Sine & Cosine Differentiation Exercises-1 Sa Sine & Cosine Differentiation — Exercise Set I. sk DEO PAT- ET RIÆ atc h sis iversitas Un e w ane n 2002 Doug MacLean Find the derivative f (x) for the following functions, and express the subsets of [0, 2π ] on which f (x) > 0 using Interval Notation. Try to produce a rough sketch of the graph of f . (I.1) (I.2) (I.3) (I.4) (I.5) (I.6) (I.7) (I.8) (I.9) (I.10) f (x) = 2 sin x cos x f (x) = sin 4x 2 + cos 4x f (x) = sin3 x cos2 x f (x) = sin x + sin x cos x Solution Solution Solution Solution f (x) = 2 cos x + cos 2x Solution f (x) = 2 sin x + sin 2x Solution f (x) = sin2 x + cos x Solution f (x) = sin x + cos2 x Solution f (x) = sin 2x cos 3x Solution f (x) = sin 2x sin 3x Solution Sine & Cosine Differentiation Exercises-2 Sa Sine & Cosine Differentiation — Exercise Set II. sk DEO PAT- ET RIÆ atc h sis iversitas Un e w ane n 2002 Doug MacLean Find the derivative f (x) for the following functions, and express the subsets of [0, 2π ] on which f (x) > 0 using Interval Notation. Try to produce a rough sketch of the graph of f . (II.1) (II.2) (II.3) (II.4) (II.5) (II.6) (II.7) (II.8) (II.9) (II.10) f (x) = 3 sin(5x) f (x) = 7 cos(3x − 2) f (x) = sin √ x Solution Solution Solution f (x) = cos 2(2x − 1)2 Solution f (x) = cos3 x − sin3 x Solution f (x) = x 3 cos(2x) − x 2 sin(3x) f (x) = sin2 x cos x 1 f (x) = x sin x 1 f (x) = x 2 sin x 1 3 f (x) = x sin x Solution Solution Solution Solution Solution Sine & Cosine Differentiation Exercises-3 Sa Sine & Cosine Differentiation — Exercise Set III. sk DEO PAT- ET RIÆ atc h sis iversitas Un e w ane n 2002 Doug MacLean Find the derivative f (x) for the following functions, and express the subsets of [0, 2π ] on which f (x) > 0 using Interval Notation. (III.1) (III.2) (III.3) (III.4) (III.5) (III.6) (III.7) (III.8) (III.9) (III.10) f (x) = x sin x Solution f (x) = sin2 x Solution f (x) = sin3 x Solution f (x) = sin4 x Solution f (x) = sin5 x Solution f (x) = 1 − cos x 1 + cos x Solution f (x) = 1 + cos x 1 − cos x Solution f (x) = 1 − sin x 1 + sin x Solution f (x) = 1 + sin x 1 − sin x Solution f (x) = sin x 1 − sin x Solution Sine & Cosine Differentiation Exercises-4 Sa Solution Set I sk f (x) = 2 sin x cos x Solution: f (x) = 2(sin x) (cos x) + 2(sin x)(cos x) = 2(cos x)(cos x) + 2(sin x)(− sin x) = 3π 5π 7π π 2 2 ∪ , ∪ , 2π . The graph of y = f (x) is 2(cos x − sin x) = 2 cos 2x > 0 on the set 0, 4 4 4 4 shown in red , and the graph of y = f (x) is shown in blue . y 2 1 0 -1 -2 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean Back to Questions (I.1) DEO sis iversitas Un π/2 π 3π/2 2π x Sine & Cosine Differentiation Exercises-5 Solution: Sa (I.2) sin 4x f (x) = 2 + cos 4x sk Back to Questions (sin 4x) (2 + cos 4x) − (sin 4x)(2 + cos 4x) cos 4x)(4x) (2 + cos 4x) − (sin 4x)(− sin 4x)(4x) = = (2 + cos 4x)2 (2 + cos 4x)2 cos 4x(4)(2 + cos 4x) − (sin 4x)(− sin 4x)(4) 2 cos 4x + cos2 4x + sin2 4x 2 cos 4x + 1 = 4 = 4 > 0 if (2 + cos 4x)2 (2 + cos 4x)2 (2 + cos 4x)2 π 2π 5π 7π 4π 5π 11π 1 π ∪ , ∪ , ∪ , ∪ , 2π . The graph cos 4x > − , so f (x) > 0 on the set 0, 2 6 3 3 6 6 3 3 6 of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . y 1 -1 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean f (x) = 0 DEO sis iversitas Un π/2 π 3π/2 2π x Sine & Cosine Differentiation Exercises-6 Sa (I.3) sk f (x) = sin3 x cos2 x Solution: Back to Questions The graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . y 2 1 π/2 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean f (x) = (sin3 x) cos2 x + sin3 x(cos2 x) = 3 sin2 x(sin x) cos2 x + sin3 x(2(cos x)(cos x) ) = 3 sin2 x(cos x) cos2 x + sin3 x(2(cos x)(− sin x)) = 3 sin2 x cos3 x − 2 sin4 x cos x = sin2 x cos x(3 cos2 x − 2 sin2 x) = sin2 x cos x(5 cos2 x − 2). 