Are You Ready For AP Calculus BC? Show all work on a separate

Are You Ready For AP Calculus BC? Show all work on a separate sheet of paper. 1.) Simplify: (a) ! ! !!!
! ! !!!!!"
(b) ! ! !!!!!
! ! !! ! !!!
! !
!
!
!
!
!
!"
!
(c) !!
(d) !!! !!
!!! !!
2.) Rationalize the denominator: (a) !
!! !
(b) !
!! !
(c) !
!! !! !
3.) Write each of the following expression in the form 𝑐 π‘Ž ! 𝑏 ! where c, p, and q are numbers: (a) (!! ! )!
!
9π‘Žπ‘ ! (b) (c) !
!
!
!
!
(d) !"!!
! ! !!
(e) ! !!
(! !! ) !
!
(f) !
!!
!
!!
!
!!
!
!!
4.) Solve for x (do not use a calculator): !
(a) 5 !!! = 25 (b) = 3!!!! (c) log ! π‘₯ = 3 (d) log ! π‘₯ ! = 2 log ! 4 βˆ’ 4 log ! 5 !
5.) Simplify: (a) log ! 5 + log ! (π‘₯ ! βˆ’ 1) βˆ’ log ! (π‘₯ βˆ’ 1) !
6.) Simplify: (a) log 10! (b) log
!
!"!
(c) 3! !"#! ! (b) 2 log ! 9 βˆ’ log ! 3 !
(c) 2 log π‘₯ + 3 log π‘₯ ! 7.) Solve the following equations for the indicated variables: !
!
!
!
!
!
!
(a) + + = 1, π‘“π‘œπ‘Ÿ π‘Ž (b) 𝑉 = 2 π‘Žπ‘ + 𝑏𝑐 + π‘π‘Ž , π‘“π‘œπ‘Ÿ π‘Ž (c) 𝐴 = 2πœ‹π‘Ÿ + 2πœ‹π‘Ÿβ„Ž, π‘“π‘œπ‘Ÿ π‘π‘œπ‘ π‘–π‘‘π‘–π‘£π‘’ π‘Ÿ (d) 𝐴 = 𝑃 + π‘›π‘Ÿπ‘ƒ, π‘“π‘œπ‘Ÿ 𝑃 (e) 2π‘₯ βˆ’ 2𝑦𝑑 = 𝑦 + π‘₯𝑑, π‘“π‘œπ‘Ÿ 𝑑 (f) !!
!!
+
!!!
!
= 0, π‘“π‘œπ‘Ÿ π‘₯ 8.) For the equations (a) 𝑦 = π‘₯ ! + 4π‘₯ + 3 (b) 3π‘₯ ! + 3π‘₯ + 2𝑦 = 0 (c) 9𝑦 ! βˆ’ 6𝑦 βˆ’ 9 βˆ’ π‘₯ = 0 complete the square and reduce to one of the standard forms 𝑦 = π‘Ž(π‘₯ βˆ’ β„Ž)! + π‘˜ or π‘₯ = π‘Ž(𝑦 βˆ’ π‘˜)! + β„Ž 9.) Factor completely: (a) π‘₯ ! βˆ’ 16π‘₯ ! (b) 4π‘₯ ! βˆ’ 8π‘₯ ! βˆ’ 25π‘₯ + 50 (c) 8π‘₯ ! + 27 (d) π‘₯ ! βˆ’ 1 10.) Find all real solutions to: (a) π‘₯ ! βˆ’ 16π‘₯ ! = 0 (b) 4π‘₯ ! βˆ’ 8π‘₯ ! βˆ’ 25π‘₯ + 50 = 0 (c) 8π‘₯ ! + 27 = 0 11.) Solve for x: (a) 3 sin! π‘₯ = cos ! π‘₯ ; 0 ≀ π‘₯ < 2πœ‹ (c)tan π‘₯ + sec π‘₯ = 2 cos π‘₯ ; βˆ’βˆž < π‘₯ < ∞ (b) cos ! π‘₯ βˆ’ sin! π‘₯ = sin π‘₯ , βˆ’πœ‹ < π‘₯ ≀ πœ‹ 12.) Without using a calculator, evaluate the following: (a) cos 210° (e) cos
!!
!
(b) sin
!!
!
(f) sin!!
(c) tan!! (βˆ’1) !
!
(g) tan
!!
!
(d) sin!! (βˆ’1) (h) cos !! βˆ’1 13.) Solve the equations: (a) 4π‘₯ ! + 12π‘₯ + 3 = 0 (b) 2π‘₯ + 1 =
!
!!!
!!!
!
(c) ≀ 1 (c) π‘₯ ! + π‘₯ + 1 > 0 !
βˆ’
!!!
