Introduction One expansion, Two approaches Numerical tests Asymptotics of implied volatility in local volatility models Tai-Ho Wang Sixth World Congress Bachelier Finance Society Toronto, June 26, 2010 Conclusion Introduction One expansion, Two approaches Numerical tests Collaborators Joint work with Jim Gatheral, Baruch College CUNY Elton P. Hsu, Northwestern University Peter Laurence, University of Rome 1, “La Sapienza” Cheng Ouyang, Purdue University Conclusion Introduction One expansion, Two approaches Numerical tests References [1] Henri Berestycki, Jérôme Busca, and Igor Florent Asymptotics and calibration of local volatility models Quantitative Finance Vol 2, pp.61-69, 2002. [2] Jim Gatheral. The Volatility Surface: A Practitioner’s Guide. John Wiley and Sons, Hoboken, NJ, 2006. [3] Jim Gatheral, Elton P Hsu, Peter Laurence, Cheng Ouyang, and Tai-Ho Wang Asymptotics of implied volatility in local volatility models http://papers.ssrn.com/sol3/papers.cfm?abstract id=1542077, 2010 [4] Pierre Henry-Labordère, Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing. CRC Press, 2009. Conclusion Introduction One expansion, Two approaches Numerical tests Outline Implied volatility in terms of local volatility The heat kernel approach The BBF approximation BBF to higher orders One expansion, two approaches Laplace asymptotic formula Expansion of time value Numerical tests Summary and conclusions Conclusion Introduction One expansion, Two approaches Numerical tests Conclusion Objective Given a local volatility process dS = σ(S, t) dWt , S with σ(S, t) depending only on the underlying level S and the time t, we want to compute implied volatilities σbs (K , T ) such that Cbs (s, t, K , T , σbs (K , T )) = E (ST − K )+ |St = s or in words, we want to efficiently compute implied volatility from local volatility. Introduction One expansion, Two approaches Numerical tests Call price Let p(t, s; t 0 , s 0 ) be the transition probability density. Then C (s, t, K , T ) = E (ST − K )+ |St = s Z = (s 0 − K )+ p(t, s; T , s 0 )ds 0 As a function of t and s, p satisfies the backward Kolmogorov equation: 1 Lp := pt + s 2 σ 2 (s, t)pss = 0, 2 Subindices refer to respective partial derivatives. Conclusion Introduction One expansion, Two approaches Numerical tests Two to approximate Z C (s, t, K , T ) = (s 0 − K )+ p(t, s; T , s 0 )ds 0 Approximate transition density by heat kernel expansion. Approximate the integral. Two approaches for approximating the integral lead to one expansion. The smaller the time to maturity, the better the approximation, for both approximations. Conclusion Introduction One expansion, Two approaches Numerical tests Conclusion Heat kernel expansion Heat kernel expansion for transition density p(t, s; t 0 , s 0 ) when t 0 − t is small: e − d 2 (s,s 0 ,t) 2(t 0 −t) p(t, s; t 0 , s 0 ) ∼ p 2π(t 0 − t)s 0 σ(s 0 , t 0 ) " n X # Hk (t, s, s 0 )(t 0 − t)k k=0 