arXiv:0809.4687v1 [hep-ph] 26 Sep 2008 ZU-TH 16/08 Two-Loop QCD Corrections to the Heavy-to-Light Quark Decay R. Bonciani a,∗ and A. Ferroglia a,† a Institut für Theoretische Physik, Universität Zürich, CH-8057 Zurich, Switzerland Abstract: We present an analytic expression for the two-loop QCD corrections to the decay process b → u W ∗ , where b and u are a massive and massless quark, respectively, while W ∗ is an off-shell charged weak boson. Since the W -boson can subsequently decay in a lepton anti-neutrino pair, the results of this paper are a first step towards a fully analytic computation of differential distributions for the semileptonic decay of a b-quark. The latter partonic process plays a crucial role in the study of inclusive semileptonic charmless decays of B-mesons. The three independent form factors characterizing the bW u vertex are provided in form of a Laurent series in (d − 4), where d is the space-time dimension. The coefficients in the series are expressed in terms of Harmonic Polylogarithms of maximal weight 4, and are functions of the invariant mass of the leptonic decay products of the W -boson. Keywords: Heavy Quark Decay, Two-Loop Calculations. ∗ † Email: [email protected] Email: [email protected] Contents 1. Introduction 1 2. Feynman Diagrams and Form Factors 3 3. UV Renormalization 5 4. One-Loop Form Factors 7 5. Two-Loop Form Factors 8 6. Ward Identities 14 7. Conclusions 17 A. The Master Integrals 17 1. Introduction The measurements of inclusive semileptonic B meson decays, such as B → Xu l ν and B → Xc l ν, allow a precise determination of the CKM matrix elements |Vub | and |Vcb |. The latter are relevant for the study of flavor and CP violation in the quark sector (for a recent review see [1]). Total decay rates of the B meson are described by a local Operator Product Expansion (OPE) in inverse powers of the b-quark mass mb . To leading order in 1/mb , the total B meson decay rate is equivalent to the decay rate of an on-shell b quark, which can be calculated in perturbation theory [2]. Many authors contributed to the calculation of the radiative corrections to the total decay rate of b → u l ν and b → c l ν, at O(αS ) [3, 4] and O(α2S ) [5–11]. However, experimental collaborations need to impose cuts (also severe) on the kinematic variables. For instance, in charmless semileptonic decays, the need to suppress the charm background (which is ∼ 50 times larger than the signal) forces one to restrict the measurements to the “shape-function region”, in which the hadronic final state has large energy (EX ∼ mb ), but only moderate invariant mass (∼ mb ΛQCD ). It is therefore of great interest to consider differential decay distributions, from which it is possible to derive predictions for partial decay rates with arbitrary cuts. In this context, a first important set of results was obtained in [12], where it is possible to find analytic expressions for the NLO triple-differential distribution of the semileptonic B → Xu l ν decay together with several double and single differential distributions for the same process. The resummation of threshold logarithms to next-to-leading approximation in the b → u –1– transition was considered in [13]. Higher order contributions to B → Xu l ν decays were considered in [14–17] and, very recently, the full NNLO QCD corrections to the partonic process b → c l ν were obtained in [18]. Since the OPE applies only to sufficiently inclusive quantities, different frameworks were developed in order to account for effects due to cuts on the kinematic space [19–22]. In particular, in the shape-function region, Soft Collinear Effective Theory (SCET) provides an appropriate framework for the evaluation of the triple-differential distribution of the inclusive semileptonic decay B → Xu l ν. The NLO analysis of the latter process within the SCET approach is presented in [19,20]. At NNLO, the situation is more complicated, but the jet and soft functions are known to O(α2S ) in perturbation theory [23, 24]. The only missing piece is the hard function, which can be obtained from the two-loop QCD corrections to the decay of a b-quark into a u-quark and an off-shell W -boson [25]. On the other hand, these virtual corrections can be considered as a first step towards an exact evaluation of the NNLO QCD corrections to the heavy-tolight quark transition. To complete the latter calculation, it is also necessary to take into account the real emission. In this work we focus on the calculation of the two-loop QCD corrections to the decay process b → u W ∗ . We provide an analytic expression for the three independent vertex form factors characterizing the coupling of the quark current with the charged weak boson. These form factors are evaluated by employing a set of techniques which are by now standard in multiloop calculations (see for instance [26]). We generate the relevant Feynman diagrams with QGRAF [27]. The form factors are extracted directly from the Feynman diagrams by means of projector operators. The whole calculation is carried out in Dimensional Regularization (DR); UV and IR (soft and collinear) divergencies appear as poles in (d−4), where d is the space-time dimension. Since we work in DR, a prescription for handling the matrix γ5 in d-dimensions must be chosen. We employed a γ5 which anticommutes with γµ in d-dimensions. This prescription is appropriate for the case under study, since it is known that the diagrams that we consider fulfill a canonical (non-anomalous) Ward identity. After applying the projectors, the contribution of individual Feynman diagrams to the form factors is given by a combination of dimensionally regularized scalar integrals. These integrals are related to a small set of master integrals (MIs) by means of the Laporta algorithm [28]. The MIs are evaluated by employing the Differential Equations method [29] and they are expressed as Laurent series in (d − 4). The coefficients of the series are given in terms of Harmonic Polylogarithms (HPLs) [30] of