperwould haveto be considerablyhigher than on gold or silver( - 17.03A2Tchainon copperversus21.75l*2lchain , iven o n s i l v e ra n d 1 1 . 6 2A 2 , t c h a i no n g o l d ) . W e w o u l d e x p e c t g ( l ) T h r sh r g h l rc o l l a b o r a t r vweo r k w a ss u p p o r t e d b y a v a r i e t yo f s o u r c e s . G . M W a c k n o w l e d g essu p p o r tf r o m t h e O i f i c e o f N a v a l R e s e a r c ht ,h e D e s g e n c y ( D A R P A ) , a n c it h e N a t i o n a l f e n s eA d v a n c e dR e s e a r c hP r o . l e c tA S c i e n c eF o u n d a t i o n( G r a n t C H E - 8 8 - 1 2 1 0 9 ) .T h e X P S s p e c t r o m e t ewr a s obtainedthroughthe DARPA UniversityResearchInitiativeand maintained in the Harvard Materials ResearchLaboratory. D.L.A. and A.N.P. acknowledgesupport in part from the National ScienceFoundation(Grant DMR-9001270). (2) Shell FoundationPre-doctoralFellow, 1987-88. (3) Seymour,D. L.; Bao,S.; McConville,C. F.;Crapper,M. D.;Woodruff, , . E.; D . P . ; J o n e s ,R . G . S u y ' S c r . 1 9 8 7 , 1 8 9 - 1 9 0 , 5 2 9 - 5 3 4 .A n d e r s o nS Nyberg, C. L. J. Electron Spectrosc.Relat. Phenom. 19X1,52,135-'146. (4) Sandroff, C. J.; Herschbach,D. R. /. Phys. Chem. 19t2, 86, 3277-3279. (5) Sandroff,C. J.l Garoff, S.; Leung,K. P. Chem.Phys.ktt.l9t3, 96, 547-551. Joo, T. H.; Kim, K.; Kim, M. S. "/. Phys. Chem. 19t5,90, R. L,; Bryant,M. A.; Pemberton, J. E. "/. Am. Chem. 58l6-58 19. Sobocinski, Soc. 1990.I 12, 6l'17-6183. (6) Kwon,C. K.; Kim, K.: Kim, M. S.; Lee,S. B. 8rll, KoreanChem.Scr. 19t9. /0. 254-258. (7) Nuzzo,R. G.l Allara, D. L. J, Am. Chem.Soc. 1983, 105,4481-4483. ( 8 ) B a i n ,C . D . ; T r o u g h t o nE, . B . ; T a o ,Y . - T . ;E v a l l ,J . ; W h i t e s i d e sG,. M . ; N u z z o ,R . G . / . A m . C h e m .S o c . 1 9 8 9 ,1 l l , 3 2 l - 3 3 5 . ( 9 ) P o r t e r ,M . D . ; B r i g h t ,T . B , ; A l l a r a , D . L . ; C h i d s e yC , . E. D. J. Am. C h e m .S o c . 1 9 t 7 , i 0 9 , 3 5 5 9 - 3 5 6 8 , ( 1 0 ) T E M : S t r o n g ,L , ; W h i t e s i d e sG, . M . L a n g m u i r l 9 t t , 4 , 5 4 6 - 5 5 8 . L E E D : D u b o i s ,L . H . ; N u z z o ,R . G . U n p u b l i s h e d results. ( I I ) Chidsey,C. E. D.t Liu, G.-Y.; Rowntrec,P.; Scoles,G. J. Chem.Phys. 1 9 t 9 , 9 / , 4 4 2 1 - 4 4 2 3 . C a m i l l o n e ,N , , I I I ; C h i d s e y ,C . E . D . ; L i u , G . - Y . ; Putvinski,T. M.; Scoles,G. J. Chem. Phys. 1991,94,8493-8502. ( 1 2 ) N u z z o ,R . G . ; D u b o i s ,L . H . ; A l l a r a , D . L , / . A m . C h e m .S o c .1 9 9 0 , t t 2, 558-564. ( 1 3 ) W h i t e s i d e sG, . M . ; L a i b i n i s , P . E .L a n g m u i r1 9 f r , 6 , 8 7 - 9 6 . B a i n , C . D . ; W h i t e s i d e sG, . M . A n g e w .C h e m , , l n t .E d . E n g l . 1 9 8 9 ,I 0 l , 5 2 2 - 5 2 8 . ( 1 4 ) K i t t e l , C . S o l i d S t a t e P h y s i c s5, t h e d . tW i l e y : N e w Y o r k , 1 9 7 6 ;p 32. (f^^i^r,, Monola.yers of n-Alkanethiolson Cu, Ag, and Au Surfaces thisconstraint, that the chainson copperwouldbealignedcloser to thesurfacenormaldirectionthanthoseon silveror gold. The interchainspacingin the orthorhombic yields form of polyethylene an average chaindensityin theab planeof - 18.27A2lchain.r5 Th e e pit ax ialbondingo f a l k y lth i o l a teisn a (V3 x V3 )R 30" overlayeron copperthereforemay be precludedby the steric packingconstraints imposedby the chains.Silverand gold,on the otherhand.haveverysimilarlatticeconstants, andwe expect the monolayers formedon themto havesimilarstructures in the absence of otherperturbalions. The studiesdescribedheredemonstrate that the structures formedby similaradsorbates on polycrystalline copper,silver.and gold surfaceswith a preferred( I I I ) textureare relatedbut different. The structuralcharacteristics of monolayers formed on copperare extremelysensitive to the historyof the samples and the detailsof the experimental techniques usedin their preparations.The bestfilms we haveobtainedon copperwere comprisedof closestpackedchainsthat containedfew gauche conformations.The poorerquality films containedsignificant cnncentrations of gaucheconformations. The monolayers obtained on silverare highlyorganized andcontainonly low concentrations of gaucheconformations.The molecularorientations deduced from the data are compatiblewith surfacephasesfor alkanethiolateson silverand copperthat are close-packed and have srgnificantly shorterinterchainspacings thanthat foundon gold. We presentevidence, both from our studiesand from the literature,that the differences in the structuresof the monolayers fbrmedon copper,silver,and gold reflectthe differences in the reactivityof thesurfaceof the metal.particularly its susceptibility to oxidationon exposure to laboratory air. Thesurfaces of copper o xi d i z er apidly l6( and m a y a l s oa d s o rbo th e re n v i ro n mental co n ta m inant dur s ) ingp re p a ra ti oonf th e s a m p l e .S i l v eral so oxidizes on exflosure to thelaboratory atmosphere. but oridation i s su b s t ant ialli les sex te n s i ' ,'thea n fo r c o p p e r:u n d e ra mbi ent conditions, oneor twomonolavers of silveroxideformon thesilver s u r f a c e . rT ' h ea d s o r p t i oonf a l k a n e t h i ool n s s i l v e irs c o m p l e x andinvolves. we believe. somecombination of reduction of Ag(l) to Ag(0), directconversion of Ag(l) surfaceoxidesto Ag(I) thiolates, andformationof an ionicsurfacephasein whichsilver atomshavebeenremovedfrom their equilibriumlatticepositions. We useprecedents established by LEED studiesto derivethis modeland to rationalize the orientations determined by infrared sp€ctroscopy. The data alsosuggestthat, on prolongedexposure to theadsorbate solution,the surfacebecomes extensively sulfided, presumably forminga thin interfacial layerof Ag2S.rt Golddoes not oxidizeunderambientconditions. and the mechanism of conversion of alkanethiols to gold(l)alkanethiolates hasstill not beenestablished unequivocally.re The highactivityof silverand copperto oxygenandto thiolsestablished procedures the assembly we usedfor reproducible formationof high-quality monolayers. The lengthof exposure of the unfunctionalized surfaceto the atmosphere, the solubilityof the adsorbate in the contacring so l ve n and t , t het im eof e x p o s u re to th es o l u ti o n o f a l k a n ethi ol -variables that are generallyunimportantin the reproducible assembiy of alkanethiols on gold-were veryimportanton copper and moderately importanton silver. Results Phenomenological Differencesin the Assemblyof Alkanethiols on Copper,Silver,and Gold. The assemblyof high-qualityalkanethiolate monolayers on goldis straightforward.T-13'20'21 Silver (15) Bunn,C.W. Trans,FaradaySoc. 1939,35,482-491.Walter,E. R.; R c d i n g ,F . P . / . P o l y m ,S c i . t 9 5 6 , 2 t , 5 6 1 - 5 6 2 . ( 1 6 ) L a w l e s sK, . R . ; G w a t h m e yA, . T . A c t a M e t a l l . 1 9 5 6 , 4 , 1 5 3 - 1 6 3 . ( 1 7 ) R o v i d a ,G . ; P r a t e s i F , . ; M a g l i e t t a ,M . ; F e r r o n i , E , S u r f .S c i , 1 9 7 4 , 43,23U256. Rovida,G,; Pratesi,F. Surf. Scd.1975, 52,542:5SS, Englehardt, H. A.; Menzel,D. Surf..Sci. 1976,57,591-618 and references cited therein. (l.q) The promotionof silver tarnishingby sulfur-containingcompounds i s w e l l k n o w n . S e e ,f o r e x a m p l e :G r a c d e l , T .E . ; F r a n e y J, . p , ; b a u l t i e r i , G . J . ; K a m m l o t t ,K , W . ; M a l m , D . L . C o n o s . . S c j .l g t 5 ; 2 J , l t 6 3 * l l E 0 a n d references cited therein. _ ( ! q l A n o x i d i z i n gc o r e a c t a nits n o t r e q u i r e d :D u b o i s ,L . H . : N u z z o ,R . O. Unpublished resulrs, J . A m . C h e m . S o c . , ' , ' a l I. l 3 , N o . 1 9 ,I 9 9 l 7153 and copper,in contrast.readilv rorm oxidesthat adsorb polar contaminants. We suspectthe surfacesof thesemetals becorne rougherand more heterogeneous *'ith ertendedexposureto air. Oxidized surfacesof copperand sih'er are acriveto the chemisorptionof alkanethiols;the monola.vers formed differ. howsysr, in structure and propertiesfrom those formed on lessoridizeC s u r f a c e s .T h e d i f f e r e n c e cs a n b e r a t i o n a l i z e db r h r p o t h c s i z r n g that the monolayerhas formed on a roughenedmetal meral c''rrde interphaseand may itself be structurallyheterogeneousThe most r e p r o d u c i b l ea n d h i g h e s tq u a l i t y m o n o l a y e r s* e h a r e o b r a r n c d on silver and copperresultedfrom proceduresin uhrch ireshly evaporatedfilms were transferredrapidly under inert armtxpheres i n t o a d s o r b a t e - c o n t a i n i nsgo l u t i o n s , M a n i p u l a r i o no i u n f u n c t i o n a l i z e ds u b s t r a t e si n a i r , p r i o r t o d e r i v a t i z a t i o nr.e s u l t e di n monolayersthat exhibitedlarger hysteresesin contact anglesand a p p e a r e dl e s sc r y s t a l l i n eb y I R a n d c o m p o s i t i o n a l l lve s sh o m o geneousby XPS. W e b e g i n b y c o m m e n t i n go n t h e i n f l u e n c eo f t h e s o l r e n to n the monolayersformed from thiols dissolvedin them.:: \le exposedslidesof the three metalsto I mM octadecanethiol solutions in a range of solvents (isooctane.chloroform. tetrahydrofuran,acetonitrile,acetone,and ethano!)for 2 to 4 h and measuredthe advancingand recedingcontactangles(0^ and 0,) of water and hexadecane(HD). The slideswere transferredfrom the evaporatorinto solutionsunder flowing argon to minimize effects due to laboratory exposure. In general, we observedno significant differencesin wetting (or hysteresis= cos d, - cos 0r) that could be attributed to the solvent(wetting data are available in the supplementarymaterial). Monolayersformed on copper exhibitedgreaterhvsteresisthan thoseformed on gold or silver. T h e w e t t a b i l r t i c .o f -t h c n o n o l a l ' e r sf o r m e do n a l l t h r e e m e t a l s are stmil,irtt) thr-xcrr'pxrrted for orientedalkvl monolayers on other s u b s t r a t e' sl ' r ' \ P S d a t a a l s od e m o n s t r a tteh a t t h e s o i v e n t s l i s t e da b o rc r r s r r n r c i c t ie\ t o r ia r d t h e s u b s t r a t eus n d e r t h e s e conditions. Copprer and silverdid proveto be more reactiveto alkanethiols and more sensitiveto attributesof the alkanethiolthan gold. For e x a m p l e ,r e a c t i o no f s h o r ta l k a n e t h i o l s( n < 3 ) w i t h t h e c o p p e r and silver surfacesoften resultedin surfacesthat appeareddiscoloredand sometimesvisibly pitted; continuedexposureseemed to result in dissolutionof the metal. With increasedchain length, the reproducibilityof formation of high-qualitymonolayers(as determinedby wetting and XPS) increaseddramatically.2TWith longer alkanethiols.the solubility of the adsorbatebecameimportant. Dcrcosanethiol. which is solublein ethanolwith warming, often formed multilayeredstructureson copperwhen adsorbed f r o m e t h a n o l : 2a8d s o r p t i c nf r o m i s o o c t a n e r e p r o d u c i b l vr e s u l t e d i n n r o n o l e r e fri l m s { d s o r p t i o nt i n r e so f I t o l 2 h y r e l d e dm o n o l a y e r w s ith the g r e a t e s rt e p r o d u c i b i l i t ru; e u s e dt h e s ei n t e r v a l si n t h e s t u d i e s ( 2 0 ) B a r n ,C , D . ; E v a l l ,J . ; W h i t e s i d e sG, . M . J . A m . C h e m .S o c . 1 9 t 9 . ilt,7t55-7t64. ( 2 1 ) L a i b i n i s ,P . E . l H i c k m a n .J . J . ; W r i g h t o n ,M . S . ; W h i t e s i d e sG, . M . Science(llashington, DC) 1989, 245,845-847. (22) The natureof the solventusedhasbeenshownto affect the wettability of monolayerson gold derivedfrom polar-terminatedalkanethiols.mExtension of thesesystemsto the generationof high-energyorganic interfacesrequires the assemblybe compatiblewith polar, hydrogen-bonding solvents. ( 2 3 ) C o h e n ,S . R . ; N a a m a n , R . ; S a g i v ,J . J . P h y s . C h e m . 1 9 8 6 , 9 0 , 3 0 5 4 - 3 0 5 6T . i l l m a n ,N . ; U l m a n ,A . ; S c h i l d k r a u tJ, . S . ; P e n n e rT, . C . J . A m . Chem..Soc.l9tt, I 10,6136-4144. Wasserman,S. R.; Tao, Y.-T.; Whitesides, G . M . L a n g m u i r1 9 t 9 , J , 1 0 7 4 - 1 0 8 7 . (24) Allara, D. L.; Nuzzo, R. G. Iangmuir 1985, /, 45-52. (25) Chen, S. H.; Frank, C. W. I"angmuir 19t9, J, 978-987. ( 2 6 ) T r o u g h t o n ,E . B . ; B a i n , C . D . ; W h i t e s i d e sG, . M . ; N u z z o , R , G , ; A l l a r a , D . L . ; P o r t e r ,M , D . L a n g m u i r t 9 8 8 , 4 , 3 6 5 - 3 8 5 . (27) We believethat the alkane providesa passivatinglayer that slows corrosionof the copperand silver by the alkanethiols. (28) The films formed from ethanolwere extremelyhydrophobic0fro l30o), exhibitedlarge hystereses, and were wet by hexadecane.We bclievc the wetting behaviorto be consistentwith formation of a porous,precipitated layer of alkyl thiol andfor disulfide. The films preparedin ethanolcould bc grown to the point of beingvisibleand were robustto washingwith ethanol; washingwith hexanesresultedin dissolutionbut did not revealan underlying monolayerfilm that was not wet by hexadecane,This problemwasmore acute on copperthan on silver;it was also more prevalentat lower temperatures. Laibinis et al I99I of and XPS BindingEnergies TableL WettingProperties Adsorbedon Copper,Silver,and Monolayersof Octadecanethiol Gold and of RelatedMaterials s38 53' 173 528 523 165 wetting(0", 0r),o 155 Hzo 20 10 0 (t I o 70 As/S(cHJ,rcH. 'i]ot"r x o 60 :l P 50 J 40 o o 30 20 .= 1 0 o c 0 o +t 5 70 60 50 40 30 20 10 0 zl-*^^"*-l c 1000 '3 I E1 o].__'----]ll lFl:z ,l o r75 165 1ss HD XPS binding (eV)D energies S(2p:iz) S(2s) NA t63.6. 