0 DEO sis iversitas Un π 3π/2 2π x Sine & Cosine Differentiation Exercises-7 Sa (I.4) sk f (x) = sin x + sin x cos x Solution: Back to Questions The graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . y 2 1 -1 π/2 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean f (x) = (sin x) + (sin x) cos x + sin x(cos x) = cos x + cos x cos x + sin x(− sin x) = cos x + cos2 x − sin2 x = √ 2 − 4(2)(−1) −1 ± −1 ± 3 1 1 9 −1 ± cos x + 2 cos2 x − 1 = 2 cos2 x + cos x − 1 = 0 if cos x = = = = −1, , 2(2) 4 4 2 π 5π i.e. x = π or x = 3 or x = 3 . 5π π ∪ , 2π . The set on which f (x) > 0 is 0, 3 3 0 DEO sis iversitas Un π 3π/2 2π x Sine & Cosine Differentiation Exercises-8 Sa (I.5) sk f (x) = 2 cos x + cos 2x Solution: Back to Questions 5π π f (x) => 0 on the set 0, ∪ , 2π . The graph of y = f (x) is shown in red , and the graph of 3 3 y = f (x) is shown in blue . y 2 1 0 -1 π/2 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean DEO sis iversitas Un π 3π/2 2π x Sine & Cosine Differentiation Exercises-9 Sa (I.6) sk f (x) = 2 sin x + sin 2x Solution: Back to Questions The graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . y 4 3 2 1 -1 -2 -3 π/2 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean f (x) = 2 cos x + cos 2x(2x) = 2 cos x + cos 2x = 2 cos x + 2(2 cos2 x − 1) = 2x(2) = 2 cos x + 2 cos √ −1 ± 9 −1 ± 3 1 −1 ± 12 − 4(2)(−1) 2(2 cos2 x + cos x − 1) = 0 if cos x = = = = −1, . 2(2) 4 4 2 5π π ∪ , 2π . f (x) => 0 on the set 0, 3 3 0 DEO sis iversitas Un π 3π/2 2π x Sine & Cosine Differentiation Exercises-10 Sa (I.7) sk f (x) = sin2 x + cos x Solution: Back to Questions The graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . y 2 1 -1 -2 π/2 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean f (x) = (sin2 ) x + (cos x) = 2 sin x(sin x) − sin x = 2 sin x cos x − sin x = sin x(2 cos x − 1) = 0 if sin x = 0 5π π 1 π 5π or cos x = 2 , i.e., if x = 0, π , 2π , x = 3 or x = 3 so f (x) > 0 on the set 0, ∪ , 2π . 3 3 0 DEO sis iversitas Un π 3π/2 2π x Sine & Cosine Differentiation Exercises-11 Sa (I.8) sk f (x) = sin x + cos2 x Solution: Back to Questions The graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . y 2 1 -1 -2 π/2 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean f (x) = (sin x) + (cos2 x) = cos x + 2(cos x)(cos x) = cos x + 2(cos x)(− sin x) = cos x(1 − 2 sin x) = 0 if 1 π 3π π 5π cos x = 0 or sin x = , i.e., if x = , x = , x = , or x = so f (x) > 0 on the set 2 2 2 6 6 5π 7π 3π π ∪ , ∪ , 2π . . 