Slidekit configurato da: Pierluigi Carratù -Università di BariLucio Casali; Mariano E. Crapa -Università di Perugia- Clinical Classification of Pulmonary Hypertension (updated at 5th WSPH, Nice, France 2013) The World Health Organization (WHO) first defined the classifications of pulmonary hypertension in 1973 and the classifications have been revised over the years. The classifications of PH were most recently updated in Nice, France in 2013. 1. Pulmonary arterial hypertension (PAH) 1.1 Idiopathic (IPAH) 1.2 Heritable (HPAH) (previously known as Familial (FPAH) 1.2.1 BMPR2* 1.2.2 ALK-1*, ENG*, SMAD9*, CAV1*, KCKN3* 1.2.3 Unknown 1.3 Drug- and toxin-induced 1.4 Associated with (APAH) (previously known as Secondary -SPAH) 1.4.1 Connective tissue diseases 1.4.2 HIV* infection 1.4.3 Portal hypertension 1.4.4 Congenital heart diseases 1.4.5 Schistosomiasis 1'. Pulmonary veno-occlusive disease (PVOD) and/or pulmonary capillary hemangiomatosis (PCH) 1''. Persistent pulmonary hypertension of the newborn (PPHN) 2. Pulmonary hypertension owing to left heart disease 2.1 Left ventricular systolic dysfunction 2.2 Left ventricular diastolic dysfunction 2.3 Valvular disease 2.4 Congenital/acquired left heart inflow/outflow tract obstruction and congenital cardiomyopathies 3. Pulmonary hypertension owing to lung diseases and/or hypoxia 3.1 Chronic obstructive pulmonary disease 3.2 Interstitial lung disease 3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern 3.4 Sleep-disordered breathing 3.5 Alveolar hypoventilation disorders 3.6 Chronic exposure to high altitude 3.7 Developmental lung diseases 4. Chronic thromboembolic pulmonary hypertension (CTEPH) 5. Pulmonary hypertension with unclear multifactorial mechanisms 5.1 Hematologic disorders: chronic hemolytic anemia, myeloproliferative disorders, splenectomy 5.2 Systemic disorders: sarcoidosis, pulmonary histiocytosis, lymphangioleiomyomatosis 5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders 5.4 Others: tumoral obstruction, fibrosing mediastinitis, chronic renal failure, segmented PH Main modifications to the previous Dana Point 2008 classification are shown in bold. *ALK1 = activin receptor-like kinase type 1; BMPR2 = bone morphogenetic protein receptor type 2; HIV = human immunodeficiency virus; ENG = endoglin; SMAD9 = mothers against decapentaplegic 9; CAV1 = caveolin-1; KCNK3 = a gene encoding PAPm 41(11) mm Hg ASPIRE Registry , Sheffield Presumed mechanisms for PH associated with lung disease Generalised hypoxic vasoconstriction Hyperinflation Inflammation Destruction of the pulmonary vascular bed Remodelling of the pulmonary vasculature Polycythaemia In situ thrombosis Burden of PH in lung disease Condition Prevalence COPD 20 - 40% ILD 30 – 40% IPF Up to 84% * Sarcoidosis 6 – 74% * Pulmonary Langerhans Cell histiocytosis 100%* Pneumoconiosis Unknown Connective tissue related ILD Unknown; 18-22% scleroderma ILD OSAS 17 – 52% Chronic mountain sickness 45%? * In advanced disease; data from retrospective case series Kaplan-Meier survival IPERTENSIONE POLMONARE DA MAL. POLM. e/o IPOSSIEMIA (gr. 3) BPCO Oswald-Mammosser CHEST 1995 FIBROSI POLM.INTERST. Lettieri CHEST 2006 ENFISEMA- FIBROSI POLM. Cottin ERJ 2005 PH Progression IPERTENSIONE POLMONARE SECONDARIA A BPCO Cremona G. Paciocco G. PH secondary to COPD – impact on survival D’Alonzo, Ann Int Med 1991 Chaouat A et al., Am J Respir Crit Care Med, 2005 PH in COPD CELLULAR PROLIFERATION and REMODELING è Small pulmonary arteries (< 500 µm) è Hypoxemic Vasoconstriction è Proliferation of smooth muscle and endothelial cells è In situ thrombosis è Inflammation Medial hypertrophy Intimal hypertrophy Plexiform lesion COPD AND PH: pathogenesis Barbera JA et al. Drug 2009;69:1153 REVEAL REGISTRY PCWP between 16-18 mmHg - Older Higher BMI Higher systemic pressure Sleep apnea Renal insufficiency Diabetes LV diastolic dysfunction Exclude LV dysfunction (systolic or diastolic)!!! Calculation of Transpulmonary Gradient (mPAP-mPCWP > 