217.9 NA HSC22H4s NA 162.6d NA AurSC,5HrT t62.t 226.2 1 2 0 ,t 0 3 4 8 , 3 2 Cu/SC1sH37 t62.3 225.7 I 1 6 ,1 0 3 5 0 ,4 0 Ag/SC1sH37 l6l .9 226.4 I 1 5 ,1 0 5 4 8 ,3 6 Au/SC16H37 < 1 5 ,- ' 167.4 231.6 Ag.Ag2O + HOrSCr6H33 9 6 , 6 l oHD = hexadecane. for all NA = not applicable.bBindingenergies ref werereferenced to C(ts; = 284.80eV. 'For comparison, samples to C(ts; = 284,7 eY). 3l reportsa value of 163.3eV (referenced dReference should 31. Gold(l) thiolatesare polymericspecies;caution be exercisedin comparingtheir spectralpropertiesdirectly with those obtainedon monolayers.'A dashindicatesa recedingconstantangle for a contactingliquid that couldnot be removedfrom the surface;d, :: 00. 800 600 400 200 BindingEnergy(eV) Figuret. XPSspectra adsorbed on of monolayers of octadecanethiol surfaces of copper, silver,andgold.High-resolution spectra of theO(I s) to andS(2p)regionsarepresented in the insetsandwerereferenced forcomparison of the C(I s) = 284.80 eV. Thedashed linesareprovided aregivenin S(2p)spectra. Thebinding energies of S(2s)andS(2p372) withvalues TableI andcompared obtained for docosanethiol. whosedescriptions follow. Greaterreproducibility on silverand whenisooctane copperwasobtainedwith longern-alkanethiols wasus edast hes ol v e not w i n gto th e i n c re a s esdo l u bi l i tlof ' the adsorbates studiedin this solvent, Adsorptions onto copper surfaceswereconducted from isooctane; adsorptions onto the surfacaof goldandsilverusedethanolor isooctane, No structural differences in the high-quality on any metal films wereobserved that could be assignedto solvent;thosedifferencesthat were we attributeto the solubilityof the adsorbateor to observed, surfaceroughening. As indicated, to minimizethe effectsof oxidationand conwe transferred tamination, the slidesof copperandsilverto nitrogen-purged solutionsof the thiolsundera flowingstreamof argonimmediatelyfollowingthe evaporation of the metal. Occasionally, this procedure did not resultin formationof highqualitymonolayers on copper. We believe,however,that in(background pressure strumentalparameters for the evaporator duringthe deposition, argonflow rate,etc.)wereresponsible for thesefailuresand stressthe importance of excludingoxygen(to the extentpossiblc) to form monolayers on copperof the quality we havecharacterized. Silvercouldbe exposed to air, to a limited degree,withoutexhibitingthe catastrophic failuresfoundfor copper. We decided,basedon the insensitivityof gold to the atmosphere, that anaerobictransferwasunnecessary; the films weremanipulatedin air and transferredto solutionwithin I h of evaporation. The monolayers formedon all threemetalsarestableto physical manipulation and washingwith polarsolvents.The monolayers on copperand silverdo, however, exhibitonly limitedstability to air (changes are observed after - I weekof exposure),2e but (29)Laibinis, P. E.;Whitesides, C. M. Unpublished results. couldbe routinelymanipulatedin wayspreviouslydetailedfor on gold.E monolayers assembled alkanethiolate of ScanningElectronMicroscopy(SEM). The morphologies were after exposureto octadecanethiol the varioussubstrates of the electronmicroscopy.The surfaces examinedby scanning whenpreoared conditions, are undercomparable threesubstrates. appearto ha vet hesam e si mi l ar.Thecopperandsi l versampl es ' rol l i nghrl l s-tcrturethat hasbeendescri bed for film sof gold w afers.s due Theamountof roughening ontosrl i con evaporated wit h to oxi dati onor reacti onof the copperor si l versu r f aces morphodoesnot appearto induceany perceptible alkanethiols of SEM ( -20f500 A). at the levelof resolution logicalchanges (XPS). Representative XPS Spectroscopy X-ray Photoelectron on obtainedby reactionof octadecanethiol spectraof monolayers copper,silver,andgoldaregivenin Figurel. The mostsignificant featurein thesespectrais the contentof impuritiesof the films, of peaksin the O(ls) corelevel as inferredfrom the intensities region(bindingenergy-535 eV). Clearly,the alkanethiolate containing a on an interphase monolayer on copperis adsorbed copper quantitycrfoxide.Treatment of highlyoxidized significant in w i th thi ol sresul ts, asj udgedby X P S ,i n a decr ease surfaces lossof peaksdueto Cu(tl).D anda complete thecontentof ox1'gen remains high, of thecopp€rinterface oxlgencontent Theresidual of near that onl y a parti aldi spl acem ent suggesti ng how ever, The to the adsorbate. surfaceoxlgenatomsoccurson exposure on silveris very low, residualoxidecontentof the monolayer perhapsof the orderof a few percentof a monolayer.The adanyoxidation sorptionof thiol on silverthusmusteitherreverse that hasoccurredor displacea significantfraction of thesubstrate generated of this point by it. Furtherdiscussion of oxygenspecies section.On gold,the oxygen will be deferredto the Discussion contentof the film is belowthe detectionlimit of XPS. The characterof the sulfur-surfacebond is indicatedby the highcoreleveldatain the S(2p)region(TableI and Figure resolution levelon measured for the 2p312core l). The bindingenergies copper,silver,andgold( I 62.I , 162.3,and I 6l .9 eV, respectively) for a surfacethiolate(RS-M areall wellwithintherangeexpected Thesevalueswouldimplicatea formal or RS-M+)species.3o'3r of the S-H bondon the metalon all three dissociative adsorption (eq 1;.1'o'lt substrates (la) RSH + M(0) -* RS-M(I) + "Y2H2" RSH+ M(l) * RS-M(|) + *H+' (lb) We can definethe metal-sulfurbondingin moredetail by exof theS(2p)corelevels.In carryingout aminingthelineshapes (30) Nuzzo,R. G.; Zcgarski, B. R.; Dubois,L. H. J. Am. Chem.Soc. 't t9t7 . t 09, 33-14A. (31)Bain,C. D,;Biebuyck, 19t9,J, H, A,; Whitesides, G, M. Langmuir 723-727. Monolayersof n-Alkanethiolson Cu, Ag, and Au Surfaces J . A m . C h e m . S o c . ,V o l . I 1 3 , N o . 1 9 , I 9 9 l 7155 the roughnessof the two surfacesthat is not detectableby SEM. In generalterms, however,the wetting measurementssuggestthat s s o E!8 6 exposea low-energy the monolayersare all oriented,and that the.v90" and. from the perspectiveof the outermost ogo o o o o E methyl surfaces'23-26 few Angstroms,appear to be similar. Investigationof the Thicknessof the Monohyer Films by El600 lipsometry and XPS. l. Ellipsometry. Ellipsometr! is an inva' of alkanethiols luable techniquefor measuringiilm thicknesses 300 0o 1.0 adsorbedon gold.7-e We attempted to measurethe changein thicknesson samplesof'copper and silver that had beenexposed -0.5 120 to air for only short intervals((15 min) prior to exposureto an alkanethiol solution. We could, with considerableeffort (see \r/ 900 ExperimentalSection),obtain thicknesseson silver that could be 0.0 related to the length of the adsorbate;ralues *ell outsidethe expectedrange of thicknesswere, however.also routinelv obuined. 600 o 0.5 nts. we are Given the lack of reproducibilityin our measureme oarsgo o o9ogoo to make any structural conclusionsbasedon relating hesistant 30" ellipsometricthicknessto the chain length of the adsorbate' 0o 1.0 Acceptable thicknessescould not be obtained on copp€r. -0.5 120. 2. XPS Attenuation. XPS offers an independentmethod to -;[r[ltlllt compare thicknessesof monolayerspreparedby direct exposure of the metal to an alkanethiol. In contrast with ellipsometry, 90" characterizationof the unfunctionalizedinterfaceis not required' *thin' layer by The determinationof the absolutethicknessof a 600 XPS requires,at a minimum, precisevaluesof escapedepthsand atomic cross sections,parameters difficult to obtain with the 30' required accuracy. XPS does provide, however,a convenientand 0o 1.0 rapid method for comparing differences in relative thicknesses over a homologousseriessuch as that representedby the n-aln kanethiols. The logarithm of the intensity,/y, of photoelectrons (CHr(CHr)SH) of n-alkanethiols Figure2. Wettingof monolayers f r o m a s e m i i n f i n i t el a y e r ( > 2 0 0 A ) a t t e n u a t e db y a n n - a l k y l (upper), silver(center), andgold(lower)by*ater oncopper adsorbed sf o r e r l a l e r i s p r o p o r t i o n atlo - ( n d l \ , w h e r ed i s t h e t h i c k n e s o (circles). (squares) angles are Advancing andreceding andhexadecane the monolalerper methllenegroup,n is the numberof methylene theaverage respectively. F:ch pointrepresents filledandopensymbols, g r o u p s i n e a c h c h a i n , a n d ) , i s t h e a t t e n u a t i o nl e n g t h o f t h e of copper Exposure Section). valueobtained ona slide(seeExperimental photoeiectronsfrom the underlying substratethrough hydrogoldwas priorto immersionl wasminimized andsilverto theatmosphere A plot of ln (intensity) versusn providesboth a carbons.33 withinI h of exposure to the solution in air to adsorbate transferred of the regularity of the thicknessof monqualitative assessment of alto I mM solutions Silvcrandgoldwereexposed atmosphere. under for 4-12h at roomtemperature isooctane in ethanolor olayers prepared from different length alkanethiolsand a comkanethiol blowndry withN2, rinsedwithethanol, argonto formthemonolayer; parison betweenmonolayersformed on different metals. Because wereadsorbed fromisooctane the escapedepth (I) is also a function of the kinetic energy of monolayers oncopper andcharacterized; usingsimilarprocedures. we selectedspecific core level peaks based the photoelectron,3a section and proximity to peak of other metals. cross their on both in which it is necessary to usedatafrom analyses thisexamination, photoelectronsarising from the underlying of intensity The spectra hasbeenminimized.The core-level the X-ray exposure substrateof kineticenergiesof - I I 25 eV (Au(4drrr) = I 134eV, monolayers degrade on prolonged indicatethat thealkanethiolate A g ( 3 d 5z ) = 1 1 1 9e V ) a n d - 1 4 0 0 e V ( A u ( 4 f 7 , 2=) 1 4 0 2e V , exposure to X-rays. The spectraon silverand gold can be fit C u ( 3 p ) = l 4 l 2 e \ ' ; a r e p l o t t e di n F i g u r e3 f o r m o n o l a y e rpsr e well, evengiventhe noisein the spectra.as two reasonably of differentlengths.3sTheseplos follow paredfrom n-alkanethiols components of equalwidth (1.0eV) whoseintespin-orbit-spin I o g a r i t h m r cr e l a t i o n s h i p .T h e i n t e n s i t yo f p h o t o t h e e x p e c t e d | = (i .e ., g ra te dar easar ein t hera ti o2 J + | I :2 ;J 1 2 ,3 1 ).The o n s i l v e ra n d c o p p e ra t t e n u a t em o r e m o n o l a l e r s f o r e l e c t r o n s used(1.15eV) wastakenfromtheliterature.32 spinrrbit splitting (by - 20Vc)than for monola)'erson gold. This difference rapidly couldalsobe fit on copp€roccasionally The spectrafor samples suggeststhat the films formed on copperand silver are each -20Vo -0.5 rrllrrlti r;lrrilril 1 I 20. .c![33'i !]:AS; ';:F:.; ..5:;il:5 e o o ;84il:E: lioooaoEo g Ss6:.gg6 r"a8ffi368 withintheseconstraints.Spectrawereroutinelyobtainedwhere r .2 -1 .4e V ) a ndthe th e l i newidt hswer es i g n i fi c a n tlgyre a te(1 significantlypoorerthan resolutionbetweenthe two components thoseobtainedon goldor silversamples.Thereis no unambiguous that however, wayto interprettheselargerlinewidths;we suspect, heterogeneity. they reflectcompositional WettingProperties.Static advancingand recedingcontact (HD) weremeasured on monoanglesof waterandhexadecane in solutionsof layerspreparedby the immersionof substrates n-alkanethiols of variouslength(Figure2). The wettingbehaviors on the threemetalsaresimilar,with thecontactanglesof both lowerwhenn < 8 thanwhenn 2 l l. liquidsbeingsignificantly formedon gold for monolayers Porteret al. haveshownpreviously changes that the inferreddegreeof crystallinityof monolayers of the relationsbein this region.eWe deferfurtherdiscussion tweenwettingandstructuralfeaturesto laterin the manuscript. (A cosd = cos0, - cosd.) is smallestfor The observedhysteresis formedon goldandslightlylargeron silverandcopper. monolayers hysteresis may reflectan underlyingdifferencein This increased thicker than thoseformed on gold, This observationis consistent with the differencesin molecularorientation infened from infrared spectroscopy(see below). Investigation of Film Structure and Molecular Orientrtion by IR Vibrational Spectroocopy. l. Obsened Spectra of Monolayers IR spectraof the various monolayerswere obtained using a single reflection geometry (-85o angle of incidence) as describedin the ExperimentalSectionusing ppolarized light. In earlier papers, quantitative analyses of such data have been presented for monolayersof various substituted alkanethiols and dialkyl disulfides on gold.r2'36 The present study seeks to present a quantitative correlation of thin-film structure as exhibited in a homologousseriesof adsorbatesacrosstheserelated substrates. To facilitate these analyses,the previouscomputational proto(33) Bain,C. D.;Whitesides, 93,167f 1673' G. M, J. Phys.Chem.19t9, (34)Seah,M. P.; Dench,W. A. Surf.InterfaceAnal. 1979,/,2-ll. (C5-C1s) on (35)A similarslopewasobtained adsorbcd for alkanethiols contact significant exhibited copperfromethanoleventhoughthemonolayers anglehysteresis, (36)Nuzzo,R. G.; Fusco, F. A.; Allara,D, L. J. Am, Chem.Soc.19t7, t09.2358-2367. 7156 J. Am. Chem.Soc.,Vol. II3, No. 19,l99l Laibinis et al. - C22H45S, Alkyl-S ChainsC16H33S TebleII. Description of VibrationalModesof C-H Stretchingfor Polycrystalline mode descriptionD peakfrequency(cm-r)' C H 3a s y m( i p ) ,( r " - ) CH3 asym(op),(ru-) C H 3s y m ,r + ( F R C ) C H 2a s y m d, - ( a ) C H 2a s y m d, CH2sym,d+ (FRC) CH3sym,r+ CH2 sym,d* (o) CH2 sym,d* 2964 2954 2935 2925 2918 2895-2907 2879 2853 2850 assigneddirection of transition dipole moment matrix element in molecular coordinates ip of CCC backbone,I C-CH3 bond plane l- CCC backbone ll to C-CH: bond plane l- CCC backbone plane -L CCC backbone plane,ip HCH plane ip CCC backbone ll to C-CHr bond plane,ip HCH plane ip CCC backbone plane,ip HCH plane ip CCC backbone oB.scd on data takcn for 'Abbrcviationsuscd: asym = asymmctricor antisym. samples for used optical function determinations. [C,H2r rS]2 mctdc, sym = symmctric,ip = in planc,op = out of plane.FRC = Fermi r€sonance splittingcomponent.a = CHr groupslocatedat cithcr end of = the alkyl chain,ll psr.llcl, l- = p.rpcndicular.'Pcak frequencyis takenas that from the imaginaryopticalfunction(t) spectrum.Peakfrcqucncy valuesfot modcsof intcnsiticstoo wcakto measurcdirectlyhavcbeenassignedusingaveragevaluestakenfrom previouslycompiledrssignments(rcf 9, 12,36,37), Thescvalueswerc suboequently usedin the fittin8 routinesusedto generatethe components ofthe simulatedspectra(secsupplcmcntarYmaterial). 