UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE357H1S – ELECTROMAGNETIC FIELDS PROBLEM SET 6 Topics: Review of vector calculus and operations. Reading: 2.1-2.9 1. Cheng P. 2-21 2. Cheng P. 2-34 3. Problem 3.44 Each of thevector following vector fields is displayed in Fig. in the Each of the following fields is displayed in the form of aP3.44 vector form of a vector representation. Determine ∇ · A analytically and then compare thewith representation. Determine div A analytically and then compare the result result with your expectations the basis the displayed pattern. your expectations on theon basis of theofdisplayed pattern. (a) A = −x̂ cos x sin y + ŷ sin x cos y, for −π ≤ x, y ≤ π a. Figure P3.44(a) Solution: A = −x̂ cos x sin y + ŷ sin x cos y ∂ Ax ∂ Ay ∇·A = + ∂x ∂y ∂ ∂ (− cos x sin y) + (− sin x cos y) = ∂x ∂y = sin x sin y − sin x sin y = 0 Yes, A is divergenceless everywhere. (b) A = −x̂ sin 2y + ŷ cos 2x, for −π ≤ x, y ≤ π b. Figure P3.44(b) (c) A = Solution: −x̂ xy + ŷ y2 , for −10 ≤ x, y ≤ 10 A = −x̂ sin 2y + ŷ cos 2x ∂ Ax ∂ Ay ∇·A = + ∂x ∂y ∂ ∂ (− sin 2y) + (cos 2x) = 0 = ∂x ∂y Yes, A is divergenceless everywhere. c. Figure P3.44(c) (d) A = −x̂ cos x + ŷ sin y, for −π ≤ x, y ≤ π Solution: A = −x̂ xy + ŷ y2 ∂ Ax ∂ Ay ∇·A = + ∂x ∂y ∂ ∂ (−xy) + (y2 ) = −y + 2y = y = ∂x ∂y NO, A is not divergenceless everywhere. It is divergenceless only at y = 0. d. Figure P3.44(d) Solution: A = −x̂ cos x + ŷ sin y ∂ Ax ∂ Ay ∇·A = + ∂x ∂y ∂ ∂ (− cos x) + (sin y) = sin x + cos y = ∂x ∂y (e) A = x̂ x, for −10 ≤ x ≤ 10 e. (f) A = Solution: Figure P3.44(e) x̂ xy2 , for −10 ≤ x, y ≤ 10 A = x̂ x ∂ Ax ∂ Ay ∂ Az + + ∂x ∂y ∂z =1 ∇·A = This indicates that the divergence of A is the same at all points in the defined space. In other words, every small volume is a source of flux (more flux leaving the volume than entering it), and the net generated flux is the same at all locations. f. (g) A = Solution: Figure P3.44(f) x̂ xy2 + ŷ x2 y, for −10 ≤ x, y ≤ 10 A = x̂ xy2 ∂ Ax ∂ Ay ∂ Az + + ∂x ∂y ∂z 2 =y ∇·A = g. Figure P3.44(g) Solution: A = x̂ xy2 + ŷ x2 y ∂ Ax ∂ Ay ∂ Az ∇·A = + + ∂x ∂y ∂z 2 2 = y +x (h) A = x̂ sin ! πx " 10 + ŷ sin ! πy " 10 , for −10 ≤ x, y ≤ 10 h. Figure P3.44(h) (i) A = r̂ r + φ̂φ r cos φ , for Solution: ! 0 ≤ r ≤ 10 0 ≤ φ ≤ 2π . A = x̂ sin(π x/10) + ŷ sin(π y/10) ∂ Ax ∂ Ay ∂ Az ∇·A = + + ∂x ∂y ∂z π = [cos(π x/10) + cos(π y/10)] 10 i. (j) A = Solution: Figure P3.44(i) r̂ r2 + φ̂φ r2 sin φ , for ! 0 ≤ r ≤ 10 0 ≤ φ ≤ 2π . A = r̂ r + φ̂φ r cos φ 1 ∂ 1 ∂ Aφ ∂ Az + (rAr ) + r ∂r r ∂φ ∂z = 2 − sin φ ∇·A = j. Figure P3.44(j) Solution: A = r̂ r2 + φ̂φ r2 sin φ ∇·A = 1 ∂ 1 ∂ Aφ ∂ Az + (rAr ) + r ∂r r ∂φ ∂z 4. Repeat problem 3 for curl A. 5. For the vector field Problem 3.46 For the vector field E = x̂xz − ŷyz2 − ẑxy, verify the divergence heorem by computing: verify the divergence theorem by computing: (a) the total outward flux flowing the surface of a cubethrough centeredthe at surface