a single dimensionless variable y = q 2 /m2b = −Ml2 /m2b , where q 2 is the squared momentum carried by the W -boson and Ml is the lepton pair invariant mass. Since y is negative in the physical region (−1 ≤ y ≤ 0) we perform an analytic continuation y → −x − i0+ , where now x = Ml2 /m2b , 0 ≤ x ≤ 1. The analytic continuation is indeed completely trivial, since all the HPLs appearing in the result are real for −1 ≤ y ≤ 0. The form factors found with the above procedure still contain UV and IR divergencies. It is possible to get rid of the UV divergencies by means of the renormalization procedure. We renormalize the form factors in a mixed scheme: the heavy- and light-quark wave functions and the heavy-quark mass are renormalized in the on-shell (OS ) scheme, while the strong coupling constant is renormalized in MS scheme. The results shown in this paper contain IR divergencies. In order to cancel them, –2– it is necessary to combine these results with the appropriate jet and soft functions [19]. Analogously, one can add the exact real emission and consider physical observables which are sufficiently inclusive with respect to the hard and soft radiation. The paper is structured as follows. In section 2, we introduce the Feynman diagrams involved in the calculation and we discuss their structure in terms of form factors. In section 3, it is possible to find the details of the UV renormalization procedure. In sections 4 and 5, we collect the analytic expressions of the UV renormalized one- and two-loop QCD corrections to the form factors, respectively. The expressions of the bare form factors as well as the contributions of the individual diagrams to the form factors can be found in [31]. In section 6, we discuss the Ward identity relevant for the b → u W ∗ decay and we prove that our form factors satisfy it. We also provide the analytic expression of the oneand two-loop QCD corrections to the scalar vertex in which the pseudo-Goldstone boson couples to the quarks, since it enters in the Ward identity fulfilled by the bW u vertex. Our conclusions can be found in section 7. Finally, in appendix A we collect the set of MIs employed in the calculation. 2. Feynman Diagrams and Form Factors We consider the decay process b → u W ∗ → u l ν̄l . The bottom quark of mass mb carries a momentum P and decays in an up-quark (considered as massless) which carries momentum p and a W -boson of momentum q = P −p. Subsequently, the W -boson decays in the pair lν̄l of squared invariant mass Ml2 = −q 2 . The mass-shell conditions are such that P 2 = −m2b and p2 = 0. The Feynman diagrams contributing to the two-loop QCD corrections to the decay process b → u W ∗ are shown in Fig. 1. The most general vertex correction in the Standard Model can be described in terms of six form factors Fi and Gi (i = 1, 2, 3): V µ (P, p) = F1 (q 2 )γ µ + + 1 i i F2 (q 2 )σ µν qν + F3 (q 2 )q µ + G1 (q 2 )γ µ γ5 + G2 (q 2 )γ5 q µ 2mb 2mb 2mb i G3 (q 2 )γ5 q̃ µ , 2mb (2.1) where q̃µ = Pµ + pµ . The spinors u(p) and u(P ), multiplying Eq. (2.1) from left and right, respectively, are not written down explicitly. We define σ µν = −i/2[γ µ , γ ν ]. Since the u-quark is taken as massless, only three of the above form factors are independent. By replacing u(p) [γ µ , γ ν ] u(P )qν = 2imb u(p)γ µ u(P ) − 2q̃ µ u(p)u(P ) , (2.2) in Eq. (2.1), we find the following relations among the form factors in Eq. (2.1): F2 = −G3 , F3 = −G2 , 1 F1 + F2 = G1 . 2 (2.3) Consequently, using the definitions PL = (1 + γ5 )/2 and PR = (1 − γ5 )/2, we can rewrite the vertex structure as follows: V µ (P, p) = 2G1 (q 2 )γ µ PL − i i G2 (q 2 )PR q µ − G3 (q 2 )PR q̃ µ . mb mb –3– (2.4) q p P (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) Figure 1: Feynman Diagrams for the Two-loop QCD corrections to the b → u W ∗ decay process. The form factors are expanded in powers of αs : 3 α 2 α igw αs (1l) s (2l) (0l) s Gi = √ Vub Gi + Gi + Gi + O . π π π3 2 2 (2.5) (2l) The purpose of the present work is to evaluate Gi where i = 1, 2, 3. Vub represents the CKM matrix element and gw the weak interaction coupling constant. With the normalization chosen in Eq. (2.5), one finds (0l) G1 = 1, and (0l) G2 (0l) = G3 = 0. (2.6) The contribution of the virtual two-loop corrections to the hadronic tensor of [12] can be obtained by meas of the following translation rules: 2 (2l,vir.) (2l) (1l) 2 = 2 2G1 + G1 W1 , (2.7) mb 1 − x (1l) (1l) 2 (2l,vir.) G2 + G3 , (2.8) W3 = 4mb 1−x 1 (1l) 2 (2l,vir.) (1l) 2 (2l) (2l) (1l) (1l) (1l) G3 W4 = 2 G3 + G2 + G1 G3 + G2 − G2 ,(2.9) + 4 mb –4– (2l,vir.) W5 = 1−x 2 (2l) (2l) (1l) (1l) (1l) (1l) (1l) 2 G − G + G G − G + G − G . (2.10) 3 2 1 3 2 3 2 8 m2b Consequently, the hard functions Hij , as defined in [19], can be extracted using the relation between Eqs. (16) and (17) of the same article. Note that the hadronic form factor W2 does not receive contributions from two-loop virtual corrections. We write our analytic results in terms of the dimensionless variable x=− Ml2 q2 = , m2b m2b 0 ≤ x ≤ 1. (2.11) In writing or results, we employ the Harmonic Polylogarithms as defined in [30]; on top of the canonical weights, we introduce the weights −2 and 2, arising from the integrating factors 1/(x+2) and 1/(2−x), respectively. Actually, only two HPLs containing the weight 2 appear in the final result; they are x = −H(−1, 1 − x) + ln(2) , H(2; x) = − ln 1 − 2 Z x 1 H(2, 1, 1; x) = dt ln2 (1 − t) = 2(2 − t) 0 3 1 = − ln(1 − x)2 ln(2 − x) − ln(1 − x)Li2 (−1 + x) + Li3 (−1 + x) + ζ (3) , 2 4 3 = −H(−1, 0, 0, 1 − x) + ζ(3) . (2.12) 4 For convenience, all the results of the paper, including the renormalized and bare form factors, as well as the contributions of individuals diagrams, are collected in the file SemilepFF.txt [31] included in the arXiv submission of the present work. 3. UV Renormalization The UV renormalization is performed by subtracting the one-loop sub-divergencies and the two-loop over-all divergencies. We renormalize the heavy- and light-quark wave functions and heavy-quark