6 5 4 F*r Oo !-Oc x9 1 tr 6 K,3 x5 ,/a 4 v - - - V.. AuglTpl --tl-..-. r' \ot l r ( cu(3p) 10 a)t 15 20 25 n Figre 3, Intensityof photoelectrons dueto the underlyingsubetrates for monolayerson gold, silver,and coppcrformedafter I h exposureto I (CH3(CH2)/SH),The upperfigure mM solutions of n-alkanethiols providescomparison of monolayers formedon goldand silver,the lower on goldandcoppcr.The pointsrepresent singlemeasurements. The data setshavebeenoffsetverticallyto enablecomparison; the slopeis the parameterthat is importanthere. The kineticenergies of the photo= I 134eV, clectrons in eachgraphare similar: (upper)Au(4d372) = 1402eV; Cu(3p)-- l4l2 eY. Ag(3d57)= I l l9 eV; (lower)Au(4f772) Lineswereobtainedby least-squares analysisand gavethe following -0.021:Ag(3drrr),-0.025;Au(4f772), slopes(seetext): Au(4d372), {.020: Cu(3p),4.024. colslll6'37were modified (seebelow). Further, sincewe anticipatod that the differences between specific adsorbatesof interest to us might bc small, our earlier work was reexaminedwith the intention of minimizing expcrimental errors that complicate a precise quantitative comparison of the data obtained from different substratematerials. The analysesthat follow are basedon multiple sample preparationsconductedin threc different laboratoriesand spcctral data acquired on two different instruments. The largest variations we observed for comparable instrument optics are compatible with the statistical variation inherent in multiple samples. The error bars appearing in the figures reflect the scatter dominated by effectsduc to indepcndentmeasurementof multiple samples. lt is important to note that the data shown below reflect (37)Allara,D. L.; Nuzzo,R. G, Langmuir1985,/, 52-66, our specificoptical design. Large differencesin absolutespectral intensity will result if even slightly different beam divergences and angles of incidenceare employed.ss The infrared data for the seriesof monolayerson copper,silver, and gold are shown in Figure 4. The data shown for copperare for the more well-definedstructureswe have obtained (a representativeexampleof spectraobtained for ill-defined monolayers on copperis given in the supplementarymaterial). The setsof data revealsubstantialvanationsin the C-H vibrational mode i n t e n s i t i eas s a f u n c t i o no f c h a i n l e n g t hf o r g o l d a s c o m p a r e dt o t h e o t h e r t w o : \ s t e m so f m o n o l a y e r (sc o p p e r s, i l v e r ) . G i v e n t h e closesimilariti olthe copperdata to that of silver,we will restrict our discussion to the better-behaved silversystem(althoughsimilar would pertainfor this specificcopperdata set). We discussions will discussfor gold the CH3 mode intensitiesfirst and follow with an examinationof those of the methylenes. The basisof the assignmentof the spectralfeaturesto specificvibrational modes has been reported previouslyl2'36'37 and will not be repeatedhere. Details of these fairly complex fittings and assignmentsare given in the supplementarymaterial. Table II presentsexact descriptions of the assignments,the approximatepositionof the band, as well as transition dipole directions for the mode as expressedin molecular coordinates. The latter information will be used for calculationsof structure discussedin the next section. Our quantitativeinterpretationsof molecularorientationswill be restricted to analy'ses basedon modesappearingin this high-frequencyregion. The lower frequencymodes,while rich in information (ser below),are sufficientlyweak in intensityas to preclude q u a n t i t a t i v ea n a l y s i s . The strongestof the CH3 modesin this region of the spectrum is the symmetric methyl stretch (r+), which is split by Fermi resonanceinto two separatebands appearing at -2878 and -2935 cm-r, and the in-planeasymmetricstretch (r.-) appearing at2964 cm-r. The out-of-planeasymmetric stretch (16-),which occursprominentlyat 2954cm-r in the polycrystallinebulk phase spectra,is weak in the monolayer spectra; this mode is a weak shoulderon the r"- band. The line shapesdo not appear to vary significantly acrossthis seriesof monolayers,allowing band intensities to be estimated for most bands (ru- excepted) by the intensityat the peak maximum. Figure 5 showsthe intensitydata of the r+ (2877 cm-r) and rr- (2963 cffi-r, containsa small contribution from 16-absorption) bands for the Cru-Czofilms on gold and silver. On gold, the data are given normalizedrelativeto the value of the intensity of the selectedmode for the C16film. The theoretical plots shown for gold of the modulation of these deviations in intensity are basedsolely on the changesin geometry of the CH3 group predicted for two possible models of chain (3E) In particular, the angleof incidencemust be correctlyset within less than lo, thc//number of the beam must be fixed at a high value, -//15 f 120for our two instruments,and stray light must bc excludedfrom collection of the reflectedbeamoff the sample. We (D.L.A., R.G.N.) observcdfluctuations as much as a factor of 2 bctween misaligncd, fast optics and thc configuration above. Additional deviationscould also involvedctector nonlinearitiesfor high throughputconfigurations. t 1 3 ,N o . j , 9 ,I 9 9 l Monolayersof n-Alkanethiolson Cu, Ag, and Au Surfaces AuiS(CH.)nCHs I lgls(CH2)nCH3 Cu/S(CH2LCH3 7157 I I f o.oor o o (g .ct L o -€ ,i n* /1 ^-\/l "\*-NV ^ ^./1 Q tt ^a_r A'/V V \* il n hilV ^J IV\J \ r- ^^A/\ v\ lvw rll 2800 2900 3000 2800 2900 3000 Wavenumbers(cm'l) I ' 2800 2900 3000 Figure4, IR spectraof monolayers derivedfrom exposure (CH3(CHJ,TSH). of surfaces of copper,silver,and gold to n-alkanethiols structureand not on changesin the vibrationalstates. These modelswill be discussed in detaillater in the manuscript.The experimentally observedfluctuationsin odd-ven intensitiesare striking.It is alsoobviousthat thisexperimental behaviorpresents an importantcriterionfor determining the validityof various structuralmodels.In an earlierpublication,l2 thesevariations werenotedqualitatively and usedto assigna constantfixeddirectionof chaintilt with a consequent odd-evendependence of the orientation of the C-CH3 bondwith respectto the normal to thesurface.This pointwill bediscussed in detaillaterin the manuscript. Figure5 alsoshowsthat the r+ and rr- bandintensities (absolute)on silverexhibit,to withinexperimental error,nosignificant modulationwith chainlength.Thisdifference between the spectra obtainedon silver(andsimilarlyon copper)andon goldstrongly suggests a differencein structureof monolayers on thesesupports; thoseon silver(andcopper)indicatethat the projectionof the C-CH3 bondon the normalto thesurfaceis invariantwith chain length. The C-H stretchingmodeintensities(absolute)of the CH2 groupd* andd- modesexhibita lineardependence on chainlength for monolayers supportedon gold and silver(plotsare givenin the supplementary materials).3eNo odd-evenvariationsare withinthe experimental evident,suggesting, uncertainty of the measurement, that thereexistsa constantchainorientation on thesurfacefor thesefilms,onethat differsin magnitude for silver and gold. 2, Ileterminationof OpticalFunctions.Descriptions of the methodsusedfor determiningpreciseopticalfunctions,an overview of relevanterroranalysis, and representative data usedin the theoretical modelling aregivenin the supplementary materials. 3. Calcuhtionof AverrgeMolecularOrientrtionin Monolayer Films on Copper,Silver,rnd Gold. The theoreticalbasisfor derivingan average orientationof molecules in monolayers from IR spectraof metalsupported filmshasbeenpresented in detail elsewhere.3T As presented then,theessentiat operations involved were( I ) thedetermination of a setof isotropicopticalfunctions applicable to the monolayerfilms;{ (2) the experimental deter(39) Linear least-squares fits to thc intensiticsof the d+ and d- modes vcrsuschain length for monolayensupportcdon gold and silvcr intcrsectzcro intcnsityat chain lcngthssignificantlygreaterthan zero, Plotsand further discussionare includcdin thc supplcmcntarymatcrials, minationof the thicknessof the frlm from ellipsometry(or other independent method);(3) simulationof an experimentally appropriatemonolayerspectrum(i.e., accountingfor reflection geometry, (4) assignment etc.)usingtheaboveparameters; of each absorption featureto a singleor combination of contributing vibrational modes. eachpossessing a matrixelement conesponding to a transition dipnlemomentu'itha specific directionin molecular (-i) asrgnment coordinates: of thediscrepancies in bandintensities b e t u e e tnh ei s o t r o p sr cr m u l a t i oann dt h ee x p e r i m etnota v e r a g e o n e n t a t r o on fse a c ho i t h ee l e m e n ot si t h et r a n s i t i odni p o l em o ment5uslnga irameuorkof classical electromagnetic theory;and (6) converti ng thedi pol eonentati ons i n mol ecul ar coo r dinat es geometr)' vi a transi ti on to a mol ecul ar on thesurface dipoledi(Tabl eII), It i s, of cour se, recti ons i n mol ecul ar coordi nates cri ti calthat thereexi stsa transferabi l i betw ti een the opt ical functions used(derivedfroma bulkstate)andthoserelevant to thephasestateof themonolayer. Errorsin theellipsometrically determined thickness are alsoof concern, although,for typical errorsof lessthan severalAngstroms, the influenceon the determinedorientations is generallysmall(valuesof thickness used are givenin the Experimental Section). The procedure usedfor numericalcomparison in the present studydiffersin significantdetailfrom that reportedpreviously. The presentstudyutilizescompletespectralsimulations; a descriptiveoverview of the methodis givenin the supplementary materi al , Simulationswereperformedfor a wide rangeof surfacegeometriesof the adsorbed molecules.The rangeof structuresto be considered was narrowedsomewhatby notingthat the experimentalspectra(presented earlier)suggest the placement of thechainsin a crystalline-like environment. Indeed,it hasbeen demonstrated by severaltechniques that the monolayers on gold areordered.l0'll Therefore, with alkylchainsin onlystructures an all-transconformations wereconsidered initially. In thelatter portionsof the manuscript, we will presentsimulations in which this all-transconstraint hasbeenrelaxedto allowgaucheconformations at theterminalCH2group. With regardto the present focuson all-transchains,thecoppersystempresents a significant challengeto analysis.The bestsamplesgive spectravirtually identicalwith thosefoundon silver. Their analysiswouldthus (40) Tablesof the optical functionsfor all the alkanethiolsreportedin this s t u d y( C , 5 - C 2 qa n d C 2 2 )a r e a v a i l a b l eo n r e q u e s (t D . L . A . ) . j l 3 , N o . / , 9 l, 9 9 l 7158 -o-r:exp-er'exp i te CH.(CHr)nS/Au - r ' r i s c m - or ' s c m x -.-r:lcm -a-r'tcm \2 o E Laibinis et al. (5 t-:, d El or o qo cE ctl o '14 18 cH3(cH2)ns/As rfl 2.O o o : ..J lo 1.5 6 E E ot 1,0 o ? chainin ann-alkanethiols diagram of anall-trans Figure6. Schematic Thecoordinate system usedto definetheorimonolayer ona surface. of thechain,thecantanglea, andthechaintwist0 areshown entations coordinates. to thesurface alongwiththeirrelationship conventionwas adoptedin which the metal-S-C geometryis for bothtvpesclfchains.The figureasdrawndescribes conserved tilt for a chainwith oi theC-CHr bondasa positive thedirection modes, r* andr,-, for n-alof methylstretching Figure 5. Intensities an odd total numberof carbonatoms(evennumberof CH2 (CH3(CH2)"SH) adsorbed ongoldandsilver Theexperikanethiols thusrequires that a andB bespecified values fromtheunresolved groups).Theconvention of r"- contain a smallcontribution mental Theupperpaneldisplays experimental and of ther5-modes. intensities for an evenchainin whichtheinitialC-CHr bondis tiltedin the (normalized found to thebandintensities intensity deviations calculated (negative) direction. opposite on gold)of the methyl of hexadecanethiol adsorbed for a monolayer The data abovesuggestthat all the chainlengthsexamined adsorbed formedself-consistent r+ (open) andr.- (filled),for n-alkanethiols modes, stretching structures. In the interestsof brevity, models intensities onvarious structural arebased ongold.Thecalculated seriesof spectraare presented" value), scm(single-chain therefore,fits to only a selected in thetext:exp(experimental thatarediscussed of monolayers will first the molecular orientations We consider (two-chain theexperimodel).Thelowerpaneldisplays model), tcm on silver.and thencomparetheseto thoseon gold. For all the adsorbed onsilver.The of r+andrr- for n-alkanethiols mentalintensities in the simulationmodels,excellentfits to the andasymmetric casesconsidered in theintensities of thesymmetric lackof anychange spectracouldbe foundfor theCH2 C-H stretching experimental modes for oddandevenvalues of n onsilversharply methylstretching (d+ and d-). In no case,however, ongold(upperpanel). contrasts thatobserved coulda modeadsorptions modes(r+, convergence of the CH3C-H stretching simultaneous r.-. 