12 mmHg) Evaluate pharmacological tests (fluid load, nitroprusside) Badesch et al. Chest 2010; 137: 376-387 COPD and PH: prevalence 998 COPD pts – 27 pts (2.7%) with PAPm > 40 mmHg – 11 (1.1%) no other causes of PH • • • • • moderate airway obstruction (FEV1 50%) Severe hypoxemia Hypocapnia Lower Dlco Shorter survival Chaouat A et al. Am J Respir Crit Care Med 2005; 172:189-94 COPD and PH: progression Data from three studies (163 patients) demonstrate that Ppa has a modest progression over years, with and average increase between 0.5-0.6 mmHg/year Schrijen F, Am Rev Respir Dis 1978 Weitzenblum E Chest 1979 Weitzenblum E Am Rev Respir Dis 1984 This indicates that in patients with moderatesevere COPD (and normal Ppa), the natural progression of the disease does not necessarily lead to PH Kessler R. AJRCCM 2001 Endothelial dysfunction in PH Increased Rho GTPase activity Reduced production/activity of NO, PGI2 Increased production of ET-1 Endothelin in PH associated with COPD Increased receptor ET-1 expression in lungs of patients with cryptogenic fibrosing alveolitis Plasma levels of ET-1 are increased in patients with severe COPD Giaid A, et al. Lancet 341, 1550–1554, 1993. Channick et al JACC 2004 ETA and ETB receptor expression is increased in the pulmonary arteries of patients with COPD Davie et al. AJRCCM 2002 Ward & McMurtry, 2009 evolution of pulmonary hemodynamics in 131 patients with stable COPD by performing two right heart catheterizations at a mean time interval of 6.8 yr. The progression of Ppa over time in COPD is 0.4 mm Hg/yr. Only about 25% of patients with COPD with mild to moderate hypoxemia and without resting PH at the onset will develop PH during a 6-yr follow-up. PH secondary to COPD – impact on survival D’Alonzo, Ann Int Med 1991 Chaouat A et al., Am J Respir Crit Care Med, 2005 PH in COPD concept of “out of proportion PAPm – – – – – mPAP > 40 mmHg ? mPAP > 35 mmHg ? mPAP > 30 mmHg ? mPAP > 25 mmHg ? mPAP > 20 mmHg ? PCWP • < 15 mmHg • Between 15-18 mmHg Out of Proportion PH – Second Hit? Reduced BMPR-II activity Abnormal vascular development? Unstable vasculature “2nd hit” Environmental insult ? Somatic mutation? Modifier genes “Out of Proportion” PH in CLD Definition: resting PAP > 40 mmHg COPD 1-5% TPG > 25 mmHg Chaouat et al. AJRCCM, 2005, Scharf et al AJRCCM, 2002 ILD: 9% Shorr et al Eur Resp J, 2007 Therapy Treat underlying lung disease Provide long term oxygen therapy when appropriate Treat heart failure Consider anticoagulant therapy Consider vasodilator therapy Consider transplantation IPERTENSIONE POLMONARE e FIBROSI POLMONARE IDIOPATICA Cremona G. Paciocco G. IPF and PH: increase in PVR IPF and PH: pathophysiology Secondary PH – Fibrotic ablation of pulmonary vessels – Elevetion of PVR – Exercise hypoxemia and resting hypoxemia in late stages of disease Disproportionate PH – Increased production of 5-LO,TGF-β, TNF-α and PDGF – Reduced production of PGE-2 – Increased ET-1 level – Angiogenesis and angiostasis Prevalence of PH in IPF o 139 IPF o 46 untreated – 93 treated o 55% PAPs > 36 mmHg o o o o o o Tended to lower Dlco Lower pO2 at rest Shorter 6-MWT distance Lower SpO2 at rest and at end of ex Higher BNP level SpO2 < 85% at rest Papakosta D Lung 2011;189:391-9 PH in IPF: pre- or post-capillar • 118 pts. IPF with RHC – 48 with PH (>25 mmHg) • 19 post-capillar PH • 29 pre-capillar Prevalence 26% – No correlation with PFT’s Nathan S et al. 2007; 131:657-663 PH in IPF: prognostic value Impact on survival 88 IPF pts with echo-PAPs measurement mean PAPs = 48 16 mmHg PAPs correlated with DLco Worse survival in PAPs > 50 mmHg pts – RR 1.34 per 10 mmHg increase – – – – Nadrous HF et al. 2005;128:2393-99 Sildenafil in IPF 180 pts with severe disease • (12-week study) Primary end-point failed • 20% of in distance walked on 6-MWT • Significant improvement in: DLco% pO2 SaO2 Shortness of Breath Questionnaire – St. George’s Respiratory Questionnaire – – – – The Idiopathic Pulmonary Fibrosis Clinical