mass in the on-shell (OS ) scheme, while the coupling constant αS is renormalized in the MS scheme. Neglecting for the time being mass renormalization, the bare and renormalized form factors satisfy the relation 1 1 2 2 G = Z2,u Z2,b Gbare (αbare s ), where in the functions G we dropped the subscript i = 1, 2, 3. The perturbative expansion of the various quantities in the equation above is igw G = √ Vub G(0l) + aG(1l) + a2 G(2l) + O a30 , 2 2 igw (1l) (2l) Gbare = √ Vub G(0l) + a0 Gbare + a20 Gbare + O a30 , 2 2 (1l) (2l) Z2,u = 1 + a0 δZ2,u + a20 δZ2,u + O a30 , (2l) (1l) Z2,b = 1 + a0 δZ2,b + a20 δZ2,b + O a30 , a0 = a 1 + aδZα(1l) + a2 δZα(2l) + O a3 , –5– (3.1) (3.2) where we defined αbare αs s , a≡ . π π Therefore, the one-loop renormalized amplitude is given by a0 ≡ (3.3) 1 (1l) (1l) G(1l) = Gbare + δZ2,b G(0l) , 2 (3.4) (1l) where we already took into account the fact that δZ2,u = 0 in the on-shell scheme. The two-loop renormalized amplitude reads instead 1 (2l) 1 (2l) 1 (1l) (1l) 1 (1l) 2 (2l) (2l) G = Gbare + δZ2,b + δZ2,u + δZα δZ2,b − δZ2,b G(0l) 2 2 2 8 1 (1l) (1l) (1l) + δZ2,b + δZα Gbare . (3.5) 2 To account for mass renormalization, it is sufficient to add the contribution of the counter term diagram in Fig. 2 to the r. h. s. of the equation above. The renormalization constants are the following: 1 11 1 (1l) (3.6) − CA + TR (Nl + Nh ) , δZα,MS (d) = −C(d) d−4 6 3 2 (4−d)/2 µ2 CF (d − 1) µ (1l) δmOS d, m, 2 = m C(d) , (3.7) 2 m m 2 (d − 4) (d − 3) 2 (4−d)/2 µ2 (d − 1) µ CF (1l) δZ2,b d, 2 = C(d) , (3.8) 2 m m 2 (d − 4) (d − 3) 2 4−d µ2 µ CF 1 5 (2l) δZ2,u d, 2 = C 2 (d) N − − , (3.9) h m m2 8 2(d − 4) 24 2 4−d µ2 µ CF 1 1 (2l) 2 CF f1 + CA f2 + Nl f3 + Nh f4 ,(3.10) δZ2,b d, 2 = C (d) m m2 2 2 2 where µ is the renormalization scale and the constants f1 , · · · , f4 are [32] 9 433 3 13 51 + − ζ3 − π 2 ln(2) − π 2 + O(d − 4) , − 2 8(d − 4) 32(d − 4) 128 2 16 2 11 101 803 3 π 5 f2 = − + − + ζ3 − ln(2) + π 2 + O(d − 4) , 8(d − 4)2 32(d − 4) 128 4 2 16 59 π 2 9 1 + + + O(d − 4) , − f3 = 2(d − 4)2 8(d − 4) 32 12 1 19 1139 π 2 f4 = − + − + O(d − 4) . (d − 4)2 24(d − 4) 288 3 f1 = (3.11) (3.12) (3.13) (3.14) (3.15) The factor C(d) is C(d) = (4π) (4−d)/2 d Γ 3− 2 . (3.16) After UV renormalization, the vertex form factors still contain poles in 1/(d−4), which are associated to soft and collinear singularities. –6– (1l) − δmOS m Figure 2: Mass-renormalization counter-term. 4. One-Loop Form Factors In this section we collect the analytic expression of the one-loop renormalized form factors defined in Eq. (2.5). In the formulas below, CF = (Nc2 − 1)/2Nc is the Casimir operator of the fundamental representation of SU (Nc ), where Nc is the number of colors (in the SM Nc = 3). (1l) The form factor G1 is given by 2 4−d 1 X 2 µ (1l,i) (1l) G1 (d − 4)i + O (d − 4)2 , (4.1) G1 = C(d) C F 2 m i=−2 where the first four coefficients in the expansion in (d − 4) are (1l,−2) G1 (1l,−1) G1 (1l,0) G1 (1l,1) G1 = −1 , 5 = + H(1; x) , 4 1 3 1 − 3x H(1; x) − H(0, 1; x) − H(1, 1; x) , =− + 2 4x 2 3 1 − 2x 1 − 3x 1 − 3x 1 = − H(1; x) − H(0, 1; x) − H(1, 1; x) + H(0, 0, 1; x) 2 2x 8x 4x 4 1 1 (4.2) + H(0, 1, 1; x) + H(1, 0, 1; x) + H(1, 1, 1; x) . 2 2 (1l) The form factor G2 (1l) G2 is 2 4−d 1 X 2 µ (1l,i) = C(d) C G2 (d − 4)i + O (d − 4)2 , F 2 m (4.3) i=0 with (1l,0) G2 (1l,1) G2 1 2 − 3x − H(1; x) , x 2x2 1 1 − 3x 2 − 3x 2 − 3x =− + H(1; x) + H(0, 1; x) + H(1, 1; x) . 2 2 x 2x 4x 2x2 = (4.4) (1l) Finally, the form factor G3 is 2 4−d 1 X 2 µ (1l,i) (1l) C G2 (d − 4)i + O (d − 4)2 , G3 = C(d) F 2 m i=0 –7– (4.5) where (1l,0) G3 (1l,1) G3 1 H(1; x) , 2x 1 1 1 = H(1; x) + H(1, 1; x) + H(0, 1; x) . x 2x 4x =− (1l) Note that the IR poles of the form factor G1 the O(α2S ) expansion of the form factor (4.6) exponentiate. This means that from (1l) F = exp {G1 } , (4.7) we can predict exactly the 1/(d − 4)4 and 1/(d − 4)3 poles of the CF2 part of the two-loop (2l) form factor G1 (Eqs. (5.3,5.4) below). Moreover, exponentiating also the finite part of (1l) G1 , the double pole of Eq. (5.5) is exactly recovered. 5. Two-Loop Form Factors In this section we collect the analytic expression of the two-loop renormalized form factors defined in Eq. (2.5). In the expressions below, CA is the Casimir operator of the adjoint representation of SU (Nc ), CA = Nc , TR is the normalization factor of the color matrices, TR = 1/2, Nl is the number of massless quarks in the theory, and Nh is the number of quarks of mass mb . Therefore, for the decay b → u W ∗ in the SM, Nl = 4, and Nh = 1. In the finite part of the form factors given below, the constant K is a rational number. Its numerical value is K = 3.32812±0.00002, and its analytical value is likely to be K = 213/64. We observe that the following formulas involve HPLs of argument x and of maximal weight 4. If desired, the HPLs appearing in the equations below can all be rewritten in terms of product of Nielsen Polylogarithms of more complicated argument. Because of the chosen renormalization scheme, our results depend on the renormalization scale µ. In the formulas below, we employ the following notation: 2 µ ≡ Lµ . (5.1) ln m2b (2l) The form factor G1 (2l) G1 2 can be written as = C (d) µ2 m2 4−d CF 0 X i=−4 (2l,i) G1 (d − 4)i + O (d − 4) , (5.2) where the coefficient of the expansion in (d − 4) (up to the finite term) are (2l,−4) G1 (2l,−3) G1 (2l,−2) G1 = CF 1 , 2 (5.3) 11 1 5 (5.4) = CF − − H(1; x) − CA + TR Nl , 4 8 2 49−66Lµ +9ζ(2) 73 1−8x 1 = CF − H(1; x) + H(0, 1; x) + 2H(1, 1; x) + CA 32 4x 2 72 –8– −5 + 6Lµ 1 11 1 H(1; x) + TR Nl − H(1; x) + TR Nh Lµ , (5.5) 12 18 3 3 1 − 8x 3(71 + 8ζ(2) − 16ζ(3)) 13 − 55x = CF − + H(1; x) + H(0, 1; x) 64 16x 8x 1 3 3−14x H(1, 1; x)− H(0, 0, 1; x)− H(0, 1, 1; x)−H(1, 0, 1; x)−4H(1, 1, 1; x) + 4x 4 2 2 1549+1980Lµ −396Lµ +972ζ(2)−1188ζ(3) 67+66Lµ −18ζ(2) +CA + H(1; x) 1728 72 −125 − 180Lµ + 36L2µ − 108ζ(2) 5 + 6Lµ +TR Nl − H(1; x) 432 18 −5Lµ + L2µ − ζ(2) Lµ +TR Nh − H(1; x) , 12 3 1 (6635(x − 1)3 + (80(x − 1)(−59 − 62x + 3x2 ) − 480 ln (2)(10 = CF 1280(x − 1)3 + (2l,−1) G1 (2l,0) G1 −22x + 5x2 + 4x3 ))ζ(2) − 16(261 − 64K + 41x + 192Kx + 405x2 − 192Kx2 1 −99x3 + 64Kx3 )ζ 2 (2) + 40(52 − 72x + 15x2 + 14x3 )ζ(3)) + (ζ(2) 4(x − 1)2 x 1 (−49 + 251x − 355x2 −3xζ(2) + x2 ζ(2) + 5x3 ζ(2))H(−1; x) + 32(x − 1)2 x +153x3 + 12ζ(2) − 160xζ(2) − 148x2 ζ(2) + 24x3 ζ(2) − 16xζ(3) + 32x2 ζ(3) 3(−2ζ(2) − 2xζ(2) + x2 ζ(2)) −16x3 ζ(3))H(1; x) + H(2; x) 8(x − 1)3 ζ(2) − 5xζ(2) + 3x2 ζ(2) − x3 ζ(2) 1 + H(0, −1; x) + (15 − 106x 3 2(x − 1) 32(x − 1)3 x +248x2 − 138x3 − 19x4 + 72xζ(2) + 152x2 ζ(2) + 48x3 ζ(2))H(0, 1; x) 25 − 134x + 59x2 1 − 3x + x2 + 5x3 + H(1, 1; x) + H(−1, 0, 1; x) 16(x − 1)x 2(x − 1)2 x 1+27x−9x2 −25x3 +12x4 5−59x+83x2 −56x3 +30x4 − H(0, 0,1; x)+ H(0,1,1; x) 3 16(x − 1) x 8(x − 1)3 x 1−x+21x2 −7x3 7−26x 2+2x−x2 − H(1, 0, 1; x) − H(1, 1, 1; x) − H(2, 1, 1; x) 4(x − 1)2 x 4x 8(x − 1)3 3 + 11x − 5x2 + 3x3 1 − 5x + 3x2 − x3 H(0, −1, 0, 1; x) − H(0, 0, 0, 1; x) + (x − 1)3 8(x − 1)3 9+9x+13x2 −3x3 18x−7x2 +3x3 − H(0,0,1,1; x)+ H(0,1,0,1; x) +3H(1,0,1,1; x) 3 4(x − 1) 4(x − 1)3 1 7 + H(0,1,1,1; x)− H(1, 0, 0,1; x)+2H(1,1, 0,1; x)+8H(1,1,1,1; x) 2 2 2 29700Lµ − 447185−142560Lµ −3960L3µ 1 +CA + ((11880Lµ (x−1)3 103680 103680(x−1)3 −180(x − 1)(517 + 982x + 913x2 ) + 19440 ln (2)(10 − 22x + 5x2 + 4x3 ))ζ(2) +648(71 − 64K − 631x + 192Kx + 159x2 − 192Kx2 − 125x3 + 64Kx3 )ζ 2 (2) –9– +180(−698 + 1338x − 825x2 + 104x3 )ζ(3)) − (1 − 3x + x2 + 5x3 )ζ(2) H(−1; x) 8(x − 1)2 x 1 (807+198Lµ −4159x−990Lµ x+198L2µ x+5897x2 +1386Lµ x2 864(x − 1)2 x −396L2µ x2 −2545x3 −594Lµ x3 +198L2µ x3 −(216 + 1368x + 342x2 + 1206x3 )ζ(2) + 3(2 + 2x − x2 )ζ(2) H(2; x) 16(x − 1)3 (1 − 5x + 3x2 − x3 )ζ(2) 1 − (−33 + 260x + 66Lµ x H(0, −1; x) + 3 4(x − 1) 144(x − 1)3 x −384x2 −198Lµ x2 +273x3 +198Lµ x3 −116x4 −66Lµ x4 −18xζ(2)+468x2 ζ(2) 1 (−39+235x+132Lµ x−349x2 −132Lµ x2 +72x4 ζ(2))H(0, 1; x) + 144(x − 1)x 1 − 3x + x2 + 5x3 −72xζ(2) + 72x2 ζ(2))H(1, 1; x) − H(−1, 0, 1; x) 4(x − 1)2 x 8 + 36x − 33x2 − 20x3 2 − 168x + 219x2 − 62x3 − H(0, 0, 1; x) + H(0, 1, 1; x) 48(x − 1)3 48(x − 1)3 47 − 49x + 44x2 11 2 + 2x − x2 − H(1, 0, 1; x) − H(1, 1, 1; x) + H(2, 1, 1; x) 48(x − 1)2 6 16(x − 1)3 1 − 5x + 3x2 − x3 1 + 10x + 4x2 − H(0, −1, 0, 1; x) − H(0, 0, 0, 1; x) 2(x − 1)3 8(x − 1)3 1 + 2x + 4x2 1 + 2x + 4x2 1 − H(0, 0, 1, 1; x) + H(0, 1, 0, 1; x) + H(1, 0, 0, 1; x) 4(x − 1)3 8(x − 1)3 2 1 (6629+2592Lµ −540L2µ +72L3µ +3420ζ(2)−216Lµ ζ(2) + 720ζ(3)) +TR Nl 5184 57+ 18Lµ −209x−54Lµ x+18L2µ x−90xζ(2) 3−19x−6Lµ x − H(1; x)− H(0, 1; x) 216x 36x 3 − 19x − 6Lµ x 1 1 1 − H(1, 1; x) + H(0, 0, 1; x) + H(0, 1, 1; x) + H(1, 0, 1; x) 18x 6 3 3 1 2 (−1111 − 1296Lµ + 270L2µ − 36L3µ + H(1, 1, 1; x) + TR Nh 3 2592(x − 1)3 +(756x − 1512x2 + 756x3 )ζ(3))H(1; x) + +7869x + 3888Lµ x − 810L2µ x + 108L3µ x − 14709x2 − 3888Lµ x2 + 810L2µ x2 −108L3µ x2 + 7951x3 + 1296Lµ x3 − 270L2µ x3 + 36L3µ x3 − 414ζ(2) + 108Lµ ζ(2) −5670xζ(2) − 324Lµ xζ(2) + 9126x2 ζ(2) + 324Lµ x2 ζ(2) − 738x3 ζ(2) −108Lµ x3 ζ(2) + 504ζ(3) + 1080xζ(3) + 1512x2 ζ(3) − 504x3 ζ(3)) 1 + (−57 − 18Lµ − 89x + 90Lµ x − 18L2µ x + 73x2 216(x − 1)2 x −126Lµ x2 + 36L2µ x2 + 265x3 + 54Lµ x3 − 18L2µ x3 + 18xζ(2) − 36x2 ζ(2) 3+8x−24x3 −19x4 −(6x−18x2 +18x3 −6x4 )Lµ H(0, 1; x) 36(x − 1)3 x 1 + 3x + 3x2 − x3 1 H(0, 0, 1; x) . (5.6) + Lµ H(1, 1; x) − 3 6(x − 1)3 +18x3 ζ(2))H(1; x)+ – 10 – (2l) The form factor G2 (2l) G2 2 is = C (d) µ2 m2 4−d CF 0 X i=−2 (2l,i) G2 (d − 4)i + O (d − 4) , (5.7) where (2l,−2) G2 (2l,−1) G2 (2l,0) G2 1 2 − 3x = CF − + H(1; x) , (5.8) x 2x2 9 7(2 − 5x) (2 − 3x) 3(2 − 3x) = CF − H(1; x) − H(0, 1; x) − H(1, 1; x) , (5.9) 2 2 4x 8x 4x 2x2 1 = CF (−310(x − 1)4 + (60 ln (2)x(−38 + 58x − 40x2 + 11x3 ) 80(x − 1)4 x −20(x − 1)(10 − 120x − 79x2 + 12x3 ))ζ(2) + 16x(125 + 103x)ζ 2 (2) (2−9x−5x2 +3x3 −3x4 )ζ(2) H(−1; x) −5x(−30 + 110x − 80x2 + 27x3 )ζ(3)) + 2(x − 1)3 x2 1 (−32 + 195x − 397x2 + 337x3 − 103x4 + 24ζ(2) − 12xζ(2) + 16(x − 1)3 x2 3(30−34x+16x2 −3x3 )ζ(2) +844x2 ζ(2)−76x3 ζ(2)+36x4 ζ(2))H(1; x) + H(2; x) 4(x − 1)4 1 2(2 + x)ζ(2) H(0, −1; x) + (26 − 69x − 68x2 − 58x3 + 166x4 + 4 (x − 1) 16(x − 1)4 x2 8−18x+37x2 +172x3 −49x4 H(1, 1; x) +3x5 −(448x2 +368x3 )ζ(2))H(0, 1; x) + 8(x − 1)2 x3 2 − 9x − 5x2 + 3x3 − 3x4 30 − 34x + 16x2 − 3x3 + H(−1, 0, 1; x) + H(2, 1, 1; x) (x − 1)3 x2 4(x − 1)4 2 − 27x + 4x2 − 48x3 + 66x4 − 15x5 7(2 − 3x) − H(0, 0, 1; x) + H(1, 1, 1; x) 4 2 8(x − 1) x 2x2 10−39x+234x2 −276x3 +86x4 −24x5 4(2 + x) + H(0, 1, 1; x) + H(0, −1, 0, 1; x) 4(x − 1)4 x2 (x − 1)4 2 − 13x − 22x2 − 12x3 + 3x4 (4 + 5x) − H(1, 0, 1; x) + H(0, 0, 0, 1; x) 3 2 2(x − 1) x (x − 1)4 6(4 + 3x) 3(4 + 3x) + H(0, 0, 1, 1; x) − H(0, 1, 0, 1; x) (x − 1)4 (x − 1)4 1 +CA (1320Lµ (x − 1)4 + 20(x − 1)3 (−269 + 242x) 1440(x − 1)4 x +(540(x − 1)(4 + 50x + 5x2 + 8x3 ) + 540 ln (2)x(38 − 58x + 40x2 − 11x3 ))ζ(2) +36x(364 + 317x + 108x2 )ζ 2 (2) + 45x(−30 + 110x − 80x2 + 27x3 )ζ(3)) 1 (2−9x−5x2 +3x3 −3x4 )ζ(2) H(−1; x) + (406+132Lµ −2067x − 3 2 4(x − 1) x 144(x − 1)3 x2 −594Lµ x+3603x2+990Lµ x2−2629x3−726Lµ x3+687x4 +198Lµ x4 −(144−864x 3(30 − 34x + 16x2 − 3x3 )ζ(2) −1224x2 −1242x3 + 54x4 )ζ(2))H(1; x) − H(2; x) 8(x − 1)4 – 11 – 1 (2 + x)ζ(2) H(0, −1; x) + (−22 + 145x − 300x2 + 109x3 + 59x4 (x − 1)4 24(x − 1)4 x2 26−151x+14x2 −42x3 H(1, 1; x) +9x5 −(240x2 +210x3 +72x4 )ζ(2))H(0, 1; x) − 24(x − 1)2 x2 2−9x−5x2 +3x3 −3x4 4+76x−96x2 +16x3 −9x4 − H(0, 0, 1; x) H(−1, 0, 1; x) + 2(x − 1)3 x2 8(x − 1)4 x 8 + 58x − 24x2 − 36x3 + 3x4 4 + 24x + 11x2 + 3x3 + H(0, 1, 1; x) + H(1, 0, 1; x) 8(x − 1)4 x 8(x − 1)3 x 30 − 34x + 16x2 − 3x3 24 + 17x + 4x2 − H(2, 1, 1; x) + H(0, 0, 0, 1; x) 8(x − 1)4 4(x − 1)4 2(2 + x) 8 + 9x + 4x2 − H(0, −1, 0, 1; x) + (2H(0, 0, 1, 1; x) − H(0, 1, 0, 1; x)) (x − 1)4 4(x − 1)4 2−3x 19+6Lµ 26−51x+6(2−3x)Lµ + H(1; x)+ (H(0,1; x)+2H(1,1; x)) +TR Nl − 18x 36x2 6x2 1 +TR Nh (−19 − 6Lµ − 164x + 24Lµ x + 393x2 − 36Lµ x2 − 218x3 18(x − 1)4 x − +24Lµ x3 +8x4 −6Lµ x4 +(252x − 300x2 +84x3 −36x4 )ζ(2) − (72x + 36x2 )ζ(3)) 26 − 223x − 124x2 − 51x3 + (12 − 42x + 48x2 − 18x3 )Lµ + H(1; x) 36(x − 1)2 x2 2 − 9x − 21x2 − 13x3 − 3x4 2(2 + x) − H(0, 1; x) + H(0, 0, 1; x) . (5.10) 6(x − 1)3 x2 (x − 1)4 (2l) The