the (a) the through total outward flux flowing of a cube centered at the origin and with sides equal origin to 2 units parallel andeach withand sides equaltotothe2 Cartesian units eachaxes, and parallel to the Cartesian axes, and and (b) the integral of ∇ · E over(b) thethe cube’s volume. integral of div E over the cube’s volume. Solution: 6. Verifyintegral Stokes’s (a) For a cube, the closed surface has theorem 6 sides: for the vector field Problem Stokes’s! theorem for the vector field B = (r̂r cos φ + φ̂φ3.52 sin φ )Verify Stokes’s theorem for the vector field B = (r̂r cos φ + φ̂φ sin φ ) by evaluating: ! by+evaluating: E · ds = Ftop + Fbottom Fright + Fleft + Ffront + Fback , B · dl over the semicircular contour shown in Fig. P3.52(a), and (a) (a)"Fig. theP3.52(a), closed contour semicircular contour and#$! C integral of B over the semicircular contour shown below, ! 1 shown ! 1 in 2 $ · (ẑ dy dx) and, Ftop = x̂xz − ŷyz − ẑxy × B) · ds over the surface of the semicircle. (b) z=1(∇× y=−1 er the surface of thex=−1 semicircle. S of curl B over the surface of the semicircle. (b) the surface%integral ($1 & 2 2 '$1 ! 1 ! 1 $ x y $$ $ = 0,y =− xy dy dx = $ $ y 4 x=−1 y y=−1 y y=−1 $ ♥ ♥ x=−1 2 L3 Fbottom L2 = 0 L1 (a) 2 ! 1 ! 1 2 x=−1 y=−1 L3 ! 1 =x ! 11 ! 1 ! 1 Fright = 0 L4 x=−1 y=−1 " #$ 2 $ x̂xz L − ŷyz − ẑxy z=−1 · (−ẑ dy dx) 2 2 L2 2 L1 xy dy dx =x 1 " (b) 2 %& ($1 '$1 $ $ $ $ $ -2 =L0,3 0 $ 4 y=−1 $ 1 x2 y2 x=−1 #$ x̂xz − ŷyz2 − ẑxy $ (a) L1 2 x 0 L2 L3 L4 L1 1 2 x (b) · (ŷ dz dx) Figure P3.52: Contour paths for (a) Problem 3.52 and ($ (b) Problem 3.53. '$ $1 3 $1 xz −4 $ $ , =− z2 dz dx = − = $ 3 $z=−1 $ 3 x=−1 z=−1 Solution: x=−1 ! 1 ! 1 " #$ (a) Fleft = x̂xz − ŷyz2 − ẑxy $y=−1 · (−ŷ dz dx) ! ! ! ! x=−1 z=−1 ! ! ($ % 1 & '$ B · dl, B · dl1= ! ! 1 $B · dl + −4B · dl + xz3 $$ L2 L3 L1 $ B · dl,1 l+ B · dl + 2 = = − z dz dx = − , $ L2 L3 3B · dl$z=−1 3 φ ) · (r̂ dr + φ̂ x=−1 z=−1 φr d φ + ẑ dz) = r cos φ dr + r sin φ d φ , = (r̂r $cos φ + φ̂φ sin "! 0 #$ #$ + φ̂φ sin φ ) · (r̂ dr +!φ̂φr1 d φ!+1ẑ dz) = r cos φ dr + r!sin φ d φ , "! x=−1 2 $ $ " #$ "! 0 #$ 2 #$ $ $ B ··dl + r sin φ d φ $$ $Ffront = x̂xz − ŷyz$ − ẑxy x=1 (x̂= dz dy) r cos φ dr $ L1 r=0 φ =0 y=−1 z=−1 cos φ dr $$ + r sin φ d φ $$ φ =0, z=0 z=0 ($1 % &$2 % φ =0 φ =0, z=0! z=0 '$ & ! 1 $ 1 r2 $ + 0 = 2, 1 1 = yz2 $$ $ 2 r=0 0, = z dz dy = $ "! = #$ #$ "! π + 0 = 2, ! $ 2 =0 $ $ 2 z=−1 z=−1 $y=−1 #$ #$ "!y=−1 $ π r sin φ d φ $$ B · dl = r cos φ dr $ + $ $ L2 r=2 φ =0 r sin φ d φ $$ cos φ dr $$ + z=0 r=2, z=0 φ =0 π z=0 r=2, z=0 = 0 + (−2 cos φ )|φ =0 = 4, #$ "! 0 "! π #$ cos φ )|πφ =0 = 4, ! $ $ #$ "! π #$ B · dl = r cos φ dr $$ + r sin φ d φ $$ $ $ L3 r=2 φ =π φ =π ,z=0 z=0 cos φ dr $$ + r sin φ d φ $$ % &$ = π φ φ =π ,z=0 z=0 1 2 $0 = − 2 r r=2 + 0 = 2, $0 ! $ + 0 = 2, r=2 B · dl = 2 + 4 + 2 = 8. 2 = 8. z=−1 e P3.52: Contour pathsx=−1 for (a) Problem 3.52 and % & ! 1 1 (b) Problem! 3.53. y=1 ♥ ♥
© Copyright 2024 Paperzz