Regulation of Photosynthesis for Nitrogen Fixation Hendrik Küpper, visit to Aberdeen, February 2014 Nitrogen cycle: intermediate steps NO3Nitrite oxidase Nitrate reductase NO2- NO N2O Anammox H2NOH N2 NH3 Total equation of biological nitrogen fixation N2 + 8H+ + 16 MgATP + 8e- 2NH3 + H2 + 16 MgADP + 16 Pi Organisms involved in nitrogen fixation Anabaena Azolla Trichodesmium Gloeothece Rhizobien Azotobacter Mechanism of biological nitrogen fixation: nitrogenase of cyanobacteria Evolution of biological nitrogen fixation in comparison to photosynthesis Berman-Frank I_Lundgren P_Falkowski P_2003_Research in Microbiology154_157-164 Strategies of photosynthesis regulation for nitrogen fixation in cyanobacteria y Berman-Frank I_Lundgren P_Falkowski P_2003_Research in Microbiology154_157-164 Unicellular cyanobacteria Regulation of photosynthesis for nitrogen fixation in unicellular cyanobacteria y ((II)) glycogen storage begins max. photosynthetic capacity light period: carbon + energy storage down regulation of photosynthesis maximum glycogen storage up regulation of y photosynthesis nitrogen fixation begins dark period: nitrogen fixation maximum nitrogen fixation maximum respiration Heterocyst forming cyanobacteria vegetative Zellen Pro-Heterocyste Heterocyste From: Culture service of Instituto de Bioquímica Vegetal y Fotosíntesis, Sevilla, Spain From:El-Shehawy et al 2003 Physiol Plant 119 (1), 49-55 Heterocyst differentiation: distribution maps of chlorophyll fluorescence kinetic parameters M i l flfluorescence quantum Maximal t yield i ld (Fm) 25 µm 13 h 36 h 55 h 112 h Photosystem II activity (Fv/Fm) Ferimazova N, Felcmanová K, Šetlíková E, Küpper H, Maldener I, Hauska G, Šedivá B, Prášil O (2013) PhotRes 116, 79-91 Heterocyst differentiation: changes in parameters of chlorophyll fluorescence kinetics Ferimazova N, Felcmanová K, Šetlíková E, Küpper H, Maldener I, Hauska G, Šedivá B, Prášil O (2013) PhotRes 116, 79-91 Trichodesmium: anoxygenic photosynthesis energizing nitrogen fixation i the in th same cells ll during d i the th photoperiod h t i d Trichodesmium • Marine filamentous, non-heterocystous cyanobacteria • contribution of Trichodesmium to marine N2 fixation: 30-50% • Nitrogen fixation is confined to the photoperiod and occurs simultaneously with oxygenic photosynthesis photosynthesis. • How nitrogenase is protected from damage by photosynthetically produced O2 has remained an enigma. Surface blooms in the Arafura Sea Colonies – tuft and puff formation Trichodesmium 35 1.0 30 25 0.9 20 0.8 15 colonies: “Tuft” and “Puff” GP (µM O2 µg chl a-1 h-1) 0.7 10 0.6 5 0.5 0 60 -2 50 -4 40 -6 -8 30 -10 10 20 -12 10 -14 0 -16 -10 -18 -20 -20 8 10 12 14 16 18 20 Nitrogen n fixation (n nmol C2H2 µ µg chl a -1 h-1) 11 1.1 Dark rrespiration (µM O2 µ µg chl a-1 h-11) TrichodesmiumT i h d i bloom Relativee Fv/Fm Aktivitätszyklus von Trichodesmium 22 Local tim e ((h)) Berman-Frank I, Lundgren P, Chen Yi-B, Küpper H, Kolber Z, Bergman B, Falkowski P (2001) Science 294, 1534-1537 Co-Localisation of nitrogenase and PSII in Trichodesmium D1 protein (green) and Nitrogenase (rot). Big picture: Overlay, small picture: only nitrogenase (Immunostain) Berman-Frank I, Lundgren P, Chen Yi-B, Küpper H, Kolber Z, Bergman B, Falkowski P (2001) Science 294, 1534-1537 Inhibitor-Tests: Need of PSII-activity for nitrogen fixation in Trichodesmium Influence of DCMU (10 µM), ascorbic acid (100 µM), and DTT (100 µM) were tested for cultures incubated under aerobic (white columns) and anaerobic (blue columns) conditions. Changes in nitrogenase activity as measured by acetylene reduction. Berman-Frank I, Lundgren P, Chen Yi-B, Küpper H, Kolber Z, Bergman B, Falkowski P (2001) Science 294, 1534-1537 Proof of Mehler-reaction during nitrogen fixation Staining with DAB (Diaminobenzochinon) shows intracellular di t ib ti off H2O2 as brown distribution b stain t i iin allll cells ll Mehler reaction: H2O + 2O2 --> Mehler-reaction: > H2O2+O2 Berman-Frank I, Lundgren P, Chen Yi-B, Küpper H, Kolber Z, Bergman B, Falkowski P (2001) Science 294, 1534-1537 low F0 Number of o N objects (cells or group ps of neighb bouring identical cells)) Diurnal cycle of activity: Distribution of F0 values 10 normall bright b i ht type I ""very bright" b i ht" = bright type II Non-diazotrophic period 5 0 10 Diazotrophic period 5 0 0 10 20 30 40 50 60 F0 Küpper H, Ferimazova F, Setlík I, Berman-Frank I (2004) Plant Physiology 135, 2120-33 Nitrogenase N e activity Chl conce entration (µM M) % Brigh ht cells ((m ml ethylene reduction) -1 -1 .