Research Network N Engl J Med 2010;363:620-8 FIBROSI POLMONARE ED ENFISEMA FERAGALLI B. CPFE COMBINED PULMONARY FIBROSIS AND EMPHYSEMA Definizione Sindrome caratterizzata dall’associazione di enfisema e fibrosi e da un elevato rischio di Ipertensione arteriosa polmonare Cottin V, Eur Respir J 2010; 35:9-11 In 90% of patients the chest radiograph is abnormal at the time of diagnosis with: • enlargement of central arteries • “pruning” of the peripheral blood vessels CT shows the same pattern but it is more accurate in the evaluation of arterial diameter. Specificity: 90% PH is present when the main pulmonary artery diameter is: > aorta > 2.9 cm 36 mm The specificity of CT is higher (100%) when the segmental arteries are enlarged and in particular when the segmental artery-bronchus ratio > 1, in 3 or more lobes. & Remy-J M. CT angiography of the chest. Lippincott, 2001 Right heart abnormalities • Dilation of: Right ventricle Right atrium Vena cava RV • Leftward ventricular septal bowing Severe leftward ventricular septal bowing is often associated with an unfavourable prognosis ! Sistemic collateral supply with enlargement of bronchial arteries CT Angiography (CTA) & Kauczor HU. JCAT, 1994 CPFE Quadro interstiziale reticolare con volumi polmonari conservati CPFE Enfisema lobi superiori Fibrosi lobi inferiori CPFE CPFE CPFE CPFE Associazione di enfisema e fibrosi nelle immagini HRCT Maschi fumatori o ex fumatori Volumi polmonari relativamente conservati Marcata compromissione della funzionalità respiratoria (riduzione DLCO) Elevata prevalenza di ipertensione arteriosa polmonare Specifica entità o semplicemente un distinto fenotipo di FPI in maschi fumatori? CPFE 2009 Elevata prevalenza di IP nella CPFE (rischio di IP è maggiore nella CPFE rispetto alla FPI senza enfisema) Forte correlazione tra eSPAP e l’estensione delle alterazioni enfisematose in HRCT La prognosi peggiore dei pz con CPFE è dovuta CPFE 2010 L’ IP si manifesta rapidamente dalla diagnosi di CPFE (tempo medio di 16 mesi tra la dg di CPFE e dg di IP) CPFE 2011 Effetto antifibrotico di mediatori dell’infiammazione cronica legata al fumo e all’enfisema centrolobulare (diversa patogenesi dell’enfisema parasettale che si riscontra sia in fumatori che in non fumatori) CPFE CPFE Conclusioni Diagnosi importante per le seguenti ragioni: 1. Il rischio di IP è elevato (50-90%) e si associa ad una riduzione della sopravvivenza ed aumento della mortalità 2. La valutazione dei volumi polmonari non è rilevante nel follow-up (a differenza della FPI) 3. Variazioni della capacità di diffusione, dell’ipossiemia, della pressione arteriosa polmonare sono indici più attendibili di progressione di malattia 4. I pz. con CPFE dovrebbero essere esclusi dai trials clinici sulla FPI CPFE Conclusioni Nel sospetto clinico e radiografico di CPFE è indicato effettuare una HRCT del torace ed un esame ecocardiografico IPERTENSIONE POLMONARE e NELLE PID NON IPF STANZIOLA A. IPERTENSIONE POLMONARE ED INTERSTIZIOPATIE POLMONARI NON IPF ◙ IP associata a Collagenopatie vascolari e Interstiziopatia (PH-SSc-ILD, PH-SLE, RA, DM/PM) ◙ IP nelle PID rare (sarcoidosi, istiocitosi,lam,pam…) PH-SSc-ILD Condliffe, AJRCCM 2009 IP da meccanismi non conosciuti. Gruppo 5 sarcoidosi istiocitosi LAM Istiocitosi a cellule di Langerhans • • • • Lesioni vascolari ♦ Fibrosi intimale / ipertrofia media vasi arteriosi (+++) ♦ Muscolarizzazione / obliterazione / fibrosi intimale vasi venosi (+++) ♦ Granulomi a sede vascolare () della 3° posto RIPID variabilità quadri clinico-radiologici di esordio 1 dispnea non correlata con i parametri funzionali ventilatori basali 1 IP severa nei centri IP riferimento (PAPm > 50 mmHg) di Taveira-DaSilva AM, Hathaway OM, Sachdev V, Shizukuda Y, Birdsall CW, Moss J. Chest. 