June 2006 6665 Core Mathematics C3 Mark Scheme Question number 1. (a) Scheme 3x 2x 1 , x 1x 1 Marks 3x 2 x 1 M1B1, A1 (3) Notes M1 attempt to factorise numerator, usual rules B1 factorising denominator seen anywhere in (a), A1 given answer If factorisation of denom. not seen, correct answer implies B1 Expressing over common denominator (b) 3x 2 1 x3x 2 1 x 1 xx 1 x x 1 (3 x 2 x 2) x ( x 1) ] x( x 2 1) Multiplying out numerator and attempt to factorise 3x 2 2 x 1 3x 1 x 1 3x 1 Answer: x M1 [Or “Otherwise” : M1 A1 (3) Total 6 marks 2. (a) dy 1 3 e3x dx x B1M1A1 (3) Notes B1 3e3 x M1 : (b) a bx A1: 3 e 3 x 1 x 5 x 1 2 2 1 3 2 2 5 x . 2x 2 B1 = 3x 5 x 1 2 2 M1 for M1 A1 (3) kx(5 x ) 2 m Total 6 marks Question Number 3. (a) Scheme Marks Mod graph, reflect for y < 0 M1 (0, 2), (3, 0) or marked on axes A1 Correct shape, including cusp A1 Attempt at reflection in y = x M1 Curvature correct A1 –2, 0), (0, 3) or equiv. B1 Attempt at ‘stretches’ M1 (3) (b) (c) (0, –1) or equiv. (1, 0) (3) B1 B1 (3) Total 9 marks Question Scheme Marks (a) 425 ºC B1 (b) 300 400 e - 0.05 t 25 Number 4. 400 e - 0.05 t 275 sub. T = 300 and attempt to rearrange to e–0.05t = a, where a Q e0.05t (c) 275 400 M1 A1 M1 correct application of logs M1 t = 7.49 A1 dT 20 e - 0.05 dt ( M1 for k e - 0.05 t ) t At t = 50, rate of decrease = ( ) 1.64 ºC/min (d) T > 25, (1) (since e - 0.05 t 0 as t ) (4) M1 A1 A1 (3) B1 (1) Total 9 marks Question Number 5. (a) Scheme Using product rule: dy 2 tan 2 x 2(2 x 1) sec 2 2 x dx sin 2 x 1 " and “ sec 2 x " cos 2 x cos 2 x sin 2 x 1 2(2 x 1) ] [ 2 cos 2 x cos 2 2 x dy = 0 and multiplying through to eliminate fractions Setting dx [ 2 sin 2 x cos 2 x 2(2 x 1) = 0] Use of “tan 2x = Completion: producing 4k sin 4k 2 0 with no wrong working seen and at least previous line seen. AG (b) x1 0.2670, x 2 0.2809, x3 0.2746, x 4 0.2774, Note: M1 for first correct application, first A1 for two correct, second A1 for all four correct Max –1 deduction, if ALL correct to > 4 d.p. M1 A0 A1 SC: degree mode: M1 x1 0.4948 , A1 for x 2 = 0 .4914, then A0; max 2 (c) Choose suitable interval for k: e.g. [0.2765, 0.2775] and evaluate f(x) at these values Show that 4k sin 4k 2 changes sign and deduction Marks M1 A1 A1 M1 M1 A1* (6) M1 A1 A1 (3) M1 A1 (2) [f(0.2765) = –0.000087.., f(0.2775) = +0.0057] Note: Continued iteration: (no marks in degree mode) Some evidence of further iterations leading to 0.2765 or better M1; Deduction A1 (11 marks) Question Number 6. (a) Scheme Marks Dividing sin 2 cos 2 1 by sin 2 to give sin 2 cos 2 1 2 2 sin sin sin 2 Completion: 1 cot 2 cos ec 2 cos ec 2 cot 2 1 AG (b) cos ec 4 cot 4 cos ec 2 cot 2 cos ec 2 cot 2 cos ec 2 cot 2 using (a) AG Notes: (i) Using LHS = (1 + cot2 )2 – cot4 , using (a) & elim. cot4 M1, conclusion {using (a) again} A1* (ii) Conversion to sines and cosines: needs (1 cos 2 )(1 cos 2 ) for M1 sin 4 cos ec 2 cot 2 2 cot (c) Using (b) to form 1 cot 2 cot 2 2 cot Solving: 135 º M1 A1* (2) M1 A1 1cot 1 0 1 cot 2 (2) {using (a)} 1 0 2 cot A1* M1 Forming quadratic in cot 2 cot 2 cot M1 or to cot = cot 1 (or correct value(s) for candidate dep. on 3Ms) M1 A1 A1 (6) Note: Ignore solutions outside range Extra “solutions” in range loses A1√, but candidate may possibly have more than one “correct” solution. (10 marks) Question Number Scheme Marks Log graph: Shape 7. (a) Intersection with –ve xaxis (0, ln k), (1 – k, 0) Mod graph :V shape, vertex on +ve x-axis (b) f(x) R , (d) dB1 B1 B1 k (0, k) and , 0 2 – f ( x) , – y B1 (5) B1 (1) k f | | 2 M1 2k k (c) fg = ln{k + | k |} or 4 4 = ln ( B1 3k ) 2 A1 dy 1 dx x k Equating (with x = 3) to grad. of line; (2) B1 1 2 3 k 9 k = 1½ M1; A1 A1 (4) (12 marks) Question Number 8. (a) Scheme Marks Method for finding sin A M1 7 4 sin A = – A1 A1 7 , exact. 4 Second A1 for sign (even if dec. answer given) Use of sin 2 A 2 sin A cos A Note: First A1 for sin 2 A Note: (b)(i) 3 7 or equivalent exact 8 f.t. A1 cos 2x cos 3 (5) Requires exact value, dependent on 2nd M − sin 2x sin + cos 2 x + cos 2 x ≡ cos 2x cos 3 3 3 3 M1 + sin 2x sin M1 3 2 cos 2 x cos 3 A1 [This can be just written down (using factor formulae) for M1A1] cos 2 x AG Note: M1A1 earned, if 2 cos 2 x cos A1* 3 just written down, using factor theorem Final A1* requires some working after first result. (b)(ii) dy 6 sin x cos x 2 sin 2 x dx or (3) B1 B1 6 sin x cos x 2 sin 2 x 2 sin 2 x 3 3 = 3 sin 2 x 2 sin 2 x = sin 2x AG M1 A1* (4) Note: First B1 for 6 sin x cos x ; second B1 for remaining term(s) (12 marks)
© Copyright 2025 Paperzz