form factor G3 (2l) G3 2 can be written as = C (d) µ2 m2 4−d CF 0 X i=−2 (2l,i) G3 (d − 4)i + O (d − 4) , (5.11) with (2l,−2) G3 (2l,−1) G3 (2l,0) G3 1 = CF H(1; x) , (5.12) 2x 13 1 = CF − H(1; x) − (H(0, 1; x) + 6H(1, 1; x)) , (5.13) 8x 4x 1 ((−60(x − 1)x(57+2x) − 60 ln (2)(−22+30x−26x2 +9x3 ))ζ(2) = CF 80(x − 1)4 1 (51−157x −48(9+49x+18x2 )ζ 2 (2)−5(22−90x+82x2 −41x3 )ζ(3))− 16(x−1)3 x +161x2 − 55x3 − (12 − 364x − 436x2 − 28x3 )ζ(2))H(1; x) (1 + 5x + 5x2 + x3 )ζ(2) 3(−14 + 6x − 2x2 + x3 )ζ(2) + H(−1; x) + H(2; x) 2(x − 1)3 x 4(x − 1)4 1 6xζ(2) H(0, −1; x) + (11−72x+366x2 −260x3 −45x4 +96xζ(2) − (x − 1)4 16(x−1)4 x 1 + 36x + 8x2 − 24x3 − 3x4 +528x2 ζ(2) + 192x3 ζ(2))H(0, 1; x) − H(0, 0, 1; x) 8(x − 1)4 x – 12 – 25−174x−x2 1+5x+5x2 +x3 7 H(1, 1; x) + H(−1, 0, 1; x) + H(1, 1, 1; x) 2 3 8(x − 1) x (x − 1) x (2x) 5 − 78x + 4x2 + 70x3 + 8x4 1 + 12x + 32x2 − 3x3 + H(0, 1, 1; x) − H(1, 0, 1; x) 4 4(x − 1) x 2(x − 1)3 x 14 − 6x + 2x2 − x3 2(2 + 15x + 4x2 ) − H(2, 1, 1; x) − H(0, 0, 1, 1; x) 4(x − 1)4 (x − 1)4 12x 2+15x+4x2 2+3x+4x2 H(0,0,0,1; x)− H(0,−1,0,1; x)+ H(0,1,0,1; x) − (x−1)4 (x−1)4 (x−1)4 1 +CA (60(x−1)3 + (−20(x−1)(56 + 105x + 40x2 ) + 60 ln (2)(−22 160(x−1)4 + +30x − 26x2 + 9x3 ))ζ(2) − 12(18 + 137x + 108x2 )ζ 2 (2) − 5(−22 + 90x − 82x2 1 (1 + 5x + 5x2 + x3 )ζ(2) H(−1; x) + (335 + 66Lµ +41x3 )ζ(3)) − 3 4(x − 1) x 144(x − 1)3 x −843x − 198Lµ x + 681x2 + 198Lµ x2 − 173x3 − 66Lµ x3 − (72 + 468x + 2466x2 3(−14ζ(2) + 6xζ(2) − 2x2 ζ(2) + x3 ζ(2)) +126x3 )ζ(2))H(1; x) − H(2; x) 8(x − 1)4 3xζ(2) 1 + H(0, −1; x) − (11 + 22x − 171x2 + 79x3 + 59x4 − (36x 4 (x − 1) 24(x − 1)4 x 20 + 40x − 66x2 − 3x3 +270x2 + 216x3 )ζ(2))H(0, 1; x) − H(0, 0, 1; x) 8(x − 1)4 1 + 5x + 5x2 + x3 13 + 82x + 58x2 − H(−1, 0, 1; x) − H(1, 1; x) 2(x − 1)3 x 24(x − 1)2 x 10 + 23x + 9x2 22 + 56x − 62x2 − 7x3 H(0, 1, 1; x) − H(1, 0, 1; x) − 8(x − 1)4 8(x − 1)3 14 − 6x + 2x2 − x3 2 + 31x + 12x2 + H(2, 1, 1; x) − H(0, 0, 0, 1; x) 8(x − 1)4 4(x − 1)4 6x 2 + 7x + 12x2 + H(0, −1, 0, 1; x) − (2H(0, 0, 1, 1; x) − H(0, 1, 0, 1; x)) (x − 1)4 4(x − 1)4 (25 + 6Lµ ) 1 +TR Nl H(1; x) + (H(0, 1; x) + 2H(1, 1; x)) 36x 6x (54 − 91x + 20x2 + 17x3 − (36 + 12x − 52x2 + 4x3 )ζ(2) + 36xζ(3)) +TR Nh 6(x − 1)4 25+322x+25x2 +(6−12x+6x2 )Lµ 1+21x+21x2 +x3 H(1; x) − H(0, 1; x) + 36(x − 1)2 x 6(x − 1)3 x 6x − H(0, 0, 1; x) . (5.14) (x − 1)4 (2l) We checked our results for the form factors Gi (x) i = 1, 2, 3 against the calculation of Martin Beneke, Tobias Huber, and Xin-Quing Li [33] and we found complete analytical agreement. – 13 – 6. Ward Identities We explicitly checked that the UV renormalized form factors satisfy the on-shell Ward identity1 u u iqµ W +, µ − MW b φ+ 11 = 0, (6.1) b where φ is the charged pseudo-Goldstone boson and the gray circles represents the sum of all two-loop one-particle-irreducible QCD corrections to the vertices. The Lorentz index associated to the W -boson is saturated by the boson momentum q µ . In order to satisfy the relation in Eq. (6.1) it is necessary to renormalize also the factor mb appearing in the tree-level φ+ ub coupling. The relevant NNLO mass counter term can be found in [32]. The two-loop corrections to the scalar coupling of the pseudo-Goldstone boson to quark can be absorbed in a single form-factor S, defined as follows u φ+ 11 =− mb S(q 2 ) u(p) (1 − γ5 ) u(P ) . MW (6.2) b The UV renormalized form factor has the following perturbative expansion in αs : 3 α 2 α αs igw s s (1l) (2l) (0l) S + S +O , + S = √ Vub S π π π3 2 2 with S (0l) = 1. The one-loop form factor S (1l) is given by 2 (4−d)/2 1 X µ (1l) S (1l,i) (d − 4)i + O (d − 4)2 . C S = C(d) F 2 m (6.3) (6.4) i=−2 After UV renormalization (including the renormalization of the Yukawa φ+ ub coupling), the coefficients of the expansion in (d − 4) are S (1l,−2) = −1 , 5 S (1l,−1) = + H(1; x) , 4 1 1 S (1l,0) = −1 − H(1; x) − H(1, 1; x) − H(0, 1; x) , 2x 2 x+1 1 1 (1l,1) S = 1+ H(1; x) + H(1, 1; x) + H(0, 1; x) + H(1, 1, 1; x) 4x 2x 4x 1 1 1 + H(1, 0, 1; x) + H(0, 1, 1; x) + H(0, 0, 1; x). 2 2 4 1 (6.5) (6.6) (6.7) (6.8) It can be proved that the Ward identity is fulfilled already at the level of master integrals, irrespectively on the analytic expression of the MIs themselves. – 14 – The two-loop form factor S (2l) is given by S (2l) 2 = C (d) µ2 m2 4−d CF 0 X i=−4 S (2l,i) (d − 4)i + O (d − 4) . (6.9) where the coefficient of the expansion in (d − 4) are S (2l,−4) = CF S (2l,−3) = S (2l,−2) = S (2l,−1) = S (2l,0) = 1 , 2 (6.10) 11 1 5 (6.11) CF − − H(1; x) − CA + TR Nl , 4 8 2 57 2 + 5x 1 49 + 9ζ(2) CF + H(1; x) + H(0, 1; x) + 2H(1, 1; x) + CA 32 (4x) 2 72 11 1 11 5 1 1 − Lµ + H(1; x) + TR Nl − + Lµ − H(1; x) + TR Nh Lµ , (6.12) 12 12 18 3 3 3 2 + 5x 3(47 + 8ζ(2) − 16ζ(3)) 7 + 10x − H(1; x) − H(0, 1; x) CF − 64 8x 8x 6+5x 1 3 − H(1, 1; x)− H(0, 0, 1; x)− H(0, 1, 1; x)− H(1, 0, 1; x)− 4H(1, 1, 1; x) 4x 4 2 2 (1549+1980Lµ−396Lµ+972ζ(2)−1188ζ(3)) 67+66Lµ−18ζ(2) +CA + H(1; x) 1728 72 −125 − 180Lµ + 36L2µ − 108ζ(2) 5 + 6Lµ +TR Nl − H(1; x) 432 18 −5Lµ + L2µ − ζ(2) 1 − Lµ H(1; x) , +TR Nh 12 3 831 3(13 − 7x) 3 ln (2)(x − 4)(7x − 8) 9(5 − 34x + 11x2 ) CF + + ζ(2) + 256 16(x − 1) 8(x − 1)2 80(x − 1)2 2 2 4K 2 (74 − 96x + 13x )ζ(3) (1 + 2x + x )ζ(2) − + H(−1; x) ζ (2) − 5 32(x − 1)2 2(x − 1)x 17 + 8x − 25x2 − (12 − 78x + 30x2 )ζ(2) − (8x − 8x2 )ζ(3) H(1; x) − 16(x − 1)x 9(4 − 4x + x2 )ζ(2) 1 ζ(2) − H(0, −1; x) + (11 + 12x − 15x2 H(2; x) − 8(x − 1)2 2 16(x − 1)2 x 4 − x + 5x2 H(1, 1; x) −8x3 + 12xζ(2) + 24x2 ζ(2))H(0, 1; x) + 8x2 1 + 2x + x2 2 − 13x + 20x2 − 3x3 + H(−1, 0, 1; x) − H(0, 0, 1; x) (x − 1)x 16(x − 1)2 x 10 − 33x + 20x2 + 6x3 14 + 5x H(1, 1, 1; x) + H(0, 1, 1; x) + 4x 8(x − 1)2 x 2 + 5x − 4x2 3(4 − 4x + x2 ) − H(1, 0, 1; x) − H(2, 1, 1; x) − H(0, −1, 0, 1; x) 4(x − 1)x 8(x − 1)2 5 − 2x + 3x2 1 − 10x + 3x2 7 − H(0, 0, 0, 1; x) + H(0, 0, 1, 1; x) + H(0, 1, 1, 1; x) 2 2 8(x − 1) 4(x − 1) 2 – 15 – 4 − 4x + 3x2 1 H(0, 1, 0, 1; x) − H(1, 0, 0, 1; x) + 3H(1, 0, 1, 1; x) 2 4(x − 1) 2 55L2µ 11L3µ 54589 11Lµ +2H(1, 1, 0, 1; x) + 8H(1, 1, 1, 1; x) + CA − − + − 20736 12 192 288 179 − 250x + 125x2 