GEOPHYSICAL RESEARCH LETTERS, VOL.19,NO.14,PAGES 1487-1490, luly24,1992 PRECISEDETERMINATION OF EARTH'S CENTER OF MASS USING MEASUREMENTS FROM THE GLOBAL POSITIONING SYSTEM Yvonne Vigue,Stephen M. Lichten, Geoffrey Blewitt, MichaelB. Heflin,andRajendra P. Malla JetPropulsion Laboratory, California Institute ofTechnology Abstract.GlobalPositioning System(GPS)datafroma ranging(SLR)andverylongbaseline interferometry (VLBI) worldwidegeodeticexperimentwere collectedduringa 3 data.TheSV5 scaleandoriginarefromSLR, andtheorigin weekperiodearlyin 1991. We estimated geocentric station ischosento be thegeocenter. coordinates usingtheGPSdata,thusdefininga dynamically SinceGPS satellitesmovein high-Earthorbits,they are determined reference frameoriginwhichshouldcoincide with relativelyinsensitive to errorsin thegravityfield,particularly theEarthcenterof mass,or geocenter.The 3-weekGPS avforrelatively shortdataaresof a fewdaysor less[Bertigeret erage geocenter estimates agreeto 7-13cmwithgeocenter esal., 1986]. Witheachgroundsitetracking5-6 GPSsatellites timates determinedfromsatellitelaserranging,a well-estabthegeocenter canbe estimatedquickly(in a lished technique.The RMS of daily GPSgeocenter estimates simultaneously, few days or less). Use of GPS with shortarcsto quickly were4 cm for x andy, and30 cm for z. determine thegeoeenter wouldin principleenabletimevariaIntroduction Thesatellitesof theGlobalPositioning System(GPS)can beusedto preciselymeasure globalgeodynamical quantities suchas changesin Earth'srotationvector and rotationrate, crustalmotion, and location of the Earth's center of mass.A recent opportunityto testthesecapabilities was providedby the1991G._PS I_ERS(InternationalEarth RotationService) andG._eodynamics experiment(GIG), whichtookplaceJan 22- Feb13 1991. Althoughonly 15 GPSsatelliteswereoperational,the GPS constellation will include 24 satellites whencompleteandsubstantial improvement in theaccuracy ofgeodetic measurements is expectedin the nextfew years. TheEarthorientation andbaselineresultsrecentlypublished (Herringet al., 199!, Heftinet al, 1992,Lichtenet al., 1992, Lindqwister et al., 1992) showthatevensuchlimitedGPS dataprovided centimeter-level accuracy formeasurements of Earthorientation variations andgroundstationbaselines. Thelocationof the Earth'scenterof mass,or geocenter, is afundamental measurement whichhasgeophysical andpracticalsignificance.The definitionof a terrestrialreference frame requires specification of theorigin,scale,andorientationof a coordinate system.Sincethemassdistribution of theEarthis constantly changing, it is important to measure thetimevariations of thegeocenter relativetopoints onthe Earth's crust.Sincegeodetic measurements areoftenmade withdifferent techniques andinstruments inslightly different terrestrial reference frames,precise measurement of theorigin,scale,andorientationof theseframesrelativeto onean- other is needed in orderto combine differentgeodetic data. tionsovera few daysor lesstobe measuredfor thefirsttime, withoutcomplications of re-estimation of thegravityfield. In thispaper,we presentthe firstdecimeter-quality GPS solutionsfor the geocenterwhich we obtainedfrom 21 daysof data.We discuss notonlyaccuracy by comparingwith other independent data,butalsoshort-term (daily) precisionof the estimates andthepotentialfor furtherimprovement. Over100 globallydistributed trackingsitesparticipated in theGIG'9! experiment.Only datafrom the 21 RogueGPS receiversites(Fibre 1 andTable1) wereusedin our analysis. The Rogue receiveris describedby Srinivasanet al. [1989]. Thesitescover+79øto -35ølatitude,butonly4 of these21 siteswerelocatedin