16-)beachieved: thetotalerrorscouldbeminimizedto values not bethat sameasthat whichfollowsfor silverandis therefore -20-30vcof thetotalmethylbandintensities (see approaching materials characterized by'thetype repeated. The "disordered" fittingerrors,best discussion above).On thebasisof theobserved materialcannotbetreated of spectrashownin thesupplementary is definedin termsof thed+ andd- modes,which fit convergence initiallyimposed on thisanalysis, namely, undertheconstraints phasefrom which we can of thechains thetilt (a) andtwist(0) angles areusedto determine that theredoesnot exista reference (seeFigure6), It is importantto notethat the symmetryof the derivewith certaintysuitableopticalfunctions;the spectraare the useof thed+ and CH2groupsaboutthe chainaxisprecludes neithercrystallinenor liquid-likein character.The datasuggest d- modesto determine the absolute signof the tilt angle,a" This trans that thereexistsin thesematerialssomefractionof extended whichestablishes latterparameter, the structuralfeaturesof the densities of gaucheconformations. segments aswellasconsiderable maybepresent film surface(i.e.,thedirectionat whichthe terminalC-C bond of adsorbate This mightimplythat lowercoverages protrudes into theambient),hasbeenarrivedat usingobservations on thesesurfacesthan is to be foundon thosebearingclosest packedchains.By assuming of the odd-evenbehaviorof the CH3 modeintensities and will a coverage, the weightingof thisfit as domainsof liquid and solid-likematerialcouldproducea be detailedbelow. with the bestfits for a C1sthiolate natureof these The errorsassociated simulation, but,giventhe ill-defined convergent phases, monolayer on silverare illustratedin Figure7. The analysis thereseemslittlejustificationfor doingso. diagramof an all-transchainas suggests that thesematerialsare,in fact,well modeledby the Figure6 showsa schematic wellas the coordinate systemusedto definethe orientations of opticalconstants of the bulk phaseand exhibita smallbut appreciable cantangle(a) of l 3o. The stiffness of the fit is clearly thechains.The chaintilt angle,a, is definedasthe cantof the polymethylene chainrelativeto the demonstrated longaxisof thetrans-zig-zag by theobservation that variationof a andB by even *2o (not shown)greatlydegrades the fit. The fits to the other surfacenormaldirection(z). The chaintwist,p, is the twistof the planeof thechain(*p, counterclockwise rotation)aroundthe silvermonolayer datasetswereequallygoodwith a rangeof the valuesof the cantangles(lal) varyingfrom I lo (C,e) chainaxis. Thiscoordinate system,basedon the typicalEuler absolute convention, is sufficientto describe the chaingeometry of a unto l40 (Czo);the twistangles, B, werealsosimilarrangingfrom iaxialsystem(recallthat onlythe z component of the transition 42oto 44o (Cre).Thesevariations arewellwithintheaccuracy givesriseto absorption; dipolemoments all x andy orientations of this method.Inspection of the datain Figure7 alsoreveals and thus the systemis uniaxial), ln orderto that the signof the cant angleis stronglyconstrained are equivalent by the describeboth odd and evenchainswith this onediagram,the simulations.Eventhoughthe absoluteintensityof the methyl 14 19 Monolayersof n- Alkanethiolson Cu, Ag, and Au Surfaces J . A m . C h e m .S o c . V , o l .I 1 3 , N o . 1 9 ,I 9 9 l Ca 6H s 7S H/ A 9 Ca6H57SH /Au T I 7159 I o.oor I I I a=-26 B = 5 21 =-13 =42 E o E o tr (r or o E (tt o o =13 --42 B :"\ /' ^/1 l\ it',^r, \!w 2900 3000 W A V E N U M B(E cm RS - {) (lower)andcalculated Figure7. Experimental IR spectra of octadecanethiol adsorbed onsilver.Calculated spectra having cantangles, c, of -l3o (upper)and+l3o (lower), andtwistangles, S, of 42oare presented. Thedifferences in thecalculated sp€ctra suggest thata is -l3o (asdefined by Figure6). Specific interpretations arediscussed in thetext.Thecalculated spectra arebased ona single chainmodel(see te xt). 2800 2900 3000 CR MS- { ) W A V E N U M B( E . (lower)andcalculated of octadeIR spectra Figure8. Experimental a, spectra havingcantangles, ongold.Calculated canethiol adsorbed p, of 52oare of -26o (upper)and *260 (lower),andtwistangles, provide presented. equallygoodfits thatdo not Thetwosimulations spectra arebased ona assignment of a. Thecalculated allowabsolute model(seetext). single-chain 2800 the singleall-transchainstructurederivedfor n-alkanethiolate cantangle,a, in a narrowrange on goldhasan average monolayers ar e c mul at ions of 26-28oanda tri i st.J. of -52-55o. S peci fisi monolayer for both shownin Frgure8 for an octadecanethiolate values data of a aswellastheexperimental positive andnegative datafor this As before,thecalculated for reasons of comparison. yieldsfits in a narrowrangeof valuesfor particularmonolayer a (shownherefor a = *26o) andB (52o);changingthesevalues the qualityof the fits for the d+ and by *,2o seriouslydegrades d- modes. On first glance,the data in Figure8 might be construedas indicatingthat the propervalueof the cantangleis a = -26o, closerfor thissignof the fit to methyl16-mde beingsomewhat in the two fits, a. The weighted errorsareactuallycomparable whenonetakesproperaccountof the totalintensityof the r+, r.-, and 16-modes.Thesespecificsimulationsthusare insufficient to choosebetweenthe signsof a. The larger in andof themselves a basison which thiols)doesprovide,however, dataset(Cro-Czz of the methylC-H The intensities to makesuchan assignment. stretching modesfluctuatewith varyingchainlength(Figure5), revealingthat the surfaceprojectionof the methylgroupsis not groupto thechain; conserved asoneaddsan additionalmethylene although oddandevenchainsyielddifferentmethylorientations appearto besimilar. The withintheselattergroupsthestructures character of theseintensity simulations revealthat thequalitative within the confinesof the singlefluctuations are bestdescribed a positivesignto the chaincantangle, chainmodelby assigning for all chainlengths.We have a (Figure6), whichis conserved notedin an earlierpublicationthat thereexistsignificantperfor group located turbationsof opticalfunctionsof the monolayer phase.l2'al at the ambientinterfacerelativeto the bulk reference Theseeffectsare sufficientlylarge evenfor the fairly simple, interactions by dispersion nonpolarmethylgroup(intermolecular methyl of an average forces)soasto preventdefinitivecalculations grouporientation.This perturbationcouldinvolvein principle boththe magnitudeanddirectionof the oscillatingdipoles.On that the directionsdo not change,a simplecalthe assumption p[vs. (41)Nuzzo,R, G,; Korenic, E. M.: Dubois, L, H. /. Chem, t990. dataasto thechanges culationcanbemadefrom theexperimental 93,767-713 (42)Hautman, J.;Klein,M.L. J. Am,Chem. representation Phys,19t9,9l,,4994-SCol. in intensity requiredto allowtheexactquantitative modessuggests the importance of effectsotherthan orientation (especially in determining the bandintensities r6-).the fits fail valuesof a. Thisresult.whenviewed mostprofoundly for positive in thecontextof thedatapresented in Figure5, suggests that the surfaceprojection of the methylgroupdoesnot vary in the silver-supported monolayers asonechanges the lengthof thechain. Stateddifferently,thefits, giuenthe corwentioru adoptedin Figure 6, require negatiDesignsof a for odd numbersof methylene groupsand positiueonesfor euennumbers.Discussion of the importof this observation is deferredto laterin the manuscript. Whereasthe spectralintensities of the monolayers formedon silvercouldbe fit by the useof a single-chain model,viz.,one average chaingeometryrepresenting the structureof all the chains in the monolayer ensemble, the goldsystemrequiresthe considerationof morecomplexmodels.In recentstudies, it hasbeen foundthat the spectraof thesemonolayers are stronglytemperaturedependent and revealtwo importantstructuralfeatures.al Fi rst, t he c hains ,eve n th o u g h w e l l d e s c ri b e da s bei ng 'crystalline-like", quantitiesof do indeedcontainappreciable gaucheconformations; thesearecon@ntrated at thechaintermini. Second,spcctraat low temperature exhibitfactorgroupsplittings whichsuggest that,at leastat T S 220K, the orderedstructure adoptedcontainstwo chainsper unit cell. Theseobservations are supportedby recentmoleculardynamicssimulationson this monolayersystem.42Thus,it is requiredfrom the outsetthat the modelsusedincorporate two-chaingeometries andallowthe populationof terminalCH2 gaucheconformations.Because of placedon the accuracy thedemands of the spectralsimulations by suchmodelsto distinguishthe subtlenumericaldifferences expccted, addedemphasis wasplacedon the measurement and useof improvedn, k datasets,dataunavailable prior to this work (seeaboveand supplementary material). We startwith a consideration of thesimplestcasc,a single-chain model. Usinga bestfit criteriabasedon the d+ and d- modcs, Laibinis et al. 7160 J. Am. Chem.Soc.,Vol. II3, No. /,9,I99l of CH3 C-H of a specificdataset. The calculatedmodulations shownin Figure5 werederivedon the stretchingmodeintensities basisthat the Au-S-CH2 bondangleis constantfor all chain lengths.On this basis,the only differencebetweenodd and even of the C-CH3 bondwith respect chainscanbe the orientations to the surfaceand,hence,the transitionmomentdirectionsof the the latter are r+, rr-, and 16-modes. With theseassumptions, exactlydefinedfor bothoddandevenchainsfor a chosentilt/twist (Figure6), andtheratioof the modeintensities can configuration be exactlycalculatedfor an evenchainversusan oddon the basis of the changein cos2dr, (where0r, is the angleof the transition momentwith respectto z axisfor a givenmodeof a particular modulishownin Figure5 were chainlength3T). The calculated in r"- andr* are changes derivedin thismanner(thecalculated referenced for theevenchain). It is evidentthat to theintensities the discrepancy is quitesubstantial.Most of this discrepancy underllng thesimpleall-trans app€ars to bedueto theassumption single-chain model. As hasbeenalreadynoted,the useof a twechainmodelis more with currentevidence that supportsa low-temperature consistent phase structuresimilarto a bimolecular monoclinic hydrocarbon with the planesof the C-C backbone at -90o to oneanother.al weredeveloped From this startingpoint,two structuralclasses structurewith for spectralsimulations:( I ) the low-temperature two contributingaveragechainstructures,eachof equalpopulation with all-transconformations; and (2) the high-temperature structure,identicalwith the aboveall-transmodelexceptfor allowingthepopulation of bothtransandgaucheconformations of the terminalCH2groupsof bothchainsin an independent. u n c or r elat ed f as hio n .a s from the fittingprocedure is that Onedistinctresultobtained a familyof structurcs all givcnearlyidentical minimumerrorfits to theCH2 modesfor valuesof d boundcdby 0 S d < 82o'*'ith e a c hv alueof d as s o c i a tewdi th a s p e c i fi p c a i ro f 0 t,02 val ues. For d > 82o,the fits worsen.Sincethe structureof a orthorhombiccrystalline subcellwouldrequired = 90o,theupperlimit valueof Q = 82owasselected asthe mostphysicallyrealvalue.{ For thisconstraint, the all-trans,two-chainmodelyieldschain twistsof 50 and-48o. The corresponding simulatedspectrum, (a3) To dcscribcthe geometryof thesemodels,the following conventions wcre adoptcd. For a givcn pair of chains,an anglc betwccnplanesof thc chain, d, was selectedand thc common axis betweenthe planesallowed to rotate (equivalentto twistingthc chainsin conccrtby thc sameamount)and tilt away from the surfaccnormal. It followsthat, for a pair of chainsindexedas I and 2, 6 = l1r - p2l and at = d2 = o. Sincc the planc of the chainscan bc rotated by l80o with no effect on the optical responseof the CH, modes,one can cquivalentlyspecifyd as l80o - l0r - dzl. As a conventionwe choosethe smallestvalueof d, The stratcgyfor thc bcst fit-simulationproccduresfor both modelsinvolved: (l) fixed a to bc that determinedfrom the bcst fit of the singlechain model (given above)and (2) variationof p1 and p2 indcpcndently between*90o and -90o (one ncgative value of p is rcquired to producethe proper methyl surfacecorrugation;sce below). In addition, for the gauche-allowedmodel, 0r and p2 for thc bcst fit all-trans model were sclcctcdand fixcd while a largc variety ( - I d) of conformational populations were scarchedindcpcndcntlyfor cach chain in a collcctionof 20 indcpcndent unit subcclls(2 chainspcr unit subccll). Thc monolaycrthus was reprcscntcd by 40 chains (20 with p; and 20 with pr), with each chain indepcndcntly populatingone of three conformationalgeometries,trans, gauche(l), and gauche(2), with cach conformationexhibitinga different contributionto spcctral intcnsity. (44) Thc numerical prccisionin thesccalculationsis such that a rangeof { valucsbctween-75 to t5o (or equivalentlyl80o - (76 to 85o) = 104to 95o) will give a rcasonablcfit to the intensiticsof thc CH2 modes. Thcrc is an intcrestingand simplcgcometricrclationshipthat can bc dcrivcdrclating thc twist angleof a singlechain model,p,, to thc twist anglcsof the two chain model, p1 and 02, for thc condition that thc overall geometric factors (scc supplementarymaterial, footnote7) for thc d+ and d- modcs,Gd' (a. d) and Go (o. d), cach bc idcntical, rcspcctivcly,in both models: l9 r- B z=l c s l o (d ,\-2 p .) (2) In linewithour earlierconvention of choosing d, Q(p,)= 0o whenQoS 0, ( 45oando(0,) - l80owhcn45o3 P. < 90o, Thccondition requircd by thisincquality is thatthc modclsgivcidcnticalsimulatcd CH2spcctra.Thus, for an orthorhombic unit subccllwith d - 90o,it followsthat p. - 45oand all two-chainmodelscan bc rcplaccdby oncsinglc-chain modcl. Anothcr rcsultis that for 9r= 52o,theaveragc rcsultdcrivcdfor a singlc-chain twist on goldin thetcxt,thc incqualityrcquires6 S 760,cl6c to thc