= 0 14.) Solve the inequalities: (a) π‘₯ ! + 2π‘₯ βˆ’ 3 ≀ 0 (b) !!!!
!!!!
15.) Solve for x: (a) βˆ’π‘₯ + 4 ≀ 1 (b) 5π‘₯ βˆ’ 2 = 8 (c) 2π‘₯ + 1 = π‘₯ + 3 16.) Determine the equations of the following lines: (a) the line through (βˆ’1, 3) and (2, βˆ’4); (b) the line through (βˆ’1, 2) and perpendicular to the line 2π‘₯ βˆ’ 3𝑦 + 5 = 0; (c) the line through (2, 3) and the midpoint of the line segment from βˆ’1, 4 to (3, 2) 17.) Find the point of intersection of the lines: 3π‘₯ βˆ’ 𝑦 βˆ’ 7 = 0 and π‘₯ + 5𝑦 + 3 = 0 !!!!
18.) (a) Find the domain of the function 𝑓 π‘₯ =
(b) Find the domain and range of the functions: iii) β„Ž π‘₯ = 𝑒 !! βˆ’ 4 iv) 𝑗 π‘₯ = log ! (2π‘₯ βˆ’ 3) + 1 v) 𝑦 = βˆ’2 3 βˆ’ π‘₯ + 6 19.) Simplify ! !!! !! !
(a) 𝑓 π‘₯ = 2π‘₯ + 3 (b) 𝑓 π‘₯ =
(a) 𝑓 π‘₯ = 2π‘₯ + 3 (b) 𝑓 π‘₯ =
!
, where ! ! !!!!
. i) 𝑓 π‘₯ = 7 ii) 𝑔 π‘₯ =
!
!!!
!!!!
!!!!
(c) 𝑓 π‘₯ = π‘₯ ! 20.) Find the inverse of the functions: !
!!!
!!!!
(c) 𝑓 π‘₯ = π‘₯ + 2π‘₯ βˆ’ 1, π‘₯ > 0 21.) You should know the following trigonometric identities. (A) sin(βˆ’π‘₯) = βˆ’sin π‘₯ (B) cos(βˆ’π‘₯) = cos π‘₯ (C) cos(π‘₯ + 𝑦) = cos π‘₯ cos 𝑦 βˆ’ sin π‘₯ sin 𝑦 (D) sin(π‘₯ + 𝑦) = sin π‘₯ cos 𝑦 + cos π‘₯ sin 𝑦 (a) sin! π‘₯ + cos ! π‘₯ = 1 (b) sin 2π‘₯ = 2 sin π‘₯ cos π‘₯ (c) cos 2π‘₯ = cos ! π‘₯ βˆ’ sin! π‘₯ (d) cos 2π‘₯ = 2cos ! π‘₯ βˆ’ 1 (e) cos 2π‘₯ = 1 βˆ’ 2 sin! π‘₯ (f) cos ! π‘₯ =
!!!"# !!
!
(g) sin! π‘₯ =
!!!"# !!
!
22.) Find the derivative of each function. !
(a) 𝑓 π‘₯ = 4π‘₯ ! βˆ’ 7π‘₯ + 3 (b) 𝑓 π‘₯ = 4π‘₯ ! + 1 (c) 𝑓 π‘₯ = 3 cos ! (2π‘₯) (d) 𝑓 π‘₯ = 𝑒 !! (e) 𝑓 π‘₯ = 3π‘₯ ! tan π‘₯ (f) 𝑓 π‘₯ = sin!! (3π‘₯) 23.) Find the integral of each function. !
(a) 3π‘₯ ! + 7π‘₯ βˆ’ 4 𝑑π‘₯ (b) 4π‘₯ 3π‘₯ ! βˆ’ 2 𝑑π‘₯ (c) sec ! (5π‘₯) 𝑑π‘₯ (d) 7π‘₯𝑒 !! 𝑑π‘₯ 24.) Find the derivative of the equation with respect to x. (a) 2π‘₯𝑦 + π‘₯ ! βˆ’ 4 = 0 (b) cos π‘₯𝑦 = 5π‘₯ βˆ’ 3𝑦 + 9 25.) Solve the differential equations. (a) !"
!"
= 2π‘₯𝑦 (b) !"
!"
=
!! !
!
(c) !"
!"
= 5π‘₯ βˆ’ π‘₯𝑦 26.) Graph the parametric or polar equation. (a) π‘₯ = 4𝑑 ! βˆ’ 1, 𝑦 = βˆ’2𝑑 + 1 (b) π‘Ÿ = 3 cos 2πœƒ (c) π‘Ÿ = 2 βˆ’ 4 sin πœƒ (d) π‘Ÿ = 2 cos πœƒ (e) π‘Ÿ = 3