3 ln (2)(x − 4)(7x − 8) 1067 + 49x 11Lµ − − ζ(2) − + 96 16(x − 1)2 576(x − 1) 160(x − 1)2 2K 2 (896 − 1324x + 347x2 )ζ(3) (1 + 2x + x2 )ζ(2) − − H(−1; x) ζ (2) + 5 576(x − 1)2 4(x − 1)x 1 (708 + 198Lµ − 466x − 198Lµ x − 99L2µ x − 242x2 + 99L2µ x2 + 432(x − 1)x −216ζ(2) + 738xζ(2) − 684x2 ζ(2) − 378xζ(3) + 378x2 ζ(3))H(1; x) 9(4 − 4x + x2 )ζ(2) 1 1 + H(2; x) + ζ(2)H(0, −1; x) − (66 + 56x 2 (16(x − 1) ) 4 144(x − 1)2 x + +66Lµ x−211x2 −132Lµ x2 +89x3 +66Lµ x3 −(126x−144x2 +72x3 )ζ(2))H(0, 1; x) 78 + 223x + 132Lµ x − 72xζ(2) 1 + 2x + x2 − H(1, 1; x) − H(−1, 0, 1; x) 144x 2(x − 1)x 44 − 88x + 53x2 11 40 − 56x + 7x2 H(1, 1, 1; x) − H(0, 0, 1; x) − H(0, 1, 1; x) − 48(x − 1)2 6 48(x − 1)2 29 − 35x 3(4 − 4x + x2 ) 1 + H(1, 0, 1; x) + H(2, 1, 1; x) + H(0, −1, 0, 1; x) 2 48(x − 1) 16(x − 1) 2 1 1 1 − H(0, 0, 0, 1; x) − H(0, 0, 1, 1; x) + H(0, 1, 0, 1; x) 2 2 8(x − 1) 4(x − 1) 8(x − 1)2 1 1 (3893 + 1728Lµ − 540L2µ + 72L3µ + 3420ζ(2) + H(1, 0, 0, 1; x) + TR Nl 2 5184 48 + 18Lµ + 28x − 9L2µ x + 45xζ(2) H(1; x) −216Lµ ζ(2) + 720ζ(3)) + 108x 3 + 5x + 3Lµ x 3 + 5x + 3Lµ x 1 + H(0, 1; x) + H(1, 1; x) + H(0, 0, 1; x) 18x 9x 6 Lµ 5L2µ L3µ 1 2 1 − + + H(0, 1, 1; x) + H(1, 0, 1; x) + H(1, 1, 1; x) + TR Nh 3 3 3 3 48 72 2 2 3 Lµ 409 − 747x + 651x − 185x 11407 − 17630x + 8527x + − − ζ(2) 2592(x − 1)2 24 144(x − 1)3 1 7ζ(3) + (48 + 18Lµ + 104x − 36Lµ x − 9L2µ x − 112x2 + 18Lµ x2 − 36 108(x − 1)2 x +18L2µ x2 + 56x3 − 9L2µ x3 + 9xζ(2) − 18x2 ζ(2) + 9x3 ζ(2))H(1; x) 1 − (3+14x+3Lµ x−9Lµ x2 − 6x3 + 9Lµ x3 + 5x4 − 3Lµ x4 )H(0, 1; x) 18(x − 1)3 x Lµ 1 + H(1, 1; x) + H(0, 0, 1; x) . (6.13) 3 6 When written in terms of form factors, the Ward identity in Eq. (6.1) reads as follows: (2l) (2l) (2l) 2G1 (x) + xG2 (x) + G3 (x) − 2S (2l) (x) = 0 . – 16 – (6.14) It can be checked that the form factors presented in this paper fulfill Eq. (6.14). 7. Conclusions In this paper, we presented analytic expressions for the two-loop QCD corrections to the decay process b → u W ∗ → u l ν. This process is important for the precise determination of the CKM matrix element Vub and, therefore, for the study of flavor and CP violation within and beyond the Standard Model of fundamental interactions. The Lorentz structure of the process is parametrized in terms of three form factors, whose analytic expression are given in the form of a Laurent series of (d − 4), where d is the space-time dimension. The coefficients of the series are expressed in the well known functional basis of harmonic polylogarithms of a single dimensionless variable. The result can be used in a SCET framework, after combining it with the jet and soft functions already known in the literature, for a phenomenological determination of |Vub |. The results presented here are the first step towards a complete determination of the NNLO QCD corrections to the heavy-to-light quark transition. Acknowledgments We are grateful to U. Aglietti, for proposing the subject of the paper, and to M. Beneke for allowing us to compare our results with the ones obtained by his group. We thank U. Aglietti and P. Gambino for carefully reading the manuscript and providing us with valuable feedback. We wish to thank T. Becher, C. Greub, T. Gehrmann, and B. Pecjak for useful discussions. We are indebted with R. Boughezal and G. Bell for several numerical and analytical cross-checks of the master integrals. We are grateful to J. Vermaseren for his kind assistance in the use of FORM [34], and to the authors of the packages AIR [35] and FIESTA [36], that were employed in partial checks of the calculation. R.B. wishes to thank the Theoretical Physics Department of the University of Florence for kind hospitality during a part of this work. This work was supported by the Swiss National Science Foundation (SNF) under contract 200020-117602. A. The Master Integrals In this Appendix we collect the analytic expressions of the Master Integrals for the Feynman diagrams of Fig. 3. We provide only eight of them, since the other MIs can be found in [37, 38]. It must be pointed out that the MIs (a)–(f) in Fig. 3 were already calculated in [39]. We checked the analytic expressions that we obtained against the results in [39] and we found complete agreement. Moreover, all the MIs were checked by comparing their numerical value to the results obtained by direct numerical integration with the sector decomposition method. The numerical integration was carried out by using the package FIESTA (see [36]). The checks were done for several values of the variable y. – 17 – (a) (b) (c) (d) (e) (f) (g) (h) Figure 3: Master Integrals needed for the Two-loop QCD corrections. Thick lines represent massive particles, thin lines represent massless ones. The explicit expression of the MIs depends on the chosen normalization of the integration measure. The integration on the loop momenta is normalized as follows Z 1 Dd k = C(d) µ2 m2 (d−4) Z 2 dd k (4π 2 ) (d−2) 2 , (A.1) where C(d) is defined in Eq. (3.16). In Eq. (A.1) µ stands for the ’t Hooft mass of dimensional regularization. The integration measure in Eq. (A.1) is chosen in such a way that the one-loop massive tadpole becomes Z 1 m2 Dd k 2 . (A.2) = k + m2 (d − 2)(d − 4) In the expressions below, K is a rational number (its numerical value is K = 3.32812 ± 0.00002 ∼ 213/64), while a4 = Li4 (1/2) = 0.51747906.... ζ(2) and ζ(3) are the Riemann ζ function evaluated in 2 and 3 respectively: ζ(2) = 1.6449341..., ζ(3) = 1.2020569.... The expressions of the MIs are the following. = 0 X 1 Ai (d − 4)i + O(d − 4) , m4 (1 + y)2 (A.3) i=−4 A−4 = 1 , 12 (A.4) – 18 – 1 H(−1; y) , (A.5) 6 7 1 A−2 = − ζ(2) + H(−1, −1; y) , (A.6) 48 3 89 7 2 A−1 = ζ(3) − ζ(2)H(−1; y) + H(−1, −1, −1; y) , (A.7) 96 24 3 2 65 7 4 A0 = − ζ 2 (2)K + ζ(3)H(−1; y) − ζ(2)H(−1, −1; y) + H(−1, −1, −1, −1; y) 5 48 12 3 1 − H(−1, 0, 0, −1; y) . (A.8) 2 A−3 = = B0 = 1 B0 + O(d − 4) , m2 (1 + y) (A.9) 27 2 3 1 1 ζ (2) + ζ(2)H(0, −1; y) − H(0, −1, 0, −1; y) + H(0, 0, −1, −1; y) 160 16 16 8 1 − H(0, 0, 0, −1; y) . (A.10) 16 = 1 X 1 Ci (d − 4)i + O(d − 4)2 , m4 (1 + y) (A.11) i=−1 1 ζ(2) , (A.12) 32 1 1 1 1 C0 = ζ(3) + ζ(2)H(−1; y) + H(0, −1, −1; y) − H(0, 0, −1; y) , (A.13) 64 16 16 16 9 1 3 1 C1 = − ζ 2 (2) + ζ(3)H(−1; y) − ζ(2)H(0, −1; y) + ζ(2)H(−1, −1; y) 80 32 32 8 1 1 3 + H(−1, 0, −1, −1; y) − H(−1, 0, 0, −1; y) + H(0, −1, −1, −1; y) 8 8 16 9 5 1 (A.14) − H(0, −1, 0, −1; y) − H(0, 0, −1, −1; y) + H(0, 0, 0, −1; y) . 