0, 6 6 6 2 0 DEO sis iversitas Un π 3π/2 2π x Sine & Cosine Differentiation Exercises-12 Sa (I.9) sk f (x) = sin 2x cos 3x Solution: Back to Questions The graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . y 3 2 1 -1 -2 -3 π/2 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean f (x) = (sin 2x) cos 3x + sin 2x(cos 3x) = cos 2x(2x) cos 3x + sin 2x(− sin 3x)(3x) = cos 2x(2) cos 3x + sin 2x(− sin 3x)(3) = 2 cos 2x cos 3x − 3 sin 2x sin 3x. 0 DEO sis iversitas Un π 3π/2 2π x Sine & Cosine Differentiation Exercises-13 Solution: Sa (I.10) sk f (x) = sin 2x sin 3x Back to Questions The graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . y 3 2 1 -1 -2 -3 π/2 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean f (x) = (sin 2x) sin 3x + sin 2x(sin 3x) = (cos 2x)(2x) sin 3x + sin 2x(cos 3x)(3x) = cos 2x(2) sin 3x + sin 2x(cos 3x)(3) = 2 cos 2x sin 3x + 3 sin 2x(cos 3x). 0 DEO sis iversitas Un π 3π/2 2π x Sine & Cosine Differentiation Exercises-14 Sa Solution Set II sk DEO PAT- ET RIÆ atc h sis iversitas Un e w ane n 2002 Doug MacLean (II.1) f (x) = 3 sin(5x) Solution: Back to Questions f (x) = 3 cos(5x)(5x) = 15 cos(5x) > 0. Now cos x > 0 if 0 < x < π 2 or 3π < x < 2π , and cos 5x , depicted 2 2π in red below, has period , so f (x) > 0 on the set. 5 3π 5π 7π 9π 11π 5π 15π 17π 19π π ∪ , ∪ , ∪ , ∪ , ∪ , 2π . The graph of y = f (x) is 0, 10 10 10 10 10 10 13 10 10 10 shown in blue . y 3 2 1 0 -1 -2 -3 π/2 π 3π/2 2π x Sine & Cosine Differentiation Exercises-15 Sa (II.2) sk f (x) = 7 cos(3x − 2) Solution: Back to Questions 1 21 f (x) is shown in red , and the graph of y = f (x) is shown in blue . y 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 π/2 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean f (x) = 7(− sin(3x − 2))(3x − 2) = −21 sin(3x − 2) > 0 − sin(3x − 2) , depicted in red below, has 2π 2 4π 2 π 2 2π 2 2 5π 2 period , so f (x) > 0 on the set. 0, ∪ + , + ∪ + π, + ∪ + , 2π . The 3 3 3 3 3 3 3 3 3 3 3 graph of y = DEO sis iversitas Un π 3π/2 2π x Sine & Cosine Differentiation Exercises-16 Solution: Sa (II.3) √ f (x) = sin x sk Back to Questions √ √ √ π cos ( x) √ > 0 on the set 0, . x = f (x) = cos x 2 x 2 The graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . y 1 -1 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean 0 DEO sis iversitas Un π/2 π 3π/2 2π x Sine & Cosine Differentiation Exercises-17 Sa (II.4) sk f (x) = cos 2(2x − 1)2 Solution: Back to Questions y 12 10 8 6 4 2 -2 -4 -6 -8 -10 -12 π/2 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean f (x) = − sin 2(2x − 1)2 2(2x − 1)2 = −8(2x − 1) sin 2(2x − 1)2 . It is not easy to explicitly describe the set 1 on which f (x) > 0, but we can find the roots of f (x): f (x) = 0 if x = , or if 2(2x − 1)2 = kπ for any 2 π 1 positive integer k, or, equivalently, x = + k . The graph of y = f (x) is shown in red , and the graph of 2 8 y = f (x) is shown in blue . The figure below shows the complications we will encounter with this function: 0 DEO sis iversitas Un π 3π/2 2π x Sine & Cosine Differentiation Exercises-18 Sa (II.5) sk f (x) = cos3 x − sin3 x Solution: Back to Questions y 2 1 -1 -2 π/2 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean f (x) = 3(cos x)2 (− sin x) − 3(sin x)2 (cos x) = −3 sin x cos2 x − 3 sin2 x cos x = 3 3π 7π π 3π −3 sin x cos x(cos x + sin x) = − sin 2x(cos x + sin x) > 0 on the set , ∪ π, ∪ 2π . The 2 2 4 4 4 graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . 0 DEO sis iversitas Un π 3π/2 2π x Sine & Cosine Differentiation Exercises-19 Sa (II.6) sk f (x) = x 3 cos(2x) − x 2 sin(3x) Solution: Back to Questions y 250 200 150 100 50 -50 -100 π/2 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean f (x) = (x 3 ) cos(2x) + x 3 (cos(2x)) − [(x 2 ) sin(3x) + x 2 (sin(3x)) ] = 3x 2 cos(2x) + x 3 (− sin(2x)(2x) ) − [2x sin(3x) + x 2 (cos(3x)(3x) )] = 3x 2 cos(2x) − x 3 sin(2x)(2) − [2x sin(3x) + x 2 cos(3x)(3)] = 3x 2 cos(2x) − 2x 3 sin(2x) − 2x sin(3x) − 3x 2 cos(3x). The graph of y = f (x) is shown in blue . It is not easy to find the roots of either f (x) or f (x). 0 DEO sis iversitas Un π 3π/2 2π x Sine & Cosine Differentiation Exercises-20 Sa (II.7) sk f (x) = sin2 x cos x Solution: Back to Questions sin x(3 cos2 x − 1) = 0 and sin x = 0 if x = 0, π , 2π and 3 cos2 x − 1 = 0 is cos x = ± 13 on the set . The graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . y 1 -1 π/2 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean f (x) = (sin2 x) cos x + sin2 x(cos x) = (2 sin x cos x) cos x + sin2 x(− sin x) = 2 sin x cos2 x − sin3 x = sin x(2 cos2 x − sin2 x) = 0 DEO sis iversitas Un π 3π/2 2π x Sine & Cosine Differentiation Exercises-21 (II.8) 1 f (x) = x sin x Solution: Sa sk Back to Questions The graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . y 1 0 -1 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean 1 1 + x sin = f (x) = (x) sin x x 1 1 1 + x cos = sin x x x 1 1 −1 sin + x cos = 2 x x x 1 1 1 sin − cos . x x x DEO sis iversitas Un π/2 π 3π/2 2π x Sine & Cosine Differentiation Exercises-22 1 f (x) = x 2 sin x Solution: Sa (II.9) sk 2 Back to Questions The graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . y 5 4 3 2 1 0 -1 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean 1 1 2 + x sin = f (x) = (x ) sin x x 1 1 1 + x 2 cos = 2x sin x x x 1 −1 1 2x sin + x 2 cos = x2 x x 1 1 2x sin − cos . x x DEO sis iversitas Un π/2 π 3π/2 2π x Sine & Cosine Differentiation Exercises-23 Solution: 1 f (x) = x 3 sin x Sa (II.10) sk 3 Back to Questions The graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . y 2 1 0 -1 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean 1 1 3 + x sin = f (x) = (x ) sin x x 1 1 1 + x 3 cos = 3x 2 sin x x x −1 1 1 3x 2 sin + x 3 cos = x2 x x 1 1 3x 2 sin − x cos . x x DEO sis iversitas Un π/2 x Sine & Cosine Differentiation Exercises-24 Sa Solution Set III sk DEO PAT- ET RIÆ atc h sis iversitas Un e w ane n 2002 Doug MacLean (III.1) Solution: f (x) = x sin x Back to Questions f (x) = (x) sin x + x(sin x) = sin x + x cos x The graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . y 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 π/2 π 3π/2 2π x Sine & Cosine Differentiation Exercises-25 Solution: Sa (III.2) sk f (x) = sin2 x Back to Questions f (x) = 2 sin x cos x = sin 2x > 0 on the set π 0, 2 3π ∪ π, 2 The graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . y 1 -1 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean 0 DEO sis iversitas Un π/2 π 3π/2 2π x Sine & Cosine Differentiation Exercises-26 f (x) = sin3 x Solution: Sa (III.3) sk Back to Questions f (x) = 3 sin x cos x > 0 on the set π 0, 2 3π ∪ , 2π 2 The graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . y 1 -1 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean 2 0 DEO sis iversitas Un π/2 π 3π/2 2π x Sine & Cosine Differentiation Exercises-27 f (x) = sin4 x Solution: Sa (III.4) sk 3 Back to Questions 2 π 0, 2 3π ∪ π, 2 The graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . y 1 -1 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean f (x) = 4 sin x cos x = 2 sin x sin 2x > 0 on the set 0 DEO sis iversitas Un π/2 π 3π/2 2π x Sine & Cosine Differentiation Exercises-28 Sa (III.5) sk f (x) = sin5 x Solution: Back to Questions 4 f (x) = 5 sin x cos x > 0 on the set π 0, 2 3π ∪ , 2π 2 The graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . y 1 0 -1 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean DEO sis iversitas Un π/2 π 3π/2 2π x Sine & Cosine Differentiation Exercises-29 Solution: Sa (III.6) 1 − cos x f (x) = 1 + cos x sk Back to Questions (1 − cos x) (1 + cos x) − (1 − cos x)(1 + cos x) = (1 + cos x)2 sin x(1 + cos x) − (1 − cos x)(− sin x) = (1 + cos x)2 1 + cos x + 1 − cos x sin x = (1 + cos x)2 2 sin x > 0 on the interval (0, π ) (1 + cos x)2 The graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . π/2 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean f (x) = y 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 DEO sis iversitas Un π 3π/2 2π x Sine & Cosine Differentiation Exercises-30 Solution: Sa (III.7) 1 + cos x f (x) = 1 − cos x sk Back to Questions (1 + cos x) (1 − cos x) − (1 + cos x)(1 − cos x) = (1 − cos x)2 − sin x(1 − cos x) − (1 + cos x)(−(− sin x)) = (1 − cos x)2 −(1 − cos x) − (1 + cos x) sin x = (1 − cos x)2 −2 sin x > 0 on the set (π , 2π ) ∪ (1 − cos x)2 The graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . π/2 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean f (x) = y 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 DEO sis iversitas Un π 3π/2 2π x Sine & Cosine Differentiation Exercises-31 Solution: Sa (III.8) 1 − sin x f (x) = 1 + sin x sk Back to Questions (1 − sin x) (1 + sin x) − (1 − sin x)(1 + sin x) = (1 + sin x)2 (− cos x)(1 + sin x) − (1 − sin x)(cos x) = (1 + sin x)2 −(1 + sin x) − (1 − sin x) cos x = (1 + sin x)2 −2 cos x π 3π , > 0 on the set (1 + sin x)2 2 2 The graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . π/2 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean f (x) = y 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 DEO sis iversitas Un π 3π/2 2π x Sine & Cosine Differentiation Exercises-32 Solution: Sa (III.9) 1 + sin x f (x) = 1 − sin x sk Back to Questions (1 + sin x) (1 − sin x) − (1 + sin x)(1 − sin x) = (1 − sin x)2 (cos x)(1 − sin x) − (1 + sin x)(−(cos x)) = (1 − sin x)2 (1 − sin x) + (1 + sin x) cos x = (1 − sin x)2 3π 2 cos x π ∪ , 2π > 0 on the set 0, (1 − sin x)2 2 2 The graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . π/2 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean f (x) = y 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 DEO sis iversitas Un π 3π/2 2π x Sine & Cosine Differentiation Exercises-33 Solution: Back to Questions Sa (III.10) sin x f (x) = 1 − sin x sk (sin x) (1 − sin x) − (sin x)(1 − sin x) = (1 − sin x)2 (cos x)(1 − sin x) − (sin x)(− cos x) = (1 − sin x)2 1 − sin x + sin x cos x = (1 − sin x)2 cos x 3π π ∪ , 2π > 0 on the set 0, (1 − sin x)2 2 2 The graph of y = f (x) is shown in red , and the graph of y = f (x) is shown in blue . π/2 PAT- ET RIÆ atc h e w ane n 2002 Doug MacLean f (x) = y 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 DEO sis iversitas Un π 3π/2 2π x
© Copyright 2024 Paperzz