R 0 s dξ d(s, s 0 , t) = s ξσ(ξ,t) : geodesic distance between s to s 0 q hR 0 i s dt (η,s 0 ,t) H0 (t, s, s 0 ) = ssσ(s,t) exp dη 0 σ(s 0 ,t) s ησ(η,t) R i−1 0 0 (η,s ,t)LHi−1 (t,s,s ) s d Hi (t, s, s 0 ) = Hd 0i (s,s 0 ,t) s 0 H0 (η,s 0 ,t)a(η,t) dη Introduction One expansion, Two approaches Numerical tests Conclusion Heat kernel expansion for Black-Scholes Heat kernel expansion for Black-Scholes transition density pbs (t, s; t 0 , s 0 ) when t 0 − t is small: 0 0 e − 2 (s,s 0 ) dbs 2(t 0 −t) r pbs (t − t, s, s ) = p 2π(t 0 − t)σbs s 0 R 0 s dbs (s, s 0 ) = s σdξ = bs ξ p H0bs (t, s, s 0 ) = ss0 1 σbs 2 0 k ∞ (t − t) s X (−1)k σbs s0 k! 8 0 log ss k=0 Introduction One expansion, Two approaches Numerical tests Conclusion Main idea Implied volatility σbs is defined as the unique solution to C (s, t, K , T ) = Cbs (s, t, K , T , σbs ) Substitute the transition density by the heat kernel expansion for both the model price C and the Black-Scholes price Cbs Expand in terms of T − t on both sides of the resulting equation Further expand on Black-Scholes side the implied volatility σbs (K , T ) ≈ σbs,0 + σbs,1 (T − t) + σbs,2 (T − t)2 Match the corresponding coefficients Introduction One expansion, Two approaches Numerical tests Conclusion Two approaches Directly substitute the transition density by heat kernel expansion to call price. Use Laplace asymptotic formula to approximate the resulting integral. Rewrite call price as intrinsic value + time value. Further rewrite time value as an integral of transition density over time, i.e., the Carr-Jarrow formula: Z T + C (s, t, K , T ) = (s − K ) + K 2 σ 2 (K , u)p(s, t; K , u)du t Introduction One expansion, Two approaches Numerical tests Laplace asymptotic method Laplace asymptotic formula Asymptotic expansion of the integral as τ → 0+ 0 ∗ 0 ∗ 0 Z ∞ φ(x) φ(x ∗ ) f (x ) f (x ) − τ 2 − τ e f (x)dx ∼ τ e + τ 0 ∗ 2 [φ (x )] [φ0 (x ∗ )]3 0 Assumptions: f is identically zero when 0 ≤ x ≤ x ∗ . φ is increasing in [x ∗ , ∞). Conclusion Introduction One expansion, Two approaches Numerical tests Laplace asymptotic method Laplace asymptotic for call price Let τ = T − t. Z C (s, t, K , T ) = ∞ (s − K )+ p(t, s; T , s 0 )ds 0 0 ∼ = 1 √ 2πτ √ 1 2πτ Z ∞ d 2 (s,s 0 ,t) 0 (s − 0 n Z ∞ X e e − 2τ K )+ 0 s σ(s 0 , T ) d 2 (s,s 0 ,t) − 2τ n X Hk (t, s, s 0 )τ k ds 0 k=0 Gk (t, s, T , s 0 )ds 0 · τ k k=0 K 0 (t,s,s ) Gk (t, s, T , s 0 ) = (s 0 − K ) Hs 0kσ(s 0 ,T ) Conclusion Introduction One expansion, Two approaches Numerical tests Laplace asymptotic method Laplace asymptotic for call price Assume s < K . 