(ml culture)) .min ) Diurnal cycle of activity: correlation between bright cells, pigment content and nitrogenase activity 12 10 8 6 4 2 0 0.4 Nitrogenase activity % bright cells Chl 0.3 02 0.2 0.1 0.0 06 00 06:00 09 00 09:00 12:00 12 00 control 15:00 15 00 18 00 18:00 5% oxygen 21:00 21 00 00 00 00:00 50% oxygen Küpper H, Ferimazova F, Setlík I, Berman-Frank I (2004) Plant Physiology 135, 2120-33 Küpper H, Ferimazova F, Setlík I, Berman-Frank I (2004) Plant Physiology 135, 2120-33 Hypothesis about the regulation of photosynthesis for nitrogen fixation in Trichodesmium Licht initiates photosynthesis Reduction of the PQ pool Energy and reduction equivalent for CO2assimilation Induction of a state 2 --> state 1-transition – cells have a high F0 (“bright cells type I”) due to surplus phycobiliproteins Stimulation of pseudocyclic electron transport High respiration rates in early light period Oxygen consumption exceeds oxygen production: Opportunity for nitrogen fixation Carbohydrates are consumed Respiration decreases, transition to the “normal normal F0 inactive inactive” or “quenching” quenching state Intracellular oxygen rises Nitrogenase becomes inhibited, no further nitrogen fixation until the following day, cells return to "normal F0 active" state Deconvolution of spectrally resolved in vivo fluorescence kinetics shows reversible coupling of individual ph cobiliproteins phycobiliproteins Basic dark-adapted fluorescence yield F0 Non-photochemical changes in fluorescence yield quenching normal F0 active bright I =diazotrophic Küpper H, Andresen E, Wiegert S, Šimek M, Leitenmaier B, Šetlík I (2009) Biochim. Biophys. Acta (Bioenergetics) 1787, 155-167 Sequence of uncoupling events in a „„bright g II cell“ Küpper H, Andresen E, Wiegert S, Šimek M, Leitenmaier B, Šetlík I (2009) Biochim. Biophys. Acta (Bioenergetics) 1787, 155-167 Reversible coupling of individual phycobiliproteins... ...as a basis for diazotrophic photosynthesis p y Küpper H, Andresen E, Wiegert S, Šimek M, Leitenmaier B, Šetlík I (2009) Biochim. Biophys. Acta (Bioenergetics) 1787, 155-167 Iron limitation: rescue of photosynthetic components... ...by sacrificing nitrogenase PsaC new PE isoform Küpper H, Šetlík I, Seibert S, Prášil O, Šetlikova E, Strittmatter M, Levitan O, Lohscheider J, Adamska I, Berman-Frank I (2008) New Phytologist 179, 784-798 Conclusions • For Trichodesmium, photosystem II activity is essential for providing energy for nitrogen fixation. • Regulation of PSII activity for nitrogen fixation is achieved mainly by quickly reversible (un)coupling of individual phycobiliproteins. • The nitrogen fixing activity state is characterised by a particularly large PSIIassociated antenna, which is achieved mainly by coupling of additional units of phycourobilin (PUB) isoforms isoforms. • Therefore, acclimation to light limitation (“low light stress”) involves enhanced synthesis th i mainly i l off phycourobilin, h bili which hi h iis th then mainly i l coupled l d tto PSII PSII. Synthesis and levels of other photosynthetic components decrease. • Because of their vital importance, when adverse conditions require a choice, Trichodesmium in contrast to other cyanobacteria does not sacrifice its phycobilisomes, p y , but rather its nitrogenase. g • Stress leads to expression of alternative phycobiliprotein isoforms Current and former lab members involved in this project Elisa Andresen, Barbara Leitenmaier, Qiyan Wang-Müller, Sven Seibert, Verena Rösch, Christian Lang Collaborators Naila Ferimazova, Ivan Šetlík, Eva Iwona Adamska, Jens Š lík Šetlíkova, Ondrej O d j Prašil: P šil Ph Photosynthesis h i Lohscheider, Martina Research Centre, Institute of Strittmatter: Universität Microbiology, Třeboň, Czech Republic y Konstanz,, Germany Ilana Berman-Frank: Bar Ilan University, Israel Pernilla Lundgren, Lundgren Birgitta Yi Bu Chen, Yi-Bu Chen Zbigniew Kolber, Kolber Paul Bergman: Stockholm University Falkowski: Sweden Rutgers University, U.S.A Main sources of external funding Deutsche Forschungsgemeinschaft NATO “Science for Peace” programme Ministry of Education of the Czech Republic All slides of my lectures can be downloaded from my workgroup homepage www uni-konstanz de Department of Biology Workgroups Küpper lab www.uni-konstanz.de lab, or directly http://www.uni-konstanz.de/FuF/Bio/kuepper/Homepage/AG_Kuepper_Homepage.html and on the ILIAS website
© Copyright 2025 Paperzz