thesouthernhemisphere.Data from Jan 31 and Feb 13 were not includedin this analysis sincean inputerrorin antennaheightwas discovered.Data fromsatellitePRN6 wasnotusedbecauseit wasspinning. EstimationStrategy The data collectedduringthe GIG'91 experimenthave beenprocessed usingtheGIPSY (GPSInferredPositioning SYstem)software[LichtenandBorder,1987;Soversand Border,1990]. A standard estimation technique is usedin thisanalysis,consisting of single-dayare solutions.Three sites are fixed as fiducial sites in the SV5 reference frame, while all other station locationsare estimated. A fiducial network can establish a well-defined terrestrial reference frame with2 or 3 receivers fixedto theirknowncoordinates [MaIla and Wu, 1989]. The fixed vectorsbetweenfiducialsites defineorientation andscalein accordance with SV5 [Murray Oeocenter estimates presented inherearebased ona compar- et al., 1990]. The fiducia!sadoptedfor this studyare Norway;Pinyon,California(USA); andWettzell, ison withtheSV5reference frame[Murray etal.,1990]ori- Troms½, gin. TheSV5 frameis constructed fromboths..atellite l_aser Germany. Satellite orbits,non-fiducial station locations, and 3 components of thegeocenter offsetfromthenominal origin are estimated. The satellite orbits are estimated about a Copyright 1992by theAmerican Geophysical Union. Papernumber92GL01575 0094-8534/92/92 GL-01575503.00 dynamically definedoriginwhichdetermines theEarth's centerof mass,or geocenter.The 3 estimatedgeocenter parameters represent a translational offsetbetween theorigin of thereference frameandthedynamical origindefinedby the 1487 1488 Vigueetal.' Precise Determination ofGeocenter UsingGPS 90i I /FA, I ' II•.ALL i ..... I __y o•L '•-u •_ ou _J••OLD•LG•'SCR•• / MA• 40 ..... •St St)_ 0- • - -30- i ' '1 ' i -60 I 0 ! 60 I 120 .... -40 I 180 ..... .... :.: ................. .................. I..................... ............... )[ ..... L..:.. ......... . ..... ....... [., geoc X Xmean = -8.3cm,rms =4.0crn! /i/ ......... '•g;:%"¾' ....... '?'"/ii';/i'ii'-::"i'5':':F•"//i•"F•i'F:'"•/:' L__ 20 I I 25 30 , , I I 35 40 J 45 Dayof Year(1991) lo.gitude(deg) Fig. 1' GIG'91 G•S RogueReceiver•cations GPS orbits.Thusgeocentricstationlocationsaredetermined I ..... .... ....... -30 I -120 ! 10 -20 -90 -180 ' .............................. ..2...1..d.a...y.s: Stations Combined a 4o -d0 - I 30 Fig. 2: GPSGeocenter Estimates - x,y comp. forx andy components, respectively; thesevaluesrepresent thedifferencebetweentheGPSsolutionfor thegeocenter and the nominalvalues,which are basedon yearsof SLR data andarebelievedto be accurate to betterthan5 cm [Eanes et at., 1990]. Thedailyrmsscatteraboutthemeanfor thex and transmitter/receiver clocks were also estimated. Details on the y componentsof the geocenterare 4.0 cm and 4.4 cm, reestimation strategy aregivenbyLichten[1990a,1990b]. spectively. This daily rms scatteris a measureof internal An alternativeno-fiducial techniquedemonstrated by precisionof the techniquepresented here,andcanbe considHeftineta!. [1992]involves estimating all station coordinates eredan indicationof the potentialto measurevariationsin the andsatellitepositions withveryweakconstraints (~1 km). geocenteroverone day. This definesa rigidnetworkwhichhasan ill-conditioned oriThe estimates for thegeocenter z component from3 weeks entationbutisnevertheless constrained by thedatatothegeoof GIG'91 data are shownin Figure 3. This component centerthroughthe dynamicsof the GPS satellites.To define showslargervariationsthanthex andy components, butwe geocentric coordinates, thenetworkcanbe translated, rotated, do not believethat theseresultsshowactualdaily