rangcfound numerically of -76-85o. /Au CasH3TSH ALL - TRANS T W O C H A I NM O D E L a=26 F = 50 AND-48 o (l (r o o G A U C H E. A L L O W E D T W O C H A I NM O D E L Q=26 I = 5O AND-48 I Io oor EXP. 2800 3000 2900 W A V E N U M B E R(Sc m - { ) Figure 9. Comparisonof experimental(lower) and calculatedspectraof octadecanethioladsorbedon gold, The calculated spectraare basedon a two'chain model The charnswere assumedto be all-transin the upper s i m u i a t i o na n d a l l o w e dt o a d o p t g a u c h ec o n f o r m a t i o n sa t t h e t e r m i n a l m e t h l l e n e g r o u p r n t h e l o w e r . S p e c i f i cd i s c u s s i o nas r e p r e s e n t e di n t h e l e xl . AcFd) ,,, >o 5rE !1, Ac(3p) Erh 1 1h th a 1n 1Ca 101 Blndlng En rgy (d) 6m5mtm3m2mlm0 BlndlngEnergy (ev) Figure10. XPS spectraof silversamplesexposedto I mM solutionsof for l, ll, and 37 h each. With continued octadecanethiol in isooctane exposure, the sulfursignalsbecomemoreintensewith "growth"of peaks (seeinset);no otherchanges in the spcctrum at lowerbindingenergies to solution wereobserved.The S(2p)spectrumfor the sampleexposed components of for 37 h couldnot be fit with the two spin-orbital-split easily species.This spectrumwas,however, a singlesulfur-containing onepair resembled thc fit by two pairsof spin-orbital-splitcomponents; spectrumgivenfor l-h exposuresuggesting that the thiolateremains presentwhile an additionalspecies(oneat lowerbindingenergy)had been incorporatcd. We bclicvc the ncw sulfur-containingspeciesto correspondto the formationof a thin film of Ag2S at thc silver/ of the sampleswereessentially monolayerinterface.The wettabilities filmson themare indistinguishable andconfirmedthat the hydrocarbon oriented. shown in Figure 8, while producing an excellentfit for the CH2 modcs,clearly yields a poor fit to the intensity profiles of CH3 J. ,-1trt t ht'nt Monoiayers ai n-Alkanethiois on Cu, ,4g, und Au SurJaces modes(indecd.oncsno betterthan the single-chainmodeli. Using t h e s ef i x e d v a l u e so f a , 0 r , a n d B 2 w h i c h p r o v i d eq u a n t i t a t i v e simulation of the CH2 modes,the fitting proc€ssrevealeda second distinct result,namely,that a large number of bestfits to the CH3 m o d e se x i s t w i t h n e a r l y a r a n d o m m i x t u r e o f a l l o w e dg a u c h e populations. ln the above,the worst fit to the total intensityof the CH, modesis obtainedfor zero gauchestates,viz., the all-trans model above. The calculatedspectrum shown in Figure 9 is derived from a model with a total conformer population of 45Vc gauche and 55Votrans in the collectionof 40 chainssampled. In general,evena small percentof gauchestatescan decreasethe fitting error associatedwith the CH3 modesby a t'actorof -5. It shouldbe noted that. of course.certain combinationsof conformational statesgive poor fits but none worse than the all-trans model. Thus, randomizationof terminal conformationscan only lead to improvedfits. The final point to note is that no combination of conformationalstatessampledcould providea lessthan - ljVo error betweenthe spectralintensitiesof the calculatedand observedtotal CH3 modes. I t m u s t b e e m p h a s i z e dt h, e r e f o r et,h a t p r e c r s eq u a n l i t a t i ( ) nt o better than *10% requiresconsiderationof perturbiitionsirf the opticalconstants of the CH3 group at the airlmonolayerinterlace relativeto the CH3 group in a crystallinereferencematerral.Such to be in thc range effectsprobablyexistand shouldbe considered of - i A7oof ihe t<ltalvaluesof k 1assuggested by,the fittrng errcrrs above). The significantpoint remains,however.that the bestfits a r e c o n s i s t e nwt i t h a p o p u l a t i o no f g a u c h ec o n f o r m a t i o n as t t h e c h a i n e n d s ,a s i n d e p e n d e net x p e r i m e n t s u g g e s e t xrst.a5 Influence of Extended Immersion Times or Exposure to Air on the Nature of Self-AssembledMonolayers on Silver and Copper. We haveobservedthat, while the nature of the monolayersformed on gold are insensitiveto changesin the immersiontimes in the adsorbatesolution over periodsof severalweeks,those formed on silver and coppercan differ in considerabledetail. We have begun to examinethesefeaturesin greaterdetail and can report some initial findings, Extendedexposureof copperand silversurfaces t o s o l u t i o n sc o n t a i n i n ga l k a n e t h i o l sr e s u l t si n f i l m s t h a t a p p e a r t o o t h i c k b y e l l i p s o m e t r yt;h e t h i c k n e s s eisn f e r r e cai r e t o o l a r g e t o b e e x p l a i n e db y a d s o r p t i o no f a m o n o l a l e r ( s e ea b o v e ; . \ \ ' e f o u n d , b y X P S , t h a t t h e f i l m s f o r m e d o n s i l v e r .a f t e r e x t e n d e d exposureto the adsorbatesolution,containedno ox)'genand the amount of carbonwas similar to that found on samplesexposed for shorterimmersiontimes (Figure l0). The major difference betweenthe XPS spectrais the increasedamount of sulfur present with continuedexpoaureto the alkanethiolsolution.6 The amount of sulfur (relative to the amount of carbon) is too large to be explainedif sulfur is only presentas alkanethiolate. We believe formal C-S bond cleavagehas occurred to generatea thin film it may be this reaction of Ag2S at the silver/monolayerinterface;a7 that is responsiblein part for the anomalous ellipsometric thicknessesmentionedearlier. Surprisingly,the wettabilitiesby water and hexadecaneof the hydrocarbonfilms remainedsimilar to thoseobtained after more limited exposuresand were consistent (45) There is a further subtlecorrectionin the simulatedspectralintensities of the d+ and d- bandswhich shouldbe made wheregaucheconformations are introducedinto the chainend. Becausethesemodesare delocalized(see supplementarymaterial),the lossof one trans conformerin an all trans chain by conversionto a gauchestatecan diminishthe overallband intensitiesby an amountgreaterthan the fraction of the total CH2 group which the altered group represents,For the caseof an originally all-trans-(CH2),7- chain converted t o a I g a u c h ek i n k c h a i n ,t h u s w e e x p e c tI t f I t S 1 7 l 1 8 = 0 , 9 4o r a more than 6Vodrop in intensity. A reasonableupper bound is probably -l0Vo (SnyderR , . G . ; M a r o n c e l l iM , . ; S t r a u s s ,H . L . ; H a l l m a r k ,V . M . " / . Phys. Chem, 1985, 90,5623-5631). Considcringthat probablyonly half (-45Vo for the fit givenin Figure 9) thc chainshavc gauchckinks, the cffect of the drop in intensityin the simulationis to increasethe chain tilt a and a changein the tilt from 260 to -29o will accomplishthis. Although such a correctioncannot be made rigorouslybecauseof the lack of actual gauche statcpopulationsand the exactintcnsityrelationship,the sizcofthe correction is reasonablein terms of physicallyacceptablevalucsof a. (46) No differenceswerenotcd in the characterof the Ag(3d572) core level upon extendedexposureto the alkanethiolsolution;however,the binding c n e r g i c so f A g ( 3 d 5 7 2f )o r A g 2 Sa n d b u l k A g a r e s i m i l a r( A B E S 0 . 1 c V ) . ' r (4?) Cleavageof C-S bondsby silvcr of thiols,disulfides,and sulfidcshas been reported.a \''.,. 1 e .1 9 9 1 7 l 6 l I o o c o ll L o a ll J o.oor b a I __T____r-]ffi 800 1000 1200 '1400 1600 Wavenumbers(cm'') prepared to on silverby exposure ra of monolayers FigureI l. I R specl exporn ethanol,afterdifferentintervalsof subsequent octadecanethioi (upper (a, -l h; b, -2b). The high-frequency sureto theatmosphere (lowerpanel)regionsof the IR spectradisplay panel)andlow-frequency regionshows the changesthat developwith time. The high-frequency chainshavebecomeorientedlessperpendicularly that the hydrocarbons region The low-frequency environment. but remainin a crystalline-like and the XPS spectra(Figure!2) showthat someof the thiolatehead to sulfonates. groupshavebeenoxidizeci packed.meth)'lsurface. We believe with the presenceci a ,Jensely t h a t d u r i n gt h e f o r m a t r o no f . r nt n t e r p h a soef A g 2 S ,a n o r g a n i z e d , o r r e n t e da l l l r l t h r o i a t ea s s e m b l a gceo n t i n u e tso e x i s t( s e eb e l o w ) . On copper. similar lncreasesin sulfur content were observed, suggestiveoi formation of copper sulfide; however,the surfaces routinely becamepitted and did not allow characterizationby wetting, Upon extendedexpcsureof an alkanethiolatemonolayeron silver or copper to the atmosphere.the samplechanges;a representativeexampleof the IR spectrumof such a material is shown in Figure I L This sample was obtained after a few days of t eo n o l a l e r o n s i l v e r t o a i r , e x p o s u r eo f a n o c t a d e c a n e t h i o l a m Three featuresof the data are of particular significance.First, the peak positionsof the CH2 C-H stretchingmodesare consistent phase(d+, 2850cm-l; with the presence of a densecrystalline-like d-,2917 cm-l). Second,the correspondingintensitiessuggestthat the chains are more highly cantecithan thosedescribedabove. Third, the low-frequencyportionof the spectrumexhibitsa very intenseband centeredat - 1200cm-r. Using the opticalconstants of an n-alkyl disulfideas a basisset, we roughll estimatethat the chaincant, a, for this new phaseis -l8o with the twist E = 45o. We urge cautionin interpretingthis result.as the headgroup on the chain is now presumablynot thiolate (seeDiscussionbelow) and perturbationsof n and & are expectedto result. It doesseem safe to conclude,however,that the orientationsof the methyl groupsat the ambient surfacediffer in significantdeuil from thooe supportedby a thiolate head group, The XPS data shown in Figure 12 for a monolayeron copp€r exposedto the atmospheresuggestthat someof the sulfur atoms in this monolayerare oxidizedasjudged by the additionalS(2pyz) core levelat a binding energyof - 167.5eV, An increasein the intensityof the O( ls) core level region is alsoobserved.We believe the speciespresenton the surfaceto be an alkyl sulfonic acid, presumablypresentas a sulfonateanion. The binding energyof S(2pyz) is comparablein positionto that obtained by treating an oxidized silver or copper surface with an alkyl sulfonic acid (seeTable I). We have observedon silver similar oxidationof Laibinis et al. 7162 J . A m . C h e m .S o c .,Vo l , I1 3 , N o . 1 9 ,I9 9 l 1is o 'x o4 tr = o 93 .= o 52 s 173 168 163 158 Binding Energy(eV) Figure t2. Effect of exposure to atmosphere on XPS spectra of octadecanethiolatemonolayerson copper (bottom. (l h; middle, -2 wk). The upper spectrum is of a silver surface derivatized in an isooctane solution of hexadecanesulfonic acid, presumablyadsorbedas the sulfonate a n i o n , a n d i s p r o v i d e d f o r c o m p a r i s o n . A l l s p e c t r a( 4 0 s c a n s )* ' e r e r e f e r e n c e tdo C ( l s ) = 2 8 4 . 8 0e V . T h e l o w e rs p e c t r u me x h i b i t sa S l l p t e n v e l o p ec o n s i s t e n*ti t h a t h i o l a t ea t t a c h m e n t t; h e s a m p l ee r p o s e dt o a t m o s p h e r ef o r I u e e k s d i s p l a y sp e a k sa s s o c i a t e *dr t h t h e p a r t i a l a t t a c h m e n to f t h e m o n o l a y e r a s u l f o n a t em o i e t l ( s e eT a b l e I ) a n d "'ia c o n f i r m sa s s i g n m e n ti sn F i g u r e I l . X P S * a s l e s ss e n s i t i v teo t h e p r e s e n c e o f o x i d i z e d h e a d g r o u p s t h a t I R ; l o n g e r e x p o s u r e st o a t m o s p h e r e\ \ e r e required to confirm the productsof oxidation by XPS. Similar changes are observedin the S(2p) spectraof alkanethiolatemonolayerson silver although they occur at a slower rate. thiolatesto sulfonates.2e The appearance of a strong the adsorbed peakat - 1200cm-r in the IR spectraof silversamples(Figure with a sulfonate I I ) is entirelyconsistent headgroup. Discussion Thedatareportedheresupporta generalunderstanding of the structureof the alkanethiolate monolayers on copper,silver,and gold. Theanswerto thesimplest question wecanask-*Are they' thesame?"