2007 Fenotipi emodinamici NL = gruppo normale ePVH= IP venosa eoPH= IP out of proportion ePH = IP exercise induced SAGGAR et al IP e PID rare: Sarcoidosi DERMATO/POLIMIOSITE Pulmonary hypertension in polymyositis-dermatomyositis: clinical and hemodynamic characteristics and response to vasoactive therapy. PH Minai O, Lupus 2009 ISTIOCITOSI Microlitiasi endoalveolare IPERTENSIONE POLMONARE, TROMBOEMBOLISMO VENOSO E BPCO BECATTINI C. Pulmonary hypertension & venous thromboembolism -Acute pulmonary hypertension -Chronic thromboembolic pulmonary hypertension Predictors of adverse short-term outcome Massive Non Massive PE Massive PE Non Massive PE Kucher Circulation 2006 Laporte Circulation 2008 ESC Guidelines: Risk stratification for PE Adam Torbicki Arnaud Perrier S Konstantinides Giancarlo Agnelli Nazareno Galié Piotr Pruszczyk Markers of dysfunction: echocardiography HR 1.94 95% CI 1.23-3.06 1035 pts BPs >90mmHg 30d. mortality 16,3% Kucher N, Arch Intern Med. 2005 PE-MAP Study RV LV Burden of emboli at MDCT and clinical course obstruction index according to the scoring system of Qanadli ∑ (n · d) n = number of segmental branches d = obstruction degree (1 if partial 2 if complete) Becattini et al., in press Treatment for pulmonary embolism AHA Circulation 2011 Chronic thromboembolic pulmonary hypertension pathological lesions are characterized by organized thrombi tightly attached to the pulmonary arterial medial layer in the elastic pulmonary arteries, replacing the normal intima. These may completely occlude the lumen or form different grades of stenosis, webs, and bands. In non-occluded areas, a pulmonary arteriopathy indistinguishable from that of PAH (including plexiform lesions) can develop. CTPH: Pathogenesis Thromboembolic obstruction of major pulmonary arteries due to unsolved pulmonary embolism initial PE Pulmonary arteries remodelling Recurrent PE CTEPH Thrombosis of pulmonary arteries CTPH: incidence 259 patients with symptomatic objectively confirmed PE 46-months average follow up 17 patients with new persistent dyspnea: 10 Chronic heart failure 7 COPD 3 normal PAP 2 confirmed CTPH (both patients with idiopathic PE) Becattini, Chest 2006 Epidemiology of CTPH About 40% of patients diagnosed with CTEPH have not had a clinically apparent PE Recommendations for CTEPH ESC Task Force 2009 CTPH TC CTPH: pulmonary angiography Chronic thromboembolic pulmonary hypertension -Definition and epidemiology -Diagnosis -Treatment and prognosis Treatment for CTPH Anticoagulants: life-long treatment with INR 2.0-3.0 1C Thromboendarterectomy: in selected patients with central disease under the care of an experienced team 1C Vena cava filter: before or at the time of thromboendarterectomy Expert center: ≥ 20 PEA operations per year with a mortality rate <10%. 2C ACCP 2008 ESC Task Force 2009 CTPH operability Thistlethwaite, 2002 CTPH operability • Location and extension of thrombotic material (proximal segmental arteries) • Small arteries arteriopathy • Severe obstructive or restrictive pulmonary disease • Advanced age and right ventricle failure increase risks of surgery but are not contraindications CTPH medical treatment Uncontrolled clinical studies: prostanoids, ERAs, and phosphodiesterase type-5 inhibitors may exert haemodynamic and clinical benefits in patients with CTEPH Open to discussion Role of referral centers Optimal methods for screening Role of medical therapies IPERTENSIONE POLMONARE ED OSAS CARRATU’ P. Definizione di Apnea e Ipopnea L’apnea durante il sonno è un fenomeno patologico che consiste nella cessazione del respiro per una durata di almeno 10 secondi, associato ad alterazioni degli scambi gassosi, della struttura del sonno, e a modificazioni emodinamiche che perdurano anche nello stato di veglia (1). L’ipopnea corrisponde invece ad una riduzione del 70% del flusso oronasale che si accompagna a una desaturazione del sangue arterioso di almeno 4 punti percentuali (2). Lieu TA, Am J Respir Crit Care Med. 2011 Oct 1;184(7):848-56 Lin CH, Sleep Med. 2011 Aug;12(7):720-9. Apnee notturne: Classificazione Le apnee notturne si classificano in: • OSA (obstructive sleep apnea) con cessazione del flusso aereo per ostruzione periferica delle