16 32 32 C−1 = = 1 X i=−2 Di (d − 4)i + O(d − 4)2 , 1 , 8 5 (1 + y) =− + H(−1; y) , 16 8y (A.15) D−2 = (A.16) D−1 (A.17) – 19 – D0 = 1 5 3 1 19 + ζ(2) − H(−1; y) + H(−1, −1; y) − H(0, −1; y) 32 " 16 16 16 16 # " 5 5 3 1 1 1 ζ(3) + − H(−1; y) + H(−1, −1; y) − H(0, −1; y) + y 16 16 8 (1 + y) 64 3 3 1 1 ζ(2) ln(2) − ζ(2)H(−2; y) − H(−2, −1, −1; y) − H(0, −1, −1; y) 16 16 16 16 # 1 (A.18) + H(0, 0, −1; y) , 16 − 65 7 5 3 19 5 − ζ(3) − ζ(2) − ζ(2) ln(2) + H(−1; y) + ζ(2)H(−1; y) 64 128 32 32 32 32 5 15 1 3 − ζ(2)H(−2; y) + H(0, −1; y) − H(−1, −1; y) − H(−2, −1, −1; y) 32 32 32 32 5 1 3 1 + H(−1, −1, −1; y) − H(−1, 0, −1; y) − H(0, −1, −1; y) + H(0, 0, −1; y) 16" 8 32 16 3 15 5 1 19 H(−1; y) + ζ(2)H(−1; y) − H(−1, −1; y) + H(0, −1; y) + y 32 32 32 16 # 5 3 3 1 + H(−1, −1, −1; y)− H(−1, 0, −1; y)− H(0, −1, −1; y)+ H(0, 0, −1; y) 16 16 16 8 " 1 1 5 3 1 33 2 1 + − ln4 (2) − ζ(3) + ζ(2) ln(2) + ζ(2) ln2 (2) + ζ (2) − a4 (1 + y) 96 128 32 16 640 4 5 3 3 7 − ζ(3) − ζ(2) ln(2) H(−1; y) + ζ(3) + ζ(2) H(−2; y) 64 16 32 32 3 5 3 − ζ(2)H(0, −1; y) + ζ(2)H(−1, −2; y) − ζ(2)H(−2, −1; y) 32 16 32 1 1 1 + H(−2, −1, −1; y) + H(0, −1, −1; y) − H(0, 0, −1; y) 32 32 32 3 1 1 − H(−2, −1, −1, −1; y) + H(−2, −1, 0, −1; y) + H(−1, −2, −1, −1; y) 16 16 16 1 1 3 + H(−1, 0, −1, −1; y) − H(−1, 0, 0, −1; y) − H(0, −1, −1, −1; y) 16 16 16 # 1 3 1 (A.19) + H(0, −1, 0, −1; y) + H(0, 0, −1, −1; y) − H(0, 0, 0, −1; y) . 8 8 32 D1 = − = 2 1 X Ei (d − 4)i + O(d − 4)3 , m2 (A.20) i=−1 E−1 = − 1 H(−1; y) , 8y " (A.21) # 1 3 E0 = H(−1; y) − H(−1, −1; y) + H(0, −1; y) 8y 2 – 20 – " # 1 3ζ(2) + H(−1, −1; y) , − 16(2 + y) " 1 1 3 3 E1 = − H(−1; y) − ζ(2)H(−1; y) + H(−1, −1; y) y 8 32 16 (A.22) 5 3 1 3 H(−1, −1, −1; y) + H(−1, 0, −1; y) − H(0, −1; y) + H(0, −1, −1; y) 16 16 8 16 " # 5 1 3 3 1 − ζ(3) + ζ(2) ln(2) + ζ(2)H(−2; y) − H(0, 0, −1; y) + 8 (1 + y) 64 16 16 " # 1 7 1 1 1 + H(−2, −1, −1; y) + H(0, −1, −1; y) − H(0, 0, −1; y) + ζ(3) 16 16 16 (2 + y) 32 − 5 1 3 3 ζ(2) − ζ(2)H(−1; y) + H(−1, −1; y) − H(−1, −1, −1; y) 16 32 16 16 # 1 + H(−1, 0, −1; y) , (A.23) 16 " 1 1 1 9 3 3 3 E2 = + ζ(3) + ζ(2) + ζ(2) ln(2) H(−1; y) + + ζ(2) H(0, −1; y) y 8 128 32 32 8 32 3 7 3 3 − + ζ(2) H(−1, −1; y) + ζ(2)H(−1, −2; y) − H(−1, 0, −1; y) 16 32 32 16 1 3 5 + H(0, 0, −1; y) − H(0, −1, −1; y) + H(−1, −1, −1; y) 8 16 16 1 9 5 + H(−1, −2, −1, −1; y) − H(−1, −1, −1, −1; y) + H(−1, −1, 0, −1; y) 32 16 16 7 5 5 + H(−1, 0, −1, −1; y) − H(−1, 0, 0, −1; y) + H(0, −1, −1, −1; y) 16 32 16 # 3 3 1 − H(0, −1, 0, −1; y) − H(0, 0, −1, −1; y) + H(0, 0, 0, −1; y) 16 16 8 " 1 4 5 3 1 33 2 1 1 ln (2) + ζ(3) − ζ(2) ln(2) − ζ(2) ln2 (2) − ζ (2) + a4 + (1 + y) 96 64 16 16 640 4 5 3 3 7 + ζ(3) − ζ(2) ln(2) H(−1; y) − ζ(3) + ζ(2) H(−2; y) 64 16 32 16 3 5 3 + ζ(2)H(0, −1; y) + ζ(2)H(−2, −1; y) − ζ(2)H(−1, −2; y) 32 32 16 1 1 1 − H(0, −1, −1; y) + H(0, 0, −1; y) − H(−2, −1, −1; y) 16 16 16 3 1 1 + H(−2, −1, −1, −1; y) − H(−2, −1, 0, −1; y) − H(−1, −2, −1, −1; y) 16 16 16 1 1 3 − H(−1, 0, −1, −1; y) + H(−1, 0, 0, −1; y) + H(0, −1, −1, −1; y) 16 16 16 # 1 3 1 − H(0, −1, 0, −1; y) − H(0, 0, −1, −1; y) + H(0, 0, 0, −1; y) 8 8 32 + – 21 – " 1 7 3 45 2 5 1 − ζ(3) − ζ(2) − ζ (2) + ζ(3) + ζ(2) + (2 + y) 32 16 128 8 32 3 9 3 1 + ζ(2) ln(2) H(−1; y) − + ζ(2) H(−1, −1; y) + ζ(2)H(−1, −2; y) 16 16 32 16 3 1 1 + H(−1, −1, −1; y) − H(−1, 0, −1; y) + H(−1, −2, −1, −1; y) 16 16 16 7 3 5 − H(−1, −1, −1, −1; y) + H(−1, −1, 0, −1; y) + H(−1, 0, −1, −1; y) 16 16 32 # 1 − H(−1, 0, 0, −1; y) . (A.24) 8 1 X 1 = 2 Fi (d − 4)i + O(d − 4)2 , m (1 + y) (A.25) i=−1 1 1 ζ(2) + H(0, −1; y) , (A.26) 8 8 7 3 1 3 1 F0 = − ζ(3) − ζ(2) ln(2) + ζ(2)H(−1; y) − ζ(2)H(−2; y) − H(−2, −1, −1; y) 64 16 8 16 16 1 3 1 + H(−1, 0, −1; y) + H(0, −1, −1; y) − H(0, 0, −1; y) , (A.27) 8 16 8 1 1 227 2 1 3 7 F1 = − ln4 (2) + ζ(2) ln2 (2) + ζ (2) − a4 − ζ(3)H(−1; y) + ζ(3)H(−2; y) 96 16 640 4 16 32 ζ(2) 3 + [3H(0, −1; y) + 4H(−1, −1; y) − 5H(−2, −1; y)] − H(−2, −1, −1, −1; y) 32 16 1 1 1 + H(−2, −1, 0, −1; y) + H(−1, −1, 0, −1; y) + H(−1, 0, −1, −1; y) 16 8 4 3 5 3 − H(−1, 0, 0, −1; y) + H(0, −1, −1, −1; y) − H(0, −1, 0, −1; y) 16 16 16 1 3 (A.28) − H(0, 0, −1, −1; y) + H(0, 0, 0, −1; y) . 16 8 F−1 = = 1 X i=−2 Gi (d − 4)i + O(d − 4)2 , (A.29) 1 , (A.30) 8 5 (A.31) G−1 = − , 16 19 1 1 1 G0 = − ζ(2) − H(0, −1; y) − [z3 + H(0, 0, −1; y)] , (A.32) 32 16 16 8(y + 1) 3 5 1 5 1 65 G1 = − + ζ(3) + ζ(2) − ζ(2)H(−1; y) + H(0, −1; y) − H(−1, 0, −1; y) 64 32 32 16 32 16 G−2 = – 22 – " 1 3 1 7 2 1 ζ(3) + ζ (2) − H(0, −1, −1; y) + H(0, 0, −1; y) + 8 32 (1 + y) 16 160 1 1 1 1 + ζ(3)H(−1; y) − ζ(2)H(0, −1; y) + H(0, 0, −1; y) + H(−1, 0, 0, −1; y) 8 16 16 # 8 1 1 (A.33) − H(0, −1, 0, −1; y) − H(0, 0, −1, −1; y) . 16 4 1 X 1 = 2 Ji (d − 4)i + O(d − 4)2 , m (1 + y) (A.34) i=−1 1 1 ζ(2) + H(0, −1; y) , (A.35) 8 8 3 1 1 1 J0 = − ζ(3) + ζ(2)H(−1; y) + H(−1, 0, −1; y) + H(0, −1, −1; y) 16 8 8 4 3 − H(0, 0, −1; y) , (A.36) 16 23 2 1 1 1 J1 = ζ (2) − ζ(3)H(−1; y) + ζ(2)H(−1, −1; y) + H(−1, −1, 0, −1; y) 160 16 8 8 1 1 1 + H(−1, 0, −1, −1; y) − H(−1, 0, 0, −1; y) + H(0, −1, −1, −1; y) 4 16 2 1 3 1 − H(0, −1, 0, −1; y) − H(0, 0, −1, −1; y) + H(0, 0, 0, −1; y) . (A.37) 4 8 32 J−1 = References [1] E. Gardi, arXiv:0806.4524 [hep-ph]. [2] M. A. Shifman and M. B. Voloshin, Sov. J. Nucl. Phys. 41 (1985) 120 [Yad. Fiz. 41 (1985) 187]. J. Chay, H. Georgi and B. Grinstein, Phys. Lett. B 247 (1990) 399. I. I. Y. Bigi, N. G. Uraltsev and A. I. Vainshtein, Phys. Lett. B 293 (1992) 430 [Erratum-ibid. B 297 (1993) 477] [arXiv:hep-ph/9207214]. I. I. Y. Bigi, M. A. Shifman, N. G. Uraltsev and A. I. Vainshtein, Phys. Rev. Lett. 71 (1993) 496 [arXiv:hep-ph/9304225]. A. F. Falk and M. Neubert, Phys. Rev. D 47 (1993) 2965 [arXiv:hep-ph/9209268]. Phys. Rev. D 47 (1993) 2982 [arXiv:hep-ph/9209269]. A. V. Manohar and M. B. Wise, Phys. Rev. D 49 (1994) 1310 [arXiv:hep-ph/9308246]. B. Blok, L. Koyrakh, M. A. Shifman and A. I. Vainshtein, Phys. Rev. D 49 (1994) 3356 [Erratum-ibid. D 50 (1994) 3572] [arXiv:hep-ph/9307247]. T. Mannel, Nucl. Phys. B 413 (1994) 396 [arXiv:hep-ph/9308262]. M. Neubert, Int. J. Mod. Phys. A 11 (1996) 4173 [arXiv:hep-ph/9604412]. [3] T. Kinoshita and A. Sirlin, Phys. Rev. 113 (1959) 1652. S. M. Berman, Phys. Rev. 112 (1958) 267. – 23 – [4] Y. Nir, Phys. Lett. B 221 (1989) 184. M. Jezabek and J. H. Kuhn, Nucl. Phys. B 314 (1989) 1. V. Aquila, P. Gambino, G. Ridolfi and N. Uraltsev, Nucl. Phys. B 719 (2005) 77 [arXiv:hep-ph/0503083]. [5] M. E. Luke, M. J. Savage and M. B. Wise, Phys. Lett. B 343 (1995) 329 [arXiv:hep-ph/9409287]. Phys. Lett. B 345 (1995) 301 [arXiv:hep-ph/9410387]. [6] P. Ball, M. Beneke and V. M. Braun, Phys. Rev. D 52 (1995) 3929 [arXiv:hep-ph/9503492]. [7] A. Czarnecki and K. Melnikov, Nucl. Phys. B 505 (1997) 65 [arXiv:hep-ph/9703277]. Phys. Rev. Lett. 78 (1997) 3630 [arXiv:hep-ph/9703291]. Phys. Rev. D 59 (1999) 014036 [arXiv:hep-ph/9804215]. [8] J. Franzkowski and J. B. Tausk, Eur. Phys. J. C 5 (1998) 517 [arXiv:hep-ph/9712205]. [9] I. R. Blokland, A. Czarnecki, M. Slusarczyk and F. Tkachov, Phys. Rev. Lett. 93 (2004) 062001 [arXiv:hep-ph/0403221]. Phys. Rev. D 71 (2005) 054004 [arXiv:hep-ph/0503039]. [10] A. Pak, I. R. Blokland and A. Czarnecki, Phys. Rev. D 73 (2006) 114009 [arXiv:hep-ph/0604233]. [11] T. van Ritbergen, Phys. Lett. B 454 (1999) 353 [arXiv:hep-ph/9903226]. [12] F. De Fazio and M. Neubert, JHEP 9906 (1999) 017 [arXiv:hep-ph/9905351]. [13] U. Aglietti, Nucl. Phys. B 610 (2001) 293 [arXiv:hep-ph/0104020]. [14] E. Gardi, JHEP 0502 (2005) 053 [arXiv:hep-ph/0501257]. [15] J. R. Andersen and E. Gardi, JHEP 0601 (2006) 097 [arXiv:hep-ph/0509360]. [16] U. Aglietti, G. Ricciardi and G. Ferrera, Phys. Rev. D 74 (2006) 034004 [arXiv:hep-ph/0507285]. Phys. Rev. D 74 (2006) 034005 [arXiv:hep-ph/0509095]. Phys. Rev. D 74 (2006) 034006 [arXiv:hep-ph/0509271]. [17] P. Gambino, E. Gardi and G. Ridolfi, JHEP 0612 (2006) 036 [arXiv:hep-ph/0610140]. [18] K. Melnikov, arXiv:0803.0951 [hep-ph]. [19] S. W. Bosch, B. O. Lange, M. Neubert and G. Paz, Nucl. Phys. B 699 (2004) 335 [arXiv:hep-ph/0402094]. [20] B. O. Lange, M. Neubert and G. Paz, Phys. Rev. D 72 (2005) 073006 [arXiv:hep-ph/0504071]. [21] U. Aglietti, et al., Phys. Lett. B 653 (2007) 38 [arXiv:0707.2010 [hep-ph]]. [22] P. Gambino, P. Giordano, G. Ossola and N. Uraltsev, JHEP 0710 (2007) 058 [arXiv:0707.2493 [hep-ph]]. [23] T. Becher and M. Neubert, Phys. Lett. B 633 (2006) 739 [arXiv:hep-ph/0512208]. [24] T. Becher and M. Neubert, Phys. Lett. B 637 (2006) 251 [arXiv:hep-ph/0603140]. [25] B. Pecjak, contribution to ICHEP ’08, 34th International Conference on High Energy Physics, Philadelphia, PA, USA. – 24 – [26] R. Bonciani, P. Mastrolia and E. Remiddi, Nucl. Phys. B 676 (2004) 399 [arXiv:hep-ph/0307295]. U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Phys. Lett. B 595 (2004) 432 [arXiv:hep-ph/0404071]. W. Bernreuther, et al., Nucl. Phys. B 706 (2005) 245 [hep-ph/0406046]; Nucl. Phys. B 712 (2005) 229 [hep-ph/0412259]; Nucl. Phys. B 723 (2005) 91 [hep-ph/0504190]. Phys. Rev. D 72 (2005) 096002 [hep-ph/0508254]. Phys. Rev. Lett. 95 (2005) 261802 [hep-ph/0509341]. S. Moch, J. A. M. Vermaseren and A. Vogt, JHEP 0508 (2005) 049 [arXiv:hep-ph/0507039]. Phys. Lett. B 625 (2005) 245 [arXiv:hep-ph/0508055]. T. Gehrmann, T. Huber and D. Maitre, Phys. Lett. B 622 (2005) 295 [arXiv:hep-ph/0507061]. R. J. Gonsalves, Int. J. Mod. Phys. E 17 (2008) 870 [arXiv:0807.0828 [hep-ph]]. [27] P. Nogueira, J. Comput. Phys. 105 (1993) 279. [28] S. Laporta and E. Remiddi, Phys. Lett. B 379 (1996) 283 [hep-ph/9602417]. S. Laporta, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033]. F.V. Tkachov, Phys. Lett. B 100 (1981) 65. K.G. Chetyrkin and F.V. Tkachov, Nucl. Phys. B 192 (1981) 159. [29] A.V. Kotikov, Phys. Lett. B 254 (1991) 158; Phys. Lett. B 259 (1991) 314; Phys. Lett. B 267 (1991) 123; E. Remiddi, Nuovo Cim. A 110 (1997) 1435. [hep-th/9711188]; M. Caffo, H. Czyz, S. Laporta and E. Remiddi, Acta Phys. Polon. B 29 (1998) 2627; [hep-th/9807119]; Nuovo Cim. A 111 (1998) 365. [hep-th/9805118]; T. Gehrmann and E. Remiddi, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329]; M. Argeri and P. Mastrolia, Int. J. Mod. Phys. A 22 (2007) 4375 [arXiv:0707.4037]. [30] A B. Goncharov, Math. Res. Lett. 5 (1998), 497-516. D.J. Broadhurst, Eur. Phys. J. C 8 (1999) 311 [hep-th/9803091]. E. Remiddi and J.A.M. Vermaseren, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237]. T. Gehrmann and E. Remiddi, Comput. Phys. Commun. 141 (2001) 296 [hep-ph/0107173]. J. Vollinga and S. Weinzierl, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259]. D. Maı̂tre, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152]. hep-ph/0703052. [31] SemilepFF.txt, file included in the arXiv submission. [32] K. Melnikov and T. van Ritbergen, Nucl. Phys. B 591,(2000) 515 [arXiv:hep-ph/0005131]. [33] M. Beneke, T. Huber, and X. Li, in preparation. [34] J.A.M. Vermaseren, Symbolic Manipulation with FORM, Version 2, CAN, Amsterdam, 1991; “New features of FORM” [math-ph/0010025]. [35] C. Anastasiou and A. Lazopoulos, JHEP 0407, (2004) 046 [arXiv:hep-ph/0404258]. [36] A. V. Smirnov and M. N. Tentyukov, arXiv:0807.4129 [hep-ph]. [37] R. Bonciani, A. Ferroglia, T. Gehrmann, D. Maitre and C. Studerus, JHEP 0807 (2008) 129 [arXiv:0806.2301 [hep-ph]]. [38] J. Fleischer, M. Y. Kalmykov and A. V. Kotikov, Phys. Lett. B 462 (1999) 169 [arXiv:hep-ph/9905249]. M. Argeri, P. Mastrolia and E. Remiddi, Nucl. Phys. B 631 (2002) 388 [arXiv:hep-ph/0202123]. – 25 – J. Fleischer, A. V. Kotikov and O. L. Veretin, Nucl. Phys. B 547 (1999) 343. U. Aglietti and R. Bonciani, Nucl. Phys. B 668 (2003) 3. [39] G. Bell, arXiv:0705.3133 [hep-ph]. Nucl. Phys. B 795 (2008) 1 [arXiv:0705.3127 [hep-ph]]. – 26 –
© Copyright 2024 Paperzz