centerof andscaledintothereference frameof choice(e.g.,SV5).The mass variations. The 3-week weighted mean offset from 3 estimatedtranslational parameters arethegeocenter offset nominalfor the z componentis 7.7 cm, while the dailyrms fromtheoriginof thisframe[B!ewitt etal., 1992]. scatteris 30 cm. It is likely that the estimationof this componentis muchmoresensitiveto the unevendistribution forall non-fiducial sites.Earthorientation parameters, 3 solar radiationcoefficients persatellite,GPScarrierphasebiases, randomwalk zenithtroposphere delaysfor eachsite, and Results and Discussion Figure2 showsdaily x andy geocenter component estimates as offsets from the nominal values. The nominal values usedfor eachcomponentof the geocentercomefrom the globalSV5 stationlocationsolutions.The x andy componentsof thegeocenter exhibitvariations whichappearto be negativelycorrelated.An erroranalysispredictsthiscovariant behavior,and it is thoughtto be dueto theasymmetric global distributionof sites. The weightedmeanvalues (3-week weightedGPS averages)are 8.3 cm and 13.4 cm, of fiducial and non-fiducial stations between the northern and southern hemispheres, and to the uneven 1991 GPS constellation.Althoughthe z componentformalerrorsare are indeedlargerthanthosefor thex andy components, the dailyz geocenterformalerrorsareaboutone-halfaslargeas the observed rms scatter. Additional systematic error 100 ........... I '" I I ...... i"' -- 21 days:StationsCombined X,Y PolarMotion Estimated TABLE 1:G!G'91 GPS RogueReceiverSites •Go-Algonquin, Canada '" NALL-Ny Ale•nd, Norw'ay .............. CANB-Canberla, Australia PINY-Pinyon,California(USA) FAIR-Fairbanks, Alaska(USA) PGC1Victoria,Canada GOLD-Goldstone, California(USA) SANT-Santiago, Chile HART-Hartebeesthoek, SouthAfrica SCRI-LaJolla,California(USA) HONE-Honefoss, Norway TROM-Tromso,Norway JPLM-Pasadena, California(USA) WETB-Wettzell, Germany KOKB-Kokee, Hawaii(USA) USUD-Usuda, Japan KOSG-Kootwijk, Netherlands YAR1-Yarragadee, Australia MATE-Matera,Italy MADR-Madrid, Spain YELL-Ye!lowklfife,Canada -60 '10020 .............................. 25 I 30 I 35 130 4era 40 Dayof Year(1991) Fiff. 3: GPS Geocenter Estimate- z component 45 Vigueetal.: Precise Determination of Geocenter UsingGPS contributions for thez component (ascompared to x andy) !489 non-eclipsing satellites[Schutzet aI., 1990].The 2-dayarc maybeduetotheweakcoverage in thesouthern hemisphere caseyieldedmixed results.One fiducial networkslightly duringthe experiment.For instance,Hartebeesthoek, a southern hemisphere site whosedatawere geometrically reducedthe variationsand anotherfiduciaI networkslightly increased them. For 3-dayarcs,theresultsdegraded further. important, wasoperating lessthan12hoursperdayduring Table2 showsa summaryof thegeocenter estimates obtainedusingthe techniquepresentedin this paperas comparedwiththosein Blewittet aI. [1992]wherea 7-parameter thisexperiment. Simulations showthatthesigmasfor x, y, andz geocenter estimates arenearlythesamewhenusinga full 24-sate!liteconstellation and full groundcoveragebetweenthenorthernandsouthern hemispheres [MaIlaet al., transformation (3 translations, 3 rotations, anda scalefactor) is estimated.Tx, Ty, and Tz shownin Table 2 are the 3 offsetsof thegeocenter fromthereference frame 1992].Thez component alsoappears to exhibita disconti- translational origin;the valuesfrom eachtechniqueagreevery well in a nuitynearFebruary !, whichisnotwellunderstood. Many alternative analysistechniques were testedin an attemptto determinewhat systematic errors may have causedthe discrepancy in thez geocenter estimates between thefirstand second half of the experiment