alte vie aeree • Apnee centrali: cessazione del flusso aereo con pervietà delle vie aeree superiori • Apnee miste: iniziano come centrali e diventano ostruttive Saturimetria notturna in un paziente con OSAS Tracciato pulsossimetrico tipico di apnea del sonno: desaturazioni con aspetto a dente di sega, spesso più gravi in determinati periodi del sonno. Condizioni favorenti l’insorgenza dell’OSA Obesità Alterazioni ormonali (ipotiroidismo, acromegalia) Alterazioni otorinolaringoiatriche (ipertrofia tonsillare, ostr. nasale) Alterazioni maxillo-facciali (micrognazia, flessione del collo) Farmaci (tranquillanti e psico-farmaci) Fumo Alcool Complicanze cardiovascolari dell’OSAS OSA may be associated with systemic hypertension and an increased incidence of stroke, heart failure, myocardial infarction, and arrhythmias. An important clinical question is whether sleep-related hypoxia in patients with OSA and other respiratory diseases can also cause PH, right ventricular dysfunction, and right heart failure. Kato M et al Circulation 2007 OSAS Chronic Intermittent hypoxia Sympathetic excitation Endothelial Dysfunction Inflammation Recurring arousals Oxidative Stress Cardiovascular Disease Metabolic Dysregulation (Insulin, Leptin) OSAS e Ipertensione polmonare Durante l’evento ostruttivo la pressione arteriosa polmonare transmurale si modifica in maniera inversamente proporzionale al grado di ipossia anche se l’aggiunta di O2 non modifica la situazione nella maggior parte dei soggetti (1). L’ipertensione polmonare è stata dimostrata in circa il 17-42% dei pazienti OSAS (2-3). Fattori determinanti per l’insorgenza dell’ipertensione polmonare sembrano essere la PaO2, la PaCO2 e il FEV1 (2). Studi su linee cellulari animali hanno documentato che l’ipossia intermittente agisce come stimolo molto più potente dell’ipossia continua sulla attivazione di molteplici fattori di trascrizione; tra questi troviamo l’Hypoxia-inducible Factor-1 (HIF-1), con i suoi secondi messaggeri, eritropoietina e fattore di crescita per l’endotelio vascolare (VEGF), che insieme all’ET-1 sono responsabili delle modificazioni strutturali e pressorie (4). 1.Marrone, 1989, Chest, 34: 345-351; 2.Laks, 1995, AJRCCM 1896-1902; 3.Chaouat, ERJ 454-460. 1996 4. Belaidi E J Am Coll Cardiol. 2009, 1309-17 Pathophysiology of PH in OSAS Three main mechanisms have been suggested to be responsible for the observed obstructive sleep apnearelated increase in PAP as follows: 1. hypoxia, and chronic intermittent hypoxia 2. mechanical factors because of increased inspiratory effort, 3. reflex mechanisms directly influencing the vasculature. Sajkov D, Progress in Cardiovascular Diseases 2010 Pulmonary hypertension in obstructive sleep apnoea: effects of continuous positive airway pressure: a randomized, controlled cross-over study. Individual values for the Doppler echocardiography-derived pulmonary artery systolic pressure (PASP) after crossover trial of 3-month sham vs 3-month effective CPAP treatment in 21 patients with OSA. Application of CPAP reduces pulmonary systolic pressure levels. M.A. Arias, et al. Eur Heart J, 27 (2006), pp. 1106–1113. RMPI = IVCT+IVRT/ ET IVCT= T di Contraz Isovol IVRT= T Rilasc Isovol. Medication adherence and persistence in severe obstructive sleep apnea. Kaplan-Meier curves of the probability of persistence to antihypertensives, statins, and antiplatelets during the 2-years follow-up. CPAP refers to those patients who were compliant with continuous positive airway pressure (CPAP) use; nonCPAP, those patients who refused treatment with CPAP or did not use CPAP for at least 4 hours per day. “Our findings do not support the hypothesis that nonuse of CPAP could be a marker for nonadherent behavior, as well as, for increasing cardiovascular diseases” Villar I et al. Sleep 2009 May;32(5):623-8 Daytime pulmonary hypertension in patients with obstructive sleep apnea: the effect of continuous positive airway pressure on pulmonary hemodynamics Alchanatis