-isclearly"no". How theydifferis easilydescribed in generalterms, Monolayers on Copper.All the evidence suggests that the films preparedon copperunderthe conditionswe used(that is, by excluding, exposure to laboratory minimizing,but notcompletely metalunder atmosphere by manipulating the unfunctionalized a flow of argon)canvary widelyin character.The significant variationsof spectralbandintensities all suggest and lineshapes that somefactorrelatedto the structureof the monolayercomplicatesthis system.The clearinferencefrom the XPS data is due that the variationsin the surfaceof the startingsubstrate, with atmospheric oxidationand otherreactions to adventitious constituents in the morphology of the and,perhaps,to differences surface,are likelyunderlyingfactors. is clearly The coppersurfacethat supports thesemonolayers not metallic.The O(ls) coreleveldataestablish that thecopper containsoxygen.No Cu(ll)(2r1,Dsatellitestructurecouldbe detected by XPS;thus,the mostlikelyphasepresentis a hydrous surfaceoxiderelatedto Cu2O.This oxidesurfaceis alsoknown contaminants to behighlyactivein thesorptionof environmental of CO2as carbonate.The as well as in the strongadsorption of this surfaceis unclear. It is thus microscopic topography possiblethat any one or all of thesefactorscould conspireto or in precludetheadsorption of thiolsto the veryhighcoverages the geometriesnecessaryto form a structurecomprisedof and,perhap,orderedalkylchains.It is notsurprising close-packed prepared usingapparentlyindistinguishable that coppersamples protocolsyielded monolayersexhibiting various degreesof conformational disorder by IR and complementary differences in hysteresisof contactanglesof water (seesupplementarymaterials). of Cu( I I I ) under UHV conditions, On clean elementalsurface,s s i m p l et h i o l s a n d d i s u l f i d e s( C H 3 S H a n d C H 3 S S C H 3 )a d s o r b readily.a8 The surfacespeciesgeneratedfrom either adsorbate is a surfacethiolate.CH3SCul.Cuo,.The structureof this organic surfacephaseon Cu(l I l) has not yet beendeterminedby LEED, but the evidenceobtained from angle-resolvedphotoemission measurementssupports a highly defined structural model containing a S-C bond projecting along the direction of the surface normal. Such a surfacephaseis qualitativelyconsistentwith the character of the best monolayerswe have prepared on copper although the values of a found suggest a somewhat different a l i g n m e n to f t h e a l l - t r a n sc h a i n ( a = l 2 o ) . I n m o s t i n s t a n c e s , however,the data obtained in this study do not support a structure resemblingthe well-definedstructure obtained in UHV. We therefore suggestthat the oxide surfacespresentin experiments involvingadsorptionfrom solution must seriouslycomplicatethe formation of denseorganic phases.Under certain conditionsthis oxidation might be reversibleand/or the Cu atoms removableas ions (Cu(*l)) to allow the formation of the densephasesseen on occasion. As noted, though, the experimental variable(s) involvedremainsundefined. Further oxidation of the surfaceafter formation of the monolayer,and, possibly,oxidationof the thiolates as well. may also contributeto the disorderin the monolayer.ae The XPS data clearly suggestthat the major sulfur species p r e s e n it- .a t h i o l a t c( R S C u ) : t h e S ( 2 p ) c o r e l e v e l s( T a b l e I ) a r e s h i f t e db r , ) r e r I e V t o i o w e r b i n d i n ge n e r g yf r o m t h e p o s i t i o n e r p c c t c dl \ ) r l t h l o i t u i t h t h c -S - H b o n di n t a c t ) . T h e s a m es o r t trf :p€clc: it)fms ,]n elementalsurfacesin UHV.47 The microscopic m o r p h o l o g ro f t h e : u r f a c e sm a y b e v e r l ' d i f f e r e n ta, n d t h e i n f l u e n c eo n s t r u c t u r eo f s u r f a c es i t e so c c u p i e db y o x i d e i o n sa n d of alkyl sulfinicor sulfonicacidsis presently bi small cluantitres unclear. The XPS data also strongly suggestthat the bonding at the surface can be heterogeneous(a broad S(2p) envelopeis sometimesseen). Whether this heterogeneityis attributable to different sulfur valencestatesor metal bonding sites is unclear. Monolayers on Silver. In contrast to the copper-supported monolayer, the monolayers formed on silver are remarkably well-defined,and the assemblyof monolayerson this metal better behavedthan on copper. We would expectthat silver,which also forms an oxide in air, might show complexitiessimilar to those found for adsorptionon copper. The core-leveldata clearly show, however.that nearlv all of this oxide must have been removed on the adsorptionof the alkanethiolsand that oxidationsubsequent t o f o r m a t i o no f t h e m o n o l a y e rm u s t b e s l o w . W e d o n o t k n o w at presentwhere the residualoxygendetectedby XPS remains, but suggestthat grain boundariesare at leastone likely candidate site. The data also show that this surfacephase,when exposed to the atmosphere,gradually converts to what we believe is a material attachedas a sulfonate;the O(ls) core level intensity seen at short immersions may, in fact, correspondto a partial present surfacecoverageof this latter ligand. The signal-to-noise in the XPS measurementmakesthe S(2p) core levelsof this latter group hard to detect. The IR data require a structural model for fresh (not aged) monolayerson silverin which the chainsare very denselypacked. The line widths, the peak positions,and the shapes of the d- and d+ modesresemblethoseexpectedfor a crystalline hydrocarbon solid to a remarkable extent. The structure we propose is thus one based on an all-trans chain with very few gaucheconformations. The quality of the methyl band fits suggeststhat gauche conformationsare probably lessimportant in the phasediagram of thesephasesat 300 K than they are in the correspondingstructureson gold (seebelow). The simulations in Figure 7 also definea structurein which the main chain axis (4E)Bao,S,; McConville, C. F.; Woodruff, D.P. Surf. Sci.19t7,187, N. P.;Seymour, D. L.; WoodruflD. P.;Jones, 133-143,Prince, R.G.; Walter,W. Suy' Scd,1989,215,566-576. (49)Theboundthiolateandunderlying copper surface eachoxidizewith to atmosphere: exposure of themonolayer Laibinis,P. E.;Whitcextended results. sides,G. M. Unpublished Monolayersof n- Alkanethiolson Cu, Ag, and Au Surfaces Figure 13. Space-filling model of an octadecanethiolatemonolayer on silver as derived from infrared data interpreted in terms of a single-chain model. is only veryslightlycantedfrom the surfacenormaldirection.A graphicaldepictionof thisstructureis shownin Figurel3 for an octadecanethiolate monolayer.Theseresultsimplicatea significant reductionof theinterchainspacingin thesephases in comparison to the analogous onesthat havebeenextensively characterized o n Au (l I l) in t hisando th e rp a p e rsOn . th i sl a tte rs u rfa c e. we nowknowwith greatcertaintythat cantedphases (a = 28owith thechainrotationp = 52o,seebelow)areformedwhosecharacter is wellsuitedto the verystrongtendency of thissystemto form ordered(J3 x V3)R30" sulfuroverlayers. We believethat the cantedsurfacephases seenon goldreflectsthe spacingof sulfur in this overlayerstructure.The differingcharacterof similar monolayers on silver,despitethe similarmetal-metalspacingfor silverand gold,suggests that the sameorderedoverlayeris not formedon silver.5o (50) Portcr et al. have also characterizedthe structure and propertiesof a-alkancthiolsadsorbedon evaporatedsilver films by wetting, ellipsometry, , . M . ; C h u n g ,C . ; S t o l e ,S . M . ; W i d r i g , C . A . ; P o r t e r ,M . and IR (WalczakM D. J. Am. Chem.,Soc. t99l, I I 3,237F2378). A comparison with the results reportedhere for silver indicatesgeneralagre€mentsbetweenthe setsof data, but showsdiffercnccsfor monolayersderivedfrom shortern-alkanethiols.For elqr_nRlcr_1vc.do not observean odd-vcn effect in the wettability of Ag/S(CH2)"CH3by hexadecane (n = 4-8); Porteret al. do. They concludethat the hydrocarbonchain is cantedat -*l3o for all ualuesof n;we contend that the signof the cant angle,a (Figure6), alternatesbctweenpositiveand negativcvalucs for evenand odd valuesof n, respectively. We bclievetheir analysisto bc in error. In both works,no variationin the intensitiesof methyl stretchingmodeswasobscrvedfor n 2 5. For shorterchain length (n = 4-7), Porter et al. obscrveas much as a 4Mo increascin thc intensity ol thesemodes. Our spectralsimulations(Figure 7) suggestthis variationii too small to bc due to odd-cvcn variations in chain lcngth; we cstimate that an -l00%o increasein intensity is required. They concludean odd-cven effect is responsiblefor this variation but do not offer satisfactoryexplanationfor its disappcarancc at n > 8, Wc rationalizcthis constantintcnsityby the existcncc of a singlemcthyl orientationon silveras n is varieddue to-an'alternation in thc-signof thc cant anglc,a (Figure l4). Portcr ct al. also usc corresponding odd-even variations in wettability for n = 4-8 (that we do not obsirvc) ai complementaryevidence. We suspcctmost (if not all) of the differences bctweenour work and that of Porter et al. to bc due to adventitious(and pcrhapscontaminantpromotcd)oxidationof their evaporatedfilms of silver prior to adsorptionof the alkanethiol,and to the sensi[ivityof this systemto surfaccoxidationwhen onc uscsshorter(n s 6) n-alkancthiols.we notc that both papershave had difficulty preparing high-quality monolayersfrom shorterchain alkanethiols.we cannot,howcvei,eicludi somecontribution to differcncesin the proceduresused to preparethe sitver films, and to re. sultingdifferencesin grain size,preferredorientation,and surfacetopology, J. Am. Chem. Soc., Vol. II3, No. /,9,l99l 7163 ComparisonsbetweenMonolayers on Gold, Silver, and Copper. The differencesin geometrv (a and p) of the hydrocarbon portion of the assemblies on the coinagemetal surfacescan be considered to arise from the balanceof free energiesfrom three sources:(l) t h e a d s o r b a t e / s u b s t r a itnet e r f a c e (, 2 ) t h e c h a i n - c h a i np a c k i n g o f t h e i n t e r i o ro f t h e a s s e m b l ya, n d ( 3 ) t h e m e t h y l i n t e r f a c e( o r solvent/methylinterface). The energeticsof the first contribution abovehave beenexaminedin the caseof gold3o(the energetics on silver and copper are no doubt similar) and are likely to be larger in magnitudethan is possiblefrom the energeticsof hydrocarbon chain interactionsslor hydrocarbonsurfaceenergies. Therefore,it is likely that head group/substrateenergeticsdrive the major structural featuresof the entire assembly. After this consideration,one could ask the questionof what structure of the hydrocarbonchain (tilt angle and packing) and what arrangement of surfacemethyl groups (orientation relative to the surfaceand to other methyl group) representminimum free energystructures given no constraintof surface/adsorbatebonding,viz., no prefened lattice spacingor valenceangle. This questionis impossibleto answerexperimentallyat present,but, asjudged by the infrared d a t a . t h e t w o d i f f e r e n t c l a s s e so f r l e l l - d e f i n e dm o n o l a y e r sw e o b s e n ' e( g o l d :r i i r e r a n d c o p p er ) b o t h e x h i b i td e n s e c, r y s t a l l i n e p a c k i n ga . n d r n t h c c a s eo i g o l d .s o m ec o m p o s i t i o n adli s o r d e r i n g at the alr (or solvent)interface.The energydifferencesbetween thesetuo classes of films.althoughindeterminate experimentally, may be as small as differences between orthorhombic and monoclinic phasesof hydrocarbons.aaGiven this negligibledifferenceand also given such a large discrepancybetweenthe total free energiesof the adsorbate/substrateinterface and of the interior and the surface of the film for a particular system, it appearsthat the most likely factor determining the differences betweentwo films formed on different substratesmust be primarily the substratesthemselves.On this basis,we considerthe head group/substratestructure in detail first. As has beennoted.the XPS data indicatethat the bondingto the surfaceis in the form of surfacethiolatesfor the threemetals. T h e l i t e r a t u r ec o n t a r n sc o n s r d e r a b lper e c e d e nfto r t h e b o n d i n g species of sulfur-containing on silverin this manner. On Ag(l I l) (the preferred crystallographictexture of the polycrystalline samplesusedin this study; seeExperimentalSection),elemental sulfur and H25 have beenfound by LEED to form a number of stable,orderedsurfacephases.s2The preferredhabit is a ({7 x \/1)Rl0.9o overlayer. This denseand structurally complex phase is believedto correspondto an ordered, lattice-matched interfacebetweenAg(l I l) and (l ll)-oriented 7-Ag2S. The silver in the first layer is believedto be ionic. Dimethyl disulfidedissociativelychemisorb,s on Ag( I I I ), and the surfacethiolate formed also adopts the (t/1 x V7)Rl0,9o structure.s3 The S-S nearest neighbordistancein sucha structureis -4.41 A. It would thus seemthat the bondingof sulfur in this sort of ionic surfacephase (one that significantlyreconstructsthe (l I I ) lattice plane) is consistentwith the characterof the phasesinferred by infrared spectroscopy.Molecular dynamicscalcuIat i onss suggest,however, that this lattice may be too dense(16.87 AulnS) to accommodate the all-transchain sterically. The other phasesseenin the H2S adsorption studies,s2 mostnotablythe r'39R I 6. I o x /39R16.1 o overlayer(a structurecorrespondingto an ordered(100) layer of 7-Ag2S),could alsosupportthe adsorptionof the sulfur ligands a t d e n s i t i e s- 8 V o h i g h e r( - 2 0 , 3 A 2 , ' R S ; t h a n t h o s ei n t h e ( V 3 x V3)R30o overlayersfound on gold. The small angle of cant derived from IR data. we believe.reflectsthe short interchain spacingsimposedby the silve175u1;ur lattice. LEED or other ( 5 1 ) T h e g r o u pc o n s t i t u e nht e a to f s u b l i m a t i o no f n o r m a lh y d r o c a r b o n s i s 1 . 8k c a l / m o lC H 2 a t 0 K : S a l e m ,L . J . C h e m .P h y s . 1 9 6 23, 7 , 2 1 C G 2 1 1 3 . For very long hydrocarbontails (n I 20), thc enthalpies due to chainpacking and the metal-headgroup interactionmay well bc of comparablemagnitudcs. ( 5 2 ) S c h w a h aK , . : S p e n c c rN , . D . ; L a m b e r t ,R . M . S r l . S c d1. 9 7 9 ,8 / , 2 7 3 - 2 8 4 . R o v i d a ,G . : P r a t e s i F , . S u r f . . S c i .l 9 t l , 1 0 4 , 6 0 9 4 2 4 . ( 5 3 ) H a r r i s ,A . L . : R o t h b c r g L, , ; D h a r , L . ; L e v i n o sN , . J . ; D u b o i s ,L . H . Phys. Reu.Ittt . l9XJ. 64, 2086-2089. Harris, A. L.; Rothbcrg, L.; Dhar, L.; Levinos,N. J.; Dubois,L. H. J. Chem. Phys. 1991,94,2438-2448. ( 5 4 ) B a r e m a nJ. . P . ; K l e i n , M . L . J . P h y s .C h e m . l 9 { n , 9 4 , 5 2 0 2 - 5 2 0 5 . 