1 √ 2πτ Z ∞ e− Gk (t, s, T , s 0 )ds 0 K 3 2 d2 τ ∼ √ e − 2T 2π d = d(s, K , t), d 0 = Gk0 = d 2 (s,s 0 ,t) 2τ ∂Gk ∂s 0 (t, s, T , K ) Gk0 + (dd 0 )2 ∂d ∂s 0 (s, K , t), = Hk (t,s,K ) K σ(K ,T ) Gk0 (dd 0 )3 and d 00 = 0 τ , ∂2d (s, K , t) ∂(s 0 )2 Conclusion Introduction One expansion, Two approaches Numerical tests Conclusion Laplace asymptotic method Laplace asymptotic for call price Laplace asymptotic for model price: 3 d2 τ2 C (s, t, K , T ) ∼ √ e − 2τ 2π d = d(s, K , t), d 0 = Gk0 = ∂Gk ∂s 0 (t, s, T , K ) G00 + (dd 0 )2 ∂d ∂s 0 (s, K , t), = G00 (K ) (dd 0 )3 and d 00 = 0 G 0 (K ) + 1 0 2 (dd ) τ . ∂2d (s, K , t) ∂(s 0 )2 Hk (t,s,K ) K σ(K ,T ) Laplace asymptotic for Black-Scholes: k = log Ks k 2 3 τ 32 Ke − 2 − 2σk2 τ σbs 1 3 2 bs √ Cbs (s, t, K , T , σbs ) ∼ e 1− + σbs τ k2 8 k2 2π Introduction One expansion, Two approaches Numerical tests Conclusion Laplace asymptotic method Match the coefficients Let σbs = σbs,0 + σbs,1 τ + σbs,2 τ 2 + · · · and set 0 G0 (K ) 0 G10 (K ) G00 + + τ e (dd 0 )2 (dd 0 )3 (dd 0 )2 2 − k2 K σ 3 1 3 2 2σ τ bs = e bs 1− + σbs τ k 8 k2 k 2e 2 2 − d2τ Exponential term: d 2 = k2 2 σbs,0 =⇒ σbs,0 = k d = Zeroth order term: 2 G00 (dd 0 )2 =e k σbs,1 σ3 bs,0 3 K σbs,0 k k 2e 2 =⇒ σbs,1 = k d3 log k dG00 e − 2 Kk(d 0 )2 log K −log s d(s,K ,t) Introduction One expansion, Two approaches Numerical tests Conclusion Time value method Time value Recall + Z T C (s, t, K , T ) = (s − K ) + K 2 σ 2 (K , u)p(s, t; K , u)du t ∼ (s − K )+ + n Z X k=0 t T − d 2 (s,K ,t) e 2(u−t) p K σ(K , u)(u − t)k du · Hk (t, s, K ) 2π(u − t) Moreover, denote d = d(s, K , t), Z T 2 e d − 2(u−t) 1 σ(K , u)(u − t)k− 2 du t Z ∼ T 2 e t d − 2(u−t) 1 [σ(K , t) + σt (K , t)(u − t)](u − t)k− 2 du Introduction One expansion, Two approaches Numerical tests Time value method Expansion for call price Let Φk (d, τ ) = Rt 0 1 d2 u k− 2 e − 2u du. C (s, t, K , T ) − (s − K )+ 1 √ {K σ(K , t)Φ0 (d, τ )H0 (t, s, K ) ∼ 2 2π +K [σt (K , t)H0 (t, s, K ) + σ(K , t)H1 (t, s, K )]Φ1 (d, τ )} Moreover, on Black-Scholes side, Cbs (s, t, K , T ) − (s − K )+ √ 3 σbs sK √ ∼ Φ1 (dbs , τ ) σbs Φ0 (dbs , τ ) − 8 2 2π Conclusion Introduction One expansion, Two approaches Numerical tests Time value method Auxiliary expansion and matching Expanding the Φi ’s: Φ0 (d, τ ) ∼ 2τ 3 2 2 1 τ − d2τ − 3 e d2 d4 5 2 3 d2 d2 2τ 2 d 2 Φ1 (d, τ ) = τ 2 e − 2τ − Φ0 (d, τ ) ∼ 2 e − 2τ 3 3 d Matching d 2 (s,K ,t) K σH0 K σt H0 + K σH1 3K σH0 − 2τ e + − τ d2 d2 d4 3 d 2 (s,K ,t) √ σbs − bs 2τ = e sK σbs Φ0 (dbs , τ ) − Φ1 (dbs , τ ) 8 Conclusion Introduction One expansion, Two approaches Numerical tests Time value method Asymptotic expansion once again σbs = σbs,0 + σbs,1 (T − t) + σbs,2 (T − t)2 + O(T − t)3 . R K dξ d(s, K , t) = s ξσ(ξ,t) , q hR i K dt (η,K ,t) H0 (s, K , t) = Ksσ(s,t) exp dη . s σ(K ,t) ησ(η,t) | log K − log s| . (BBF) d(s, K , t) " # √ k dH0 K σ(K , t) √ = 3 log , where k = log K − log s. d k s σbs,0 = σbs,1 σbs,2 ? Too complicated to reproduce here. Conclusion Introduction One expansion, Two approaches Numerical tests Conclusion Henry-Labordère’s approximation Henry-Labordère also presents a heat kernel expansion based approximation to implied volatility in equation (5.40) on page 140 of his book [4]: 3 T 1 2 σ0 (K ) + Q(fav ) + G(fav ) σBS (K , T ) ≈ σ0 (K ) 1 + 3 8 4 (1) with " # C (f )2 C 00 (f ) 1 C 0 (f ) 2 − Q(f ) = 4 C (f ) 2 C (f ) and G(f ) = 2 ∂t log C (f ) = 2 ∂t σ(f , t) σ(f , t) where C (f ) = f σ(f , t) in our notation, fav = (S0 + K )/2 and the term σ0 (K ) is the BBF approximation from [1]. Introduction One expansion, Two approaches Numerical tests Conclusion How well do these approximations work? We consider the following explicit local volatility models: The square-root CEV model: dSt = e −λ t σ p St dWt The quadratic model: n o γ dSt = e −λ t σ 1 + ψ (St − 1) + (St − 1)2 dWt 2 Parameters are: σ = 0.2, ψ = −0.5 and γ = 0.1. In each case S0 = 1 and T = 1. λ = 0 gives a time-homogeneous local volatility surface and λ = 1 a time-inhomogeneous one. We compare implied volatilities from the approximations and the closed-form solution. Introduction One expansion, Two approaches Numerical tests Conclusion 1.0e-05 1.5e-05 H-L σ1 σ2 5.0e-06 0.0e+00 Approximation error 2.0e-05 Time-homogeneous Square Root CEV 0.5 1.0 1.5 Strike Note that all errors are tiny! 2.0 Introduction One expansion, Two approaches Numerical tests Conclusion 0e+00 -4e-05 H-L σ1 σ2 -8e-05 Approximation error 4e-05 Time-homogeneous Quadratic Model 0.5 1.0 1.5 Strike 2.0 Introduction One expansion, Two approaches Numerical tests Conclusion 0.20 0.18 0.16 0.14 Implied volatility 0.08 0.10 0.12 0.16 0.14 0.12 0.10 0.08 Implied volatility 0.18 0.20 Time-inhomogeneous Square Root CEV 0.7 0.8 0.9 1.0 Strike 1.1 1.2 1.3 0.5 1.0 1.5 Strike 2.0 Introduction One expansion, Two approaches Numerical tests Conclusion 0.20 0.15 0.05 0.10 Implied volatility 0.15 0.10 0.05 Implied volatility 0.20 Time-inhomogeneous Quadratic Model 0.7 0.8 0.9 1.0 Strike 1.1 1.2 1.3 0.5 1.0 1.5 Strike 2.0 Introduction One expansion, Two approaches Numerical tests Conclusion Summary Small-time expansions are useful for generating closed-form expressions for implied volatility from simple models. Direct substitute approach is easier for generalization to higher dimensions, e.g., stochastic volatility models. σbs ∼ log K − log s , dM (s, v ) where dM (s, v ) is the “distance to the money”, i.e., shortest geodesic distance from the spot (s, v ) to the line {s = K } in the price-volatility plane. Application: Short time implied vol in delta is flat! (Joint work with Carr and Lee). Introduction One expansion, Two approaches Numerical tests Conclusion Summary II Time value approach is easier for getting higher order terms. Refinement of σbs,0 (work in progress with Gatheral): s √ Z T T −t ∼ | log K − log s| t σbs −1 s 0 (τ ) 2 a(s(τ ), τ ) dτ where the integral is along the “most likely path” s(τ ). If we take the “likely path” as s(τ ) = ϕ−1 t R x dξ ϕt (x) = s a(ξ,t) , then BBF is recovered. τ T ϕt (K ) , where Introduction One expansion, Two approaches Numerical tests THANK YOU FOR YOUR PATIENCE. Conclusion
© Copyright 2024 Paperzz