Searching for temporal variation of the fine-structure "constant" in radio-frequency transitions of Dy Dmitry Budker http://socrates.berkeley.edu/~budker Fine-Structure Constant α z z Dimensionless fundamental constant Characterizes the strength of all electromagnetic interactions z Energy of atomic levels ∝ mec2·α2 ·(1+kα2+…) e2 1 α= = [0.70 ppb] =c 137.035 999 710 (96) G. Gabrielse et al, Phys. Rev. Lett. 97, 030802 (2006) A gross variation We search for small temporal variation of a Professor Enrico Fermi Are the constants of Nature constant? (A fundamental question) Sir A. Eddington A. Einstein P. A. M. Dirac E. Teller G. Gamow R. H. Dicke … 2006 Templeton Foundation Award The constants: Dimensionless combinations do not depend on units : Conventional Wisdom: a,β,g-constant; δ~t-1,ε~t-1 Dirac’s Large Number Hypothesis and variations : Ruled out as predict variations ~ -10 -12 10 -10 /y size of Universe ct 40 = 2 ≈ N1 = 10 classical electron radius e / me c 2 Electromagnetic force between e, p e2 = ≈ 1040 N2 = Gravitational force between e, p Gme m p c 3t ≈ 1080 N = Number of protons in Universe ≈ Gm p Dirac’s Large Number Hypothesis: N1 ≈ N 2 ≈ N ∝ t Large variations are out… … but BIG QUESTIONS are in: Are there small changes of “constants” over the past 13 Gy or so ? Observations May the “constants” be changing as we speak ? Laboratory ? Astrophysical searches for α-variation or QSO z Astrophysical evidence for smaller α in the past: J. K. Webb, et al. , Phys. Rev. Lett. 87, 091301 (2001) z Astrophysical evidence for a smaller α in the past: α/α (× 10-16 /yr) z 1999 14 ± 5 J. K. Webb, et al. , Phys. Rev. Lett. 82, 884 (1999) 2001 7.2 ± 1.8 J. K. Webb, et al. , Phys. Rev. Lett. 87, 091301 (2001) 2003 6.4 ± 1.4 M. T. Murphy, et al. , Mon. Not. R. Astron. Soc. 345, 609 (2003) Victor V. Flambaum z However, other groups see no variation: (using a different telescope and higher quality but smaller data set) α/α (× 10-16 /yr) z 2004 0.5 ± 4 R. Quast, et al. , Astron. Astrophysics. 415, L7 (2004) 2004 0.6 ± 0.6 R. Srianand, et al. , Phys. Rev. Lett. 92, 121302 (2004) More Controversy: claim for variation of μ = m p / me These measurements are based on the different dependences of molecular energies on μ: • Electronic ∝ meα 2 me 2 ∝ meα • Vibrational m p ∝ m α 2 me • Rotational e mp More Controversy: limit on variation of μ = m p / me arXiv.org > astro-ph > arXiv:0704.2301 Laboratory Searches Looking for present-day variation [e.g., α (t = now)] Level of present interest: 1/105 per 10 Gy Which is 1/1015 per year (assuming linear variation) This is about where best atomic clocks are today Clock laboratories search for variation of constants (We do not rely on fancy clock, but still would like to have one ) z Laboratory limits (1σ): Rapid progress with trapped single ions and femtosecond frequency combs ! Jason E. Stalnaker α-Variation in Atomic Dysprosium z A B Energy (cm-1) 20,000 Two nearly degenerate states in dysprosium (Dy, Z=66) are highly sensitive to α-variation: B A Δ Δ ~ (3-1000) MHz dΔ/dt ~ 2×1015 Hz α/α z 0 Ground State For α/α ~ 10-15 /yr z ⇒ dΔ/dt ~ 2 Hz/yr !! Dzuba, Flambaum, Kozlov, et al A and B States z Opposite parity z ΔE ~ 3-1000 MHz ⇒ E1 transition connecting the states can be driven with rf electric field ⇒ small enough to allow accurate direct counting of transition frequency ⇒ relaxed requirements on reference clock (∆υ/ υ) Statistical Sensitivity z Transition linewidth ~ 20 kHz z Counting rate ~ 109 s-1 ⇒ Sensitivity: δν ~ 0.6 Hz s1/2 T1/2 After an hour of data taking, δν ~ 10 mHz which allows for a sensitivity of |α/α| ~ 5 x 10-18 /yr !! z Population •Three-step scheme: 1st & 2nd - cw laser excitation J=9 26955.00 cm-1 τ = 0.5 μs J=10 19797.96 cm-1 τ = 7.9 μs f 1397 nm (b.r. ~ 30%) A 669 nm 833 nm 3rd - spontaneous emission J=8 G EVEN ODD B J=10 19797.96 cm-1 τ > 200 μs c J=9 e J=8 τ = 16 μs rf Transition and Detection J=9 26955.00 cm-1 τ = 0.5 μs • rf E-field excites atoms to state A f rf E-Field J=10 19797.96 cm-1 τ = 7.9 μs A 564 nm • State A decays and 564-nm light is detected J=8 G EVEN ODD B J=10 19797.96 cm-1 τ > 200 μs c J=9 e J=8 τ = 16 μs The experiment evolved from a parity nonconservation search in Dy Apparatus t h g li m n 3 3 8 OV EN Interaction Region mirror t il gh nm 9 66 light pipe T M P interference filter Interaction Region Experimental Setup CDMA Clock Frequency Counter RGA Cs Atomic Clock Data Acquisition and Control rf Synthesizer rf Amplifier to E-Field Plates High-Vacuum Chamber -6 (~10 Torr) 50 Ω 10 kHz Modulation Frequency PMT Lock-In Amplifier 10 kΩ Dr. A.-T. Nguyen, UCBöLANL Arman CingÖz First Data Amplitude Modulation: 3.1-MHz Transition - 12ê16ê03 - File: 1216.025 Lock-in Signal HV rmsL 2 ν0 = 3 073 937(52) Hz 1.5 1 0.5 3.04 3.06 3.08 FrequencyHMHzL 3.1 3.12 rf Frequency Modulation 041304.025 0.02 - 1st Harmonic 1st HarmonicHV rmsL 0.015 0.01 ν0 = 3 073 945(20) Hz 0.005 0 -0.005 -0.01 3.04 3.06 3.08 rf Frequency HMHzL 3.1 3.12 Fixed Frequency Technique 2nd Harmonic 1st Harmonic Measure the normalized by the Ratio (1st/2nd) = const.(ν - ν0) Systematic Effects A.- T. Nguyen et al. PRA Phys. Rev. A 69, 022105 (2004) • However, it is not the size but the stability of these effects that is important ⇒ preliminary analysis shows that systematic effects can be controlled to . a level corresponding to |α/α| ~ 5 x 10-18 /yr Powerful Check for Systematics Since Dy has many isotopes (some with hfs), more than one rf transition frequency can be measured For example, two transition frequencies can be simultaneously measured: ω1 ω2 ω1 + ω2 ⇒ insensitive to α variation ω1 - ω2 ⇒ α variation is twice as large Collisional Effects Collisions with residual background atoms perturbs a radiating (absorbing) Dy atom z ⇒ lineshape broadening and shift Collisional effects in high-vacuum (10-6 Torr) have rarely been measured z z Simple estimate: σ ~ 10-14 cm2 n > 3x1010 molecules/cm3 at 1μTorr v > 4x104 cm/s ⇒ δν ~ (2π)-1 n σ v = 2 Hz Collisional Data 235 MHz 100 100 80 80 y = -1.61 (2) x + 115 (1) 60 ν 0 - 234 661 000 (Hz) 3.1 MHz 60 40 40 20 20 0 0 -20 -20 -40 -40 -60 -60 y = 1.63 (4) x - 119 (2) -80 -80 -100 0 10 20 30 40 50 60 70 N2 Pressure (μ Torr) 80 90 -100 100 ν 0 - 3 074 000 (Hz) Collisional Shifts due to N2 Collisional Shifts Gas Shift Coefficients (Hz/μTorr) 3.1-MHz 235-MHz H2 -0.09 (8) -0.02 (4) He -1.27 (6) +1.25 (3) Ne -0.02 (6) -0.01 (3) N2 +1.72 (7) -1.71 (5) O2 <5 Ar +2.14 (11) -2.21 (7) Kr +2.78 (9) -2.78 (7) Xe +2.75 (10) -2.74 (7) -1.97 (30) Conclusion: ⇒ collisional effects are consistent with those found in 1-Torr measurements z Laser Detuning Effect Laser Detuning Effect for 754-MHz Transition Signal (arb. units) 600 200 -200 -600 ν ο - 753 513 000 (Hz) 1000 -1000 -100 -80 -60 -40 -20 0 20 40 60 80 833-nm Laser Freq. (MHz) Laser Detuning Effect for 235-MHz Transition Signal (arb. units) 150 100 50 0 -120 -100 -80 -60 -40 -20 0 20 40 833-nm Laser Freq. (MHz) 60 80 100 ν o - 234 661 000 (Hz) 200 Results -0.6 ± 6.5 Hz/yr . α/α = (-0.3 ± 3.6) x 10-15 yr-1 9.0 ± 6.7 Hz/yr (-5.0 ± 3.7) x 10-15 yr-1 Result: Phys. Rev. Lett. 98, 040801 (2007) . α/α = (-2.9 ± 2.6mostly syst) x 10-15 yr-1 Independent of other fundamental constants The Future
© Copyright 2025 Paperzz