M, Tourkohoriti G, Kakouros S, Kosmas E, Podaras S, Jordanoglou JB “Severe OSA (AHI>30) alone constitutes an independent risk factor for the development of systemic and pulmonary hypertension”. Respiration2001;68(6):566-72 Association of chronic obstructive pulmonary disease and sleep apnea syndrome. L’OSAS si può associare a COPD nel 10-11 % dei casi I pazienti «overlap» sono a più alto rischio di sviluppare Ipertensione Polmonare e Cuore Polmonare Cronico rispetto ai BPCO, anche con deficit ostruttivi meno severi. Chaouat A., AJRCCM 1995 Pathophysiological aspects of “Overlap Syndrome” Both COPD and OSAS are associated with elevated levels of C-reactive protein (CRP) and IL-6, in addition to tumor necrosis factor (TNF)- and IL-8, and are also associated with oxidative stress. However, cigarette smoking and obesity are confounding variables in these associations. Hypoxia is a key factor in elevated TNFproduction in OSAS, which is particularly relevant to the overlap syndrome. Each inflammatory pathway has been associated with atherogenesis and subsequent cardiovascular disease. Chaouat A., AJRCCM 1995 Individual values for the Doppler echocardiography-derived pulmonary artery systolic pressure (PASP) after crossover trial of 3-month sham vs 3-month effective CPAP treatment in 21 patients with OSA 63 M.A. Arias, F. Garcia-Rio and A. Alonso-Fernandez, et al. Pulmonary hypertension in obstructive sleep apnoea: effects of continuous positive airway pressure: a randomized, controlled cross-over study. Eur Heart J, 27 (2006), pp. 1106–1113. | View Record in Scopus | | Cited By in Scopus (84)[63]. This question has finally been resolved by studies that have found a significant fall in PAP after 3 to 6 months of nocturnal CPAP treatment of OSA [57] , [63] and [66] including one randomized controlled trial comparing active vs sham CPAP63 (Fig. 2). Reductions in PAP occurred without any concomitant change in lung function or awake arterial blood gases66 suggesting that episodic sleep apnea and intermittent sleep hypoxemia are sufficient to cause PHT. In one study, the reactivity of the pulmonary circulation to hypoxia also decreased after CPAP therapy.66 D. Sajkov, T. Wang and N.A. Saunders, et al. Continuous positive airway pressure treatment improves pulmonary hemodynamics in patients with obstructive sleep apnea. Am J Respir Crit Care Med, 165 (2002), pp. 152–158. | View Record in Scopus | | Cited By in Scopus (87)66 OSAS Ipertensione Insulinoresistenza Obesità centrale Dislipidemia IPERTENSIONE POLMONARE ed ECOCARDIOGRAFIA NELLA PAH ARGIENTO P. 2009 Diagnostic algorithm. ESC/ERS Guidelines 2009 Circolo polmonare: Valutazione ecocardiografica Dilatazione delle cavità destre / volumetria VS ALTERAZIONI DEI Valutazione funzione biventricolare VENTRICOLI Pressione polmonare Insufficienza tricuspidale Dilatazione dell’ asse epatocavale Valvulopatie sinistre Malformazioni congenite PRESSIONI LESIONI ASSOCIATE O CAUSA DI PAH 2009 PH possibile: - segni indiretti di impegno destro, o - PAPs 37-50 mmHg (TVR 2.9-3.4 m/s) PH probabile: - PAPs >50 (TVR > 3.4 m/s) Ecocardiogramma Segni diretti di PAH - PSP > 36 (50) mmHg Segni indiretti di PAH - Alta velocità ins. Polmonare (PAPm) - Ridotto t. acc. polm. (PAPm) - VD, AD o AP dilatati - Setto IV rettilineizzato (IE VS <0.8) - Aumento spessore VD - TAPSE ridotto (<18 mm) -Vena cava inf. dilatata (>25 mm) con scarsa escursione respiratoria 2009 Segni indiretti di PAH: setto IV rettilineizzato, ipertrofia VD Indice di eccentricità del VS: rapporto tra i due diametri (D2/D1) del VS in short axis (VN = 1) VD D1 VS D2 EI = 0.65 Valutazione ecocardiografica e prognosi VN LV index Prognosi 1 0.7 TAPSE >18 mm <14 mm Tei index <0.4 >0.88 Vers pericardico no Area AD 16 cm2 moderato 30 cm2 TAKE HOME MESSAGE Eco fondamentale per Screening e prognosi Valutazione eco è poliparametrica Diagnosi certa: CATH dx EMODINAMICA POLMONARE ED ADATTAMENTO DEL VENTRICOLO DESTRO VIZZA C.D. Right heart Cath Poiseuille’s Law PVR = Ppa (Pap - Pcwp) / Q Assumptions 1. Linearity 2. Origin from the interception Pcwp of the axis Perfusion Pressure (Pap-Pcwp) PVR Q Measuring the Pcwp But the patient usually breaths……. Pulmonary Hypertension Unit La Sapienza University of Rome Poiseuille’s Law PVR =Pc +((Pap - Pcwp) / Q) Model: Starling Resistor Pap Pc Pcwp Perfusion Pressure Pc PVR Q Pulmonary Hypertension Unit La Sapienza University of Rome Pressure/Flow relationship in normals and PPH PPH Ppa, mmHg 50 40 30 20 N 10 1 2 3 4 5 6 Q, L/min Pulmonary Hypertension Unit La Sapienza University of Rome Mc Gregor and Sniderman, Am J Cardiol 1985; 55: 217-21 Abdel Kafi , Naeije et al, J Am Coll Cardiol; 1998 Other parameters to describe pulmonary circulation (and RV function..) Pulmonary Vascular Impedance Pulsatile hydraulic load Pulmonary Vascular Compliance Ventricular-Arterial Coupling Pulmonary Hypertension Unit La Sapienza University of Rome Pulmonary Vascular Impedance Ppa Spectral analysis of synchronized PA pressure (Ppa) and flow waves. Flow PVZ spectrum includes a measure of - Total PVR (Z0), - Indexes of wave reflection - Characteristic impedance (Zc) - Hydraulic load Very long off-line analysis Not easy/direct interpretation Pulmonary Hypertension Unit La Sapienza University of Rome Huez S. CHEST 2004; 125:2121–2128 Pulmonary Vascular Compliance Two-parameter Windkessel Model The SV/PP index has been validated in vivo in the systemic and splanchnic circulation with a 99% correlation with the Windkessel method Pulmonary Hypertension Unit La Sapienza University of Rome Lineham JH. J Appl Physiol 1986;61:1802–24. Conclusion • Careful technical set-up is mandatory for Right • Cath study Simple PVR calculation may not be adequate in order to evaluate the response to vasoactive drug (particularly with high Pc and increase in CO) Simple analysis could add useful informations • Pressure/Flow Plot • Compliance (SV/PP index) Pulmonary Hypertension Unit La Sapienza University of Rome Considerations I • Afterload mismatch is the main cause of RV • failure in severe PH The most informative parameter of adequate RV adaptation might be RV Mass/Volume ratio, the higher the more “concentric” the hypertrophy We need further studies to address: a) The mechanism(s) of RV hypertrophy and RV adaptation in face of increasing afterload b) The impact of loss of myocite mass as co-factor influencing the evolution of RV remodelling Pulmonary Hypertension Unit La Sapienza University of Rome Rilievo ECO Doppler di Ipertensione Polmonare Diast VS IP Post-Capillare Normale Anormale Studio ECO contrasto Funzione respiratoria DIA, DIV Deficit Scintigrafia Perfusionale Normale Mod-severo TC Alta Ris. Lieve Polisonno grafia Difetti segmentali Normale o difetti sfumati TC Spirale o Angio PNEUMOPATIE OSAS Ipert Art Pol Ricerca: Auto-anticorpi Capillaroscopia HIV Pulmonary Hypertension Unit ECO V Porta La Sapienza University of Rome Normale Botallo Tromboembolia Studio emodinamico Test Vasoreattività IL RUOLO DELLA CPET NELL’ IPERTENSIONE POLMONARE SECONDARIA A MALATTIE POLMONARI SCODITTI C. ROLE OF CPET Why should we analize exercise intolerance? 1. Prognostic evaluation 2. Functional status and mechanism limiting exercise tolerance 3. Disease progression and response to interventions CPET IN ILD PROGNOSTIC FACTOR: PaO2 slope < 60 mmHg/l/min Miki K, Respiratory Medicine 2003, Vol 97:482-490 VO2max = Q x (CaO2 – CvO2) max The minimal CvO2 is determined by the affinity of the hemoglobyn for O2 The (CaO2 – CvO2) max is similar in all subject, except in muscolar disease. So VO2max is determined by Q x CaO2 max VENTILATORY EVALUATION • VENTILATORY CAPACITY MVV calculated = FEV1x 35-40 • VENTILATORY RESERVE Maximum exercise VE/MVV= 72% ± 15% • BREATHING RESERVE MVV- Maximum exercise VE > 11 L/min WASSERMANN K, Principles of exercise testing and interpretation. Lippincott Williams e Wilkins, 4th edition 2005. VENTILATORY ABNORMALITIES CPET CHARACTERISTICS in VENTILATORY LIMITED PATIENTS • low