7164 J . A m . C h e m.S o c .,V o l .l l 3 , N o .i ,9 , 1 9 91 to definethe structureof this diffractionstudieswill be necessary underlyinglatticeunambiguously. of the adAgain,as is the casewith copper,the mechanism on silveris unclear.The oxidationof one sorptionof alkanethiol of silverat the solid-airinterfaceshouldbe or two monolayers facileunderthe conditionsusedin the preparationof thesesamples. boththat arguments It is alsoclearfrom simplethermodynamic the S-H bondand an Ag(0) surfaceshouldbe ableto dissociate shouldbe reducibleby thiols. Giventhat that AgO, species of oxygenatomson somesilversurfaces replacements metathetical leading are alsofacile,it is easyto envisiona numberof processes This latterchemistryalso to the materialsseenexperimentally. which densities anotherreasonfor the higheradsorbate suggests to gold. The initialoxidationof the formon silverascompared of oxygenatomson the by Oz yieldsa high coverage substrate by sulfurwouldthusdirectlyyield Theirsubstitution surface.lT esa surfacephaseof densechains.55Evenso.the precedent that suggests of dimethyldisulfide by the UHV studies tablished is intrinsicto in highsurfacedensities the formationof thiolates t he A g( l I l) latti c ep l a n e . As for bothcopperandsilver,the bondingto goldalsoappears to be asa surfacethiolateasjudgedby the corelevelshiftsseen of the sulfuratomsin a (r/3 in the XPS data. The placement x /3)R30o overlayer,as mentionedabove,is now well estabis oneinvolvinga morecovalent lished.l0'llThe pictureweenvision structurethan that on silver. On gold,thereare no largedisplacements of the metalatomsfrom their normal( I I I ) lattice sites. The constantchaincant angleseenin the gold system presumably of themetal-sulfur reflectsthedominantenergetics s e e nre fl e c ts th e i n te rp l a o;-f t hedomi nant bond.T he or de ri n g c ont ri b u ti o nosf th e me ta l -s u l fubr o ndi ngand the ener get ic of thepackingof thealkylchains.In the second-order energetics bondingresults caseof gold,thecovalentcharaclerof the substrate in the adoptionof a fixedAu-S-CHt valenceangle,providing an interestingcontrastto the behaviorsseenon copperand silver. interaction, thedominantadsorbate/ substrate Having discussed we nowturn to the issueof film structure.An intriguingpoint is that the methylmodespectraof arisingfrom the IR analysis in the the filmsformedon silverdistinctlydo not reflectchanges signof the chaincantangle,a (Figure6), with changing absolute carbonchainlength. If the absolute directionof the chaintilt with odd-even variationof length,thecharacter wereconserved of the spectrain the regionof the methylmodeswouldvarl (seeFigure5). Thepresence considerably andbequiteobservable d e th y ls u rfa c es, u c ha s e x i s tso n gol d,w oul d of a dis or der em diminishthiseffectsomewhat, but thequalityof thesimulations in the regionof the r+ and rs- modesis sufficientlygood(Figure 7) to indicatethat gaucheconformers arelessimportanton silver of orientationgivenin Figure thanon gold. Usingthe conventions on silver(and likewiseon copper)are 6, the chainstructures described in termsof onesin whichthe chainis requiredto cant in oppositedirectionsand the Ag-S-CH2 ualenceangleto alteruutebetweentwo different sigtuof a for odd and euennumbers groups(Figurel4). The methylsurfaceprojection of methylene selected by eachis the samedensephase,one which we can characterize asbeingmorelike a surfaceethylgroup(Figurel3) maximizingnearestneighborinteractions at the chaintermini. with this methyl surface Althoughthe energetics associated structureshouldbe small,theyseemto besufficientto outweigh any preferences dueto the sulfur, We believethis pictureto be with the hypothesis consistent that the bondingof the sulfurat in thissurfaceis largelyionic.53With the aboveconsiderations (55)Scc,for cxamplc:Wachs,I. E.; Madix,R. J, Surf. Sci.191t,76, Stuve, B. A.;Madix,R. J. Surl Sci.t9tl, i,05,177-195. 531-558. Sexton, E, M.; Madix,R. J.;Sexton, B. A. Chem.Phys.ktt.19t2,89,48-53,Stuvc, Canning, E. M.; Madix,R. J.:Scxton, B. A, Surf. Sci.19t2,I 19,279-290. N. D. S.; Madix,R. J, /, Phys.Chem.1984, 88,2437-2446.Fcltcr,T. E.; Wcinbcrg, W. H.; Lastushkina, G, K.; Hrbck, G. Y.; Zhdan,P.A.; Borcskov, S.;Robcrts, J, Appl.Surf, Sci.t983,/6. 351-364.Au, C. T.; Singh-Bopari, Capote, M. W,; Joyner,R, W. "/.Chem.Soc.,Faraday19t3,79,1779-1791, J. Am. Chem.Soc.19t9, A. J,; Madix,R, J, Sry' Sci.19t9,214,276-288; Soc.1989,/ / /, I I I ,357G3577.Brainard, R. L.; Madix,R. J, /, Am.Chem. andrcfercnccs citcdthcrein. 3826-3835 n = even "f" )'r' \ ,J,;,X;, \ \t 45" 'HH \( o=-'2"( ),=,, ) (r:;:;;, t/ )) H H o - -27' (notformodlor n - odd or even) formeduponadsorption Figure14. Illustrationof the cantedstructures on copper,silver,and gold. The CH3(CH2),'SH, of n-alkanethiols. that formon copperandsilverdo not exhibitany changein structures in the number increase of methylmodeswith incremental rherntensrtres is consistent groups(Figures4 and 5). Thisobservation of methylene only *rth the formationof a structurern whichthe cant angle,a, is groupsandnegative for an odd positive for an evennumberof methylene groups;the geometryof the metal-thiolateinternumberoi methylene actionon thesemetalsis not fixed as n is varied(upperpanel). The formedon goldexhibitan odd-evenmodulationin the inten' structures chainlength(Figures4 and sitiesof the methylmodeswith increasing 5), This modulationreflectsthe formationof a structurein whichvardo not perturbthe geometry iationsin the chainlengthof the adsorbate (lowerpanel). interaction of the gold-thiolate m i n d . w e c o n c l u d et h a t a s s e m b l yo f a g i v e nf i l m p r o c e e d s o a s to satisfl the adsorbatmubstrateenergeticsfirst and then those riith the methyl (ambient)surface(in the form of the associated a m b i e n tf i l m s u r f a c et e n s i o n ) . The structuresformed on gold are understoodquite consistently with the aboveprinciple. The placementof the sulfur atoms in a (J3 x v/3)R30o overlayerwith a fixed Au-S-CH, valence angle forces the chains into the same absolute orientation regardlessof chain length. As a consequence,the orientation of the methyl group modulateswith carbon number (Figure 5). There are, however,further subtletiesto these structures. We also know, both from experiment and theory, that the lowest energy structure for this systemdoesnot involvea simple hexagonallatticc of the chains but, rather, is one reminiscent of the bimolecular monoclinicphasesof the normal hydrocarbons.s6We also know the symmetry of the methylenesubcell cannot be simply orthorhombic as evidencedby the optical anisotropiesin the infrared data (an orthorhombicsubcell,at any valueof a, would yield an average0 = 45ou and be accompaniedby d+ and d- intensity ratios approximately a factor of 2 different from those seenexperimentally). To this point, both experimentand theory have failed to establishhow important this two-chainunit cell is to the structure of the monolayerat temperaturesgreater than 220 K. The simulationspresentedin Figure 9 suggestthat the structure presentat 300 K may contain still significant signaturesof this two-chainsubcell. Our resultsalso show that the IR data are consistentwith, but do not independentlyestablish,significant (perhapsas high as 45Vo)conformationaldisorderingof the end (56)Shearer, 9, 379-384. H, M. M.; Vand,U, Acta Crystollogr.l95S, Monolayersof n- Alkanethiolson Cu, Ag, and Au Surfaces . l A m . C h e m . S o c . ,V o l . I l 3 . N o . 1 9 , l g g l 7165 stricted and thereforehomogeneousmethyl surface. It seemsmost interesting.given rhcsevery different surfacestructures,that a d i f f e r e n c er n u e r t a b i l i t y i s n o t o b s e r v e d . It followsbr rnferencefrom the lattice argumentsabovethat the structuresf()rmcdon gold can accommodatestructuralperturbationsthat arc preciudedon silver. The reconstructionof the m e t h y l s u r f a c c .u h c t h e r d r r v e nt h e r m a l l y o r i n r e s p o n s et o a contactingexternalphase.r. aifectedmechanisticallyboth by the p o p u l a t i o no f g a u c h cc o n f o r m e r sa n d r h e u n l o c k i n go f t h e c h a i n t i l t d i r e c t i o na n d m a g n i r u d et : T h e c a n t e ds t r u c t u r e so n g o l d . i n c o n t r a s t o t h o s ef o r m e do n c o p p e ra n d s i l v e r .m i g h t p r e s u n t a b l ar c c o m m o d a t seo m ep a r t i a l i n t e r c a l a t i o no f h e x a d e c a nbe1 u n c a n t i n gc h a i n s e g m e n t s .T h e a m o u n t o f v o i d s p a c eg e n e r a t e db 1 u n c a n r i n gr h e h r d r o c a r b o n s t r u c t u r ew o u l d b e m u c h g r e a t e ro n g o l d t h a n s i l v e r :f u r t h e r . n e g l i g i b l es p a c ei s p r o b a b l ya v a i l a b l eo n s i h ' e rs i n c et h e c h a i n s are, prior to contactwith a liquid, orientednear the surfacenormal (a = l2o). Intercalation o f h e x a d e c a nien t o a m o n o l a v e rw o u l d resultin a loweringof the advancingand recedingcontactangles of hexadecane and occur.basedon structure.to the greatestextent possibleon rhe materialsformedon gold. The contactanglesand F i g u r e 1 5 , I l l u s t r a t i o n o f t h e s t r u c t u r e o f a n : o n o r a ' v eor i a n ( i c r a d e h r s t e r e s ios f h e r a d e c a noen t h e m o n o l a y e r fso r m e do n s i l v e ra n d c a n e t h i o l a t em o n o l a y e ro n g o l d i n f e r r e df r o m a n o - c h a i n; i n r u l a t i o n g o l d a r e .r n i a c r .i n d i s r i n g u i s h a bul ee: t h u sc o n c l u d et h a t i n t e r b a s e do n a l l - t r a n sc h a i n s ,T h e i n s e ts h o w st h e r e r a t i o n s h iopf a n o r r h o calaticrn trf heradecane r n r om o n o l a l e r so n g o l d d o e sn o t o c c u r . r h o m b i c c h a i n s u b l a t t i c e( u n c a n t e d )r e l a t i v er o t h e h e r a g o n a ls u l f u r Bain ct al found rhar alkanethiolate monolayers on gold prepared s u b l a t t i c ea n d t h e d i r e c t i o no f t h e c a n t o f t h e h y d r o c a r b o nc h a i n i o r t h i s i n h e x a d e c a n c\ { e r e n o t d i f f e r e n t ( b y e l l i p s o m e t r yX , PS, and a r r a n g e m e n ta s i n f e r r e d f r o m I R s p e c t r o s c o p ) ' . wetting) from monolayerspreparedfrom other solvents. This observationsuggeststhat, even in the presenceof a large excess chain segments at 300 K. These'quantitative'values cannot be of hexadecane,intercalation of solvent had not occurred,20 taken too literally. however, given the significant perturbations On gold, the orientation of the methyl groups at the monoof the methyl group transition moments noted in the data. A layer-air interface is highly dependenton the number (odd versus schematic depiction of an idealized two-chain structure on gold even) of methylenegroupsin the adsorbate:monolayerson silver is shownin Figure15. The readershouldnotethat thisstructure do not exhibit any orientationalvariationwith chain length (Figure derivesfrom onlyonefit to the data,howbeitonewe believeto 5 ) . T h e s t r u c t u r a ld i f f " e r e n c ebse t u e e n t h e s et w o m o n o l a y e r beplausible on the basisof stericarguments.Diffractionstudies s \ s t e m sa i l o u ' c o n t p r ; i s 6 n6 f a n " o d d - e v e n "s e n s i t i v es t r u c t u f e will berequired to settletheimportance of thetwo-chain unitceil r . n g o l d u i i h t h e ' t , d d -e ' , ' c n ' n e u t r aslt r u c t u r eo n s i l v e ra s t h e y at roomtemperature. r e l a t et o a \ u r f r c c - s e n s i r i rper o p e r t ) ,w e t t i n g . T h e w e t t a b i l i t i e s StructuralEffectson wetting. The strucrures on the three c f r r s l s i a n d h c r a d e c a n eb o t h m o n o t o n i c a l l yi n c r e a s ew i t h i n metalsdifferin significant waysthat mayaffecttheirrespective c r e a s i n gc h a i n l e n g t h .n o p e r i o d i c t r e n d i s o b s e r v e do n g o l d ( o r we tta bilit iesA. s ignif ica ni st s u eth a t n o we x i s tsfo r o rs a ni zed s i l v e r ) . I t i s w o r t h w h i l et o a s k , i n v i e w o f t h e m a g n i t u d eo f t h e films is what are the detaitedrelationships betweenrnJlecular differencesin methyl orientationon gold, why there appearsto featuresat surfaces, suchas orientationand corrugation, and be no influenceon wetting. It is conceivablethat the number of wetting.,Wettingis influenced by a numberof factors,among gaucheconformerson gold, particularlyin the region in contact themmolecular-scale andmacroscopic roughness.5T The monwith solvent,is sufficientto lessenthe magnitudeof the corruolayerswe prepared on copperwereof variablequality,in part gation. There is, of course,no requirementthat the structural due to morphological changesthat occurredduiing oxidation characteristicsof the monolayerwhen in contact with air (or andfor subsequent adsorption of the alkanethiol; monolayers on vacuum) are preservedwhen the monolayeris placedin contact silver,in contrast,weremorereproducible.Structurafly, our with a liquid. It is alsoentirelypossiblethat hexadecane and water highestqualitymonolayers prepared on copperweresimilarto are sensitiveto more than the -0.5 A that would be requiredto monolayers prepared on silver.Giventhissimilarity.we restrict observethe small differencesin structure that arise from conour analysis to a contrasting of thestructure-property relationship formational differencesin the methyl groups. wetting in of monolayers formedon silverand gold. In general,measurements of wetting on theseinterfaceswere Thewettabilities of monolayers formedon silverandgoldexhibit extremelyusefulin defining monolayersthat were disorderedor a commonincrease in hydro-andoleophobicity with increasing rough. They did not, however,allow discriminationbetweenthe chainlength(Figure2). Similarprogressions havebeenobserved two types of ordered structuresobservedhere, even when the with alkanoicacidsadsorbed on alumina.3T The lowerhydrostructuressubstantiallyaffect (on the molecular level) the structure phobicities of monolayers prepared fromshorteralkanethiols (n of the monolayer-vaporinterface. whatever differencesexist ( 9) havebeenrationalized previously in similarsystemsby betweengold and silver in such structural details find little exassuming disordering of the shorterchainadsorbates and interpressionin wetting. Other probesof the structureof thin films actionof the probeliquidwith the underlyingmetalsub,strate.8,e,37 (for example,helium diffractionr') ma) proveto be more sensitive Thelimitingcontactanglesfor monolayers derivedfrom long(n to thesesorts of perturbations. > l5) alkanethiols are,withinexperimental error,the sameon thethreemetalsexamined andarein accordwith varues reported for orientedalkylmonolayers on othersubstrates.E.zl-zs 16i 61r, on silver,whichwe believe containa smailernumberof gauche conformersthan thoseon gold,might be expectedto prisenta lowerenergyinterfaceexpressing a moreconformationally re_ .(57)Wenzel,R. N,.lnd,Eng.Chem.lggfi,28,9Eg-994.Dettre,R. H.; Johnson, R, E. Adu.Chem.Set.19d4,No.43,136-144. Joanny, J. F.;de Gcnnes, P. G. /. Chem.Phys.1984,81,552-562.De Gcnncr,p. C. Rrr. Mod. Phys,19t5,57, E27-863. Conclusions n-Alkanethiolsspontaneously' assembleonto surfacesof copper, silver,and gold and form denselypacked,orientedmonolayerfilms. The films formed on silver and copper differ in structural detail from those formed on gold: the hydrocarbon chain is oriented more perpendicularlywith respectto the surface;the films (when carefully prepared)exhibit a lower populationof gauche conformationsat room temperature;the orientationof the carbonsulfur bond relativeto the surfaceplanevarieswith chain length. The formation of reproduciblefilms on copperand silver is com- 7 1 66 J . A m . Che m. Vol. I I 3, IA,I99I plicated by the sensitivityof thesesystemsto exposureof the unfunctionllized or functionalizedsub,strateto air, and to extended exposureto the solution containing the thiol. Films of high quality ari, ho*euer, readily obtainedwith careful attention to detail. Extendedexposureto alkanethiolsolutionresultsin reactionof the alkanethiol with the surfacesof silver and copper to form an interphaseof metal sulfide on which an organized,oriented monolayeris supported. Although the systemsof alkanethiols assembledon copperand silver are more difficult to work with than the correspondingsystemson gold. this set of systemsoffers the opportunity to explorethe effect of structural differenceson a number of propertiesincludingwetting, intercalation,and capacitance. Experimental Section as received Materials.Materialswereobtainedfrom Aldrichand'.tsed (Pfritz & Bauer).tet13denl below. Nonyl,undec.v-l unlessspecified thiolsweredistilledunderreduceci (Pfaltz & Bauer).and octadec-vl anddocosllthiolsuc're nonadecli, priorto use. Heptadecyl. pressure wassupplied by our Pentadecanethiol studies.E'i3 fromprevious available c o l l e a g uKe e v i nL . P r i m e( H a r v a r d ) .H e x a d e c a n e s u l f oanci cdw a s with sulfuric of sodiumhexadecanesulfonate obtainedby acidification from hexanes.Octadecanethiol-du acidand purifiedby recrystallization perdeuterated bromide(Cambridge waspreparedfrom the corresponding andsubby thioacetate displacement 98VoD) by nucleophilic Isotopes, TLC the productexhibited with K2CO3/MeOH; sequintmethanolysis and formedmonolayers behavioridenticalwith that of octadecanethiol properties(wetting,XPS. and ellipsometric with indistinguishable (for monolayers on gold))from thosefcr:medfr6m octadecanthickness bv wereobtainedfrom Mallinckrodtanddeoxvgenated ethiol. Solvents belor'gr in the tett. specified otherwise bubb!ingN2 for 30 min unless a i r . I s o o c t a nte\ l d r i c h ) u a s n o f u r t h e re f f o r t sw e r eu s e dt o e x c l u d e percolated twicethroughneutralalumina;ethanol(abs)*as obtained fromQuantumChemicalCorp. Thesilverandcopp€r(Aldrich)andgold wereof sampies (MaterialsResearch Corp.)usedto prepareeyaporated purity. Silicon(100)waiers(100mm) r,lereobtainedirom >99.99Vo SiticonSenseand washedwith absoluteethanol. PrepurifiedAr <5 ppm 02) wasobtainedfrom Med-tech. (>99.998Vo, Samplenepandon. Filtt of the variousmetals( 1200-2000A) were to depositionof 200A of chromium subsequent preparedby evaporation ontosiliconwafers:evaporation or titanium(the latterbeingpreferred) of silverandcopperwereontoprecutI X 3 cm2slidesof siliconaswell ontosiliconwafersand,in some asontosiliconwafers;Au wasevaporated in wereconducted cut into slides.The evaporations subsequently cases, pumpedelectronbeamchamber(basepressure-8 eithera cryogenically boat chamber(base x l0-ETorr). a cryogenically oumpedresistive *2 x l0-8Torr), or a thermalevaporator with a evacuated pressure d i f f u s i o np u m p( b a s ep r e s s u roef ( l X l 0 { T o r r ) ;o n l i ' m o n o l a r e r s used.For e!'aporato the evaporator prepared on copperweresensitive with prepurifieC argonimthechamberwasbackfilled tionsof copper. (prolyethylene bags*'ereplacearound followingevaporation mediately to minimizediffusionof air intc the of the evaporator the openings undera flow of argonto weretransferred chamber),andthe substrates vials. Filmsof silverwereprepareci scintillation in disposable solutions for copperor by backfitlwith N2 and transferof the eitherasdescribed in air to solutionsin Teflon containers.The backfill and substrates typicallytookat the most2 and5 min.respectively. transferprocedures Slideswereremovedfrom solutionsafter the stateddurationof ex' posure.washedwith absoluteethanol,blowndry with N2, and characterized. Samplesusedfor IR were preparedon 2-in. Si wafersand in Petridishes. functionalized ireshly werepreparedby transferring samples The alkyl sulfonate of hexade' samples of copperandsilver,in air, to solutions evaporated After - l2 h of immersion, acid(- I mM) in isooctane. canesulfonic blowndry with N2, andchar' werewashedwith hexanes, the samples acterized. texturesof the Morphologyof the Substrate.The crystallographic on Si(100)usedin polycrystalline supportcd substrates highlyreflective by X-ray diffraction.Two independent this studyweredetermined wereroutinelymade,The first (a socalledd - 2dscan),involved analyses of an X-ray powderpatternto thoseof of the intensities the comparison simpler authenticpowdersample. The secondmethod,a somewhat of thc ( I I I ) rockingcurvefor each procedure, involvedthe determination substrate.Bothcopperandsilverwerefoundto be heavily( I I I ) textured underpoor (althoughlesssothan gold). Copperdepositions conducted yieldedrandompolycystalline surfaces.Charactervacuumconditions hasbeenreportedpreviously,36 izationof the goldsubstrates (XPS). Spcctrawerc obtained Spectroscopy X-ray Photoelectron that spectrometer SSX-100X-rayphotoclcctron usinga SurfaceScience Laibinis et al. has previouslybeen described.33High-resolutionspectrawere obtained at a passen.tgy of 50 eV using a 600-pm spot size: survey spectra (2 tcant; were obtainedat a passenergyof 100 eV and a 1000-pmspot size. Use of peaks associatedwith the underlying substrate as refe-rencest = 368.3 .vt9u!?.plr ) . =932'7eYl eV ,A g(3d5rz) l A ut4f,i ,)= 84.00 ieadsto'the unreasonabledifferdnces(range = 0.6 eV) in the positionof C ( l s ) a s s o c i a t e dw i t h t h e m o n o l a y e r w h i c h w e b e l i e v ew e r e d u e t o problemsof calibration of our detector;spectra were insteadreferenced i o C { l s ) = 2 8 4 8 0 e V . A t t e n u a t i o nd a t a w e r e c o l l e c t e da t a p r e s s u r eo f -3 x 10-eTorr and a passenergyof 100 eV using a 1000-rrmspot size; the slideswere characterizedin randonnorder b-Vobtaining a single scan ( * 2 m i n ) a n d i i t t i n g t h e r e s u l t i n gs p e c t r aw i t h a n 8 0 7 oG a u s s i a n f2 0 V a Lorentzian peak. Soectra of polycrystallinedocosanethiolrequired use of a 2-eV flood gun t0 overcomecharging; spectra were referencedto C { l s ) = 2 8 4 . 8 0e V . Contact Angles. Static advancingand recedingcontact angles were measureil{jn \tallc drttpsusing a Ram€-Hart goniometerunder ambient ) ith a Matrix c o n d r t r o q , .( o r i . : i l r 0 g i r q u i d .ur e r e a p p l i e d( a n d r e r n o v e dw 'L f c c h n r . i o s r * i c r r r ' ; . r p i p e t toep e r a t e da t i t s i o w e s t s p e e d( - I p l i s ) ' C o n t l c t : r n g i t ' \ r ' l i : r r r e . i s t t r eodn b o t h s i d e so f t h e d r o p o n a t l e a s t 3 s f t h c s l i d ew h i i e t h e t i p o f t h e p i p e t c l r , r r rar p p i ; c C . rdt ; t f c r t ' n lp o s i t i o n o r e n t a i n e da t t a c h e d optics' and analytica!-PIg: Infrared Spectroscopy.Thc -\.Decirometer. tocolsusedin this pup.riruu. beendescribedin earlier publications.s'3?'5e F o r t h e p u r p o s e so f t h i s s t u d y , g i v e n t h e d i f f i c u l t y o f o b t a i n i n g , ac l e a n referenci spectrum on either silver or copper, we have used two different references:- ( I ) monolayers prepared from octadecanethiol-d37on the metal of interestas a referencemirror and (2) gold cleanedby oxidative treatment in either peroxysulfuric acid or ozone under UV irradiation (ABTEChI). (Caution: PeroxysulJuric acid reacts uiolently with orEanicmaterial.s and should be used with great care.ffi) This procedure v i e t d sa s p c c r r u mf o r p r o t o n a t e ds a m p l e si n t h e 3 0 0 0 - c m - r r e g i o nw h o s e i n t e n s , t i c e. r l r f l c r e l i a b l vu s e dl n t h e q u a n t i t a t i v ea n a l y s i sf r o r n w h i c h -!og t h e n t r ) r e L u i . ,l ri i - r , J n t a t i oanrse ' d e d u c c c iA. l i S p € c t r aa r e r e p o r t e da s w i t h m o n o l a y e ra n d t h e , ' s u b s t r a t e o f l h c : c f l e c t i v j t v R R , .u h r r c F l l h c s t i i i z e df i l m R , .r : t h e i c i l c c t t v t t i, r l t n e r e f ' e r e n c eS. p e c t r a sl i m u l a t i o n u i h r c k n e s s eds e t e r r n r n e df o r t h e m o s t p a r t b y s i n g l e w a v e l e n g t he l l i p s o m e t r \ , . S e v e r a lr n d e p e n d e ndt e t e r m i n a t i o n sw e r e a l s o m a d e u s i n g s p e c troscopiccllipsometry'over the wavelength340-850 nm. The valuesused f o r c a l c u l a t i o nasr e a s f o l l o w s :t l ) A u : C , 6 ( 1 9 . 0A ) , C , , ( 2 0 . 3A ) , C r t ( 2 1 . 6A ) , C , q ( 2 2 . 9A ) , C r ( 2 4 . 0A ) , a n d c r , ( 2 5 . 5A ) : ( 2 ) 4 9 : C 1 6( 2 1 . 5 A ) , C , ' t( 2 2 . 8A ) . C r E( 2 4 . 1A ) , C r e ( 2 5 . 3A ) , a n d c 2 e ( 2 6 . 6A ) ' W e h a v e noted-earlierthat ellipsometric studiesof silver samplesare somewhat problematicgiven the difficulty of obtaining reliable substrateconstants. The values reported above were obtained from replicate measurements shrelderifrom the iaboratory ambient. The valuesselected on sub-ctrates w e ; " e . ; i ir r e n i i r i n e di n t l i e R e s u i t s .f ' r o mi h e l o w e r r a n g eo f e x p e r i m e n t a l rrcnsibtytt,the sizeSof the adsOrbatemOleCUleS veitr,:s.lnr,\ -(...-:esixrndrng u 3 r r J \ , , , , c , r r r :i r : ' g e rt h a n r h e a l i - t r a n se x t e n s i o no f t h e c h a i n . W e A . T ' h ew o r s t p r o b e i i c y et h e \ e y a l u e si r - -b,c a c c u r a t ct o w i t h i n - * l g 1 ' ; r -rr11- 1 cl ga l c u l a t l o n o O r i e n t a t i Oins s m a l l t h e c h a i n i s o l ' . . h r s lection r p e r h a p si e s si h a n l ' i n r i o n s i l v e ra n d g o l d ) . T h e m o s t i m p o r t a n tp o i n t t o n o t e l s t h a t t h e n u m b e r su s e da r e b u t o n e p a r a m e t e ru s e dt o s i m u l a t e the optical anisotroptesevidencedin the experimentaldata. Selectionof thicknessvalues correspondingto an all-trans extension of the chains would yield very similar quantitative fits to that shown above. NoteAddedin Proof. Recentdiffractionstudies(X-ray and helium)haveshownthat the latticeconstantof n-alkanethiolate on silveris shorterthanthat on gold. The supported monolayers neighborspacing unit ceiiof the formeris -107o less(nearest with that inferredfrom of 4.77A). a resultin verygoodagreement formedis an incommensurate Theoverlayer infraredspectroscopy. of an expanded1{1 x phase. reminiscent one hexagonal P'; Li, J.; P.; Eisenberger, Fenter, See: t1)ntO.9o structure. T. G.; Ramanarayanan' S.;Scoles, S., Ill: Bernasek, Camillone. A.: Liang,K. S. Langmuir,in Press. chaintilts on Au( I I I ) are alsofoundto be in The measured with the valuesinferredfrom vibrationalspecgoodagreement communication). troscopy:G. Scoles(personal An, Ag, 7440-22'4; Cu, 7440-50-8; RegistryNo. HD, 544-76-3; (5E) Briggs. D.; Seah, M' P. Practical Surface Analysis; John Wiley: cited therein. Chichester,-i983;nppendix 4 and references (59) Dubois,L. Fi.l Zegarski,B. R'; Nuzzo, R. G. Proc. Natl. Acad' Sci. u.s.A, 1981, 84, 4739-4742. , H--Qhey..F!g'Nrnt , . G . ; T h e o p o l dK ( 6 0 ) D o b b s ,D . A . l B e r g m a n R 1990.6S ( I 7), 2. Erickson,C. Y . Chem' Eng. Newst990' 68 (32), 2' 7 t67 7 4 4 0 - 5 7 -C 5 ;H 3 ( C H ) , . S H( n = 3 ) , 5 1 3 - 5 3 - lC; H 3 ( C H 2 ) " S(Hn = 4 ) , l l 0 - 6 6 - 7 ;C H 3 ( C H 2 ) S H( n = 5 ) , l l l - 3 1 - 9 ; C H 3 ( C H 2 ) ' S H (n = 6), (n = 7), I I l-88-6;CH3(CH2),,SH 1639-09-4: (n = 8), CH3(CH2),rSH (n = 9), 143-10-2; 1455-21-6;CH3(CH2),.SH (n = l0), CH3(CHz),SH (n = I l), I l2-55-0;CH3(CHJFH (n = l2\, 5332-52-5; CH3(CH2),.SH (n = l3),2079-95-0; 19484-26-5; CH3(CH2),SH CHr(CH2)'SH(n = l4), 25276-7G4; CHr(CHz),SH(n = I 5), 2917-26-2:CH3(CH2)'SH (n = l6), 53193-22-9: CH3(CH2)'SH(n = l7), 2885-00-9; CH3(CH,),SH (n = l8), 53193-23-0; (n = l9), 13373-97-2: CH3(CH2),.SH CHr (n = 20),66326-t7-8; (CH2),SH (n -- 2l ), 7773-83-3. CHr(CHz)SH Supplementery Materiel Aveileble:Tableof wettingproperties preparedfrom differentsolvents,IR spectraof of monolayers low-qualitymonolayers on copper,plot of intensityof CH2 modes with chainlength,anddiscussion of themethodsusedin simulating IR spectra(l I pages).Orderinginformationis givenon any currentmastheadpage.
© Copyright 2025 Paperzz