peak VO2 • low breathing reserve < 11 L/min • RER<1.0 • high P(a-ET)CO2 during exercise For ILDs also: • hign Vt/IC • respiratory rate >50 • high VE/VCO2 at anaerobic threshold (AT) • reduced ∆VO2/∆WR • high P(A-a)O2 during exercise WASSERMANN K, Principles of exercise testing and interpretation. th Lippincott Williams e Wilkins, 4 edition 2005. CARDIAC EVALUATION 1. Maximum heart rate= 220-age 2. Heart rate reserve= predicted peak HR-observed peak HR 3. Oxygen pulse O2pulse = VO2/HR = SV x C (a-v) O2 5. Blood pressure 6. VE/VCO2 @AT and VE/VCO2 slope WASSERMANN K, Principles of exercise testing and interpretation. th Lippincott Williams e Wilkins, 4 edition 2005. 1. PULMONARY HYPERTENSION 2. DYNAMIC HYPERINFLATION 3. LEFT-HEART DISEASE REDUCED CARDIAC OUTPUT REDUCED O2 TRANSPORT REDUCED EXERCISE CAPACITY PULMONARY HYPERTENSION IN COPD VO2 peak and 6MWD as a function of mean PAP in COPD patients VO²- mPAP Distance - mPAP 600 20 Distance (m) VO² peak (ml/kg) 25 15 10 5 0 0 20 40 PAP (mmHg) 60 400 200 0 0 20 40 60 PAP (mmHg) PYNNAERT C. et al, Aerobic exercise capacity in COPD patients with and without pulmonary hypertension, Respiratory medicine 2009 PULMONARY HYPERTENSION IN COPD REDUCED VENTILATORY EFFICIENCY HOLVERDA S, Cardiopulmonary Exercise Test Characteristics in Patients with Chronic Obstructive Pulmonary Disease and Associated Pulmonary Hypertension Respiration 2008 CONCLUSIONS • The exercise limitation for COPD+PH is cardiac, for COPD nnPH is ventilatory. Nobody has deconditioning. • In both groups is present an increased Vd/Vt as shown by a positive P(a-ET)CO2@AT. In COPD+PH it’s based on increased V/Q mismatch confirmed by decreased PaCO2. • Also if increased P(A-a)O2, VE/VCO2 and VE/VO2 slope in COPD+PH is not statistically significant between 2 groups, it could suggest a reduced ventilatory efficacy in COPD+PH patients. IL TEST DA SFORZO CARDIOPOLMONARE, NELL’ IP SECONDARIA A MALATTIE POLMONARI FORTE S. Il Test da Sforzo Cardiopolmonare Compiere un esercizio fisico comporta l’attivazione di una serie di meccanismi fisiologici di adattamento la cui efficienza condiziona lo svolgimento dell’esercizio stesso in termini di intensita’ e di durata. L’efficienza dei meccanismi di adattamento all’esercizio definiscono la “tolleranza allo sforzo”. Il Test da sforzo cardiopolmonare • Il Test da Sforzo Cardiopolmonare (CPET) e’ una metodica che consente in maniera non invasiva di studiare l’adattamento cardiovascolare, respiratorio e metabolico all’esercizio e di identificare il/i meccanismo/i alla base della limitazione all’esercizio. • Il Test da Sforzo Cardiopolmonare infatti, mediante una attrezzatura computerizzata, consente, durante l’esecuzione dell’esercizio al treadmill o al cicloergometro, la misurazione di una serie di parametri che sono quindi espressione della tolleranza allo sforzo. TEST DA SFORZO CARDIOPOLMONARE: MISURE Wasserman K. Priciples Exercise Testing and Interpretation. Third Edition Lippincott Williams & Wilkins Impact of pulmonary hypertension pathophysiology on ventilatory expired gas exchange. VE = VCO2 x 863 PaCO2 VD/VT Consumo di Ossigeno (VO2) Fattori che determinano il VO2: Scambio di O2 a livello polmonare Gittata cardiaca Trasporto di ossigeno (Hb %, SatO2) Distribuzione del sangue a tutti i tessuti, in particolare al muscolo Capacità di estrazione (densità dei capillari, densità e funzionalità dei mitocondri, perfusione e diffusione) Relationship between pathophysiology and clinical interpretation of key cardiopulmonary exercise testing variables. RISPOSTA VENTILATORIA BPCO NORMALE MIP CARDIOPATIA Lo slope della relazione VE/VCO2 indica che 23-25 L di VE sono richiesti per eliminare 1 L di CO2. Misurata alla AT, una alterazione è espressione di aumentata richiesta ventilatoria (vn <34) o di alterazioni del VD/VT MVP Differences in ventilatory efficiency between pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension Zhenguo Zhai et al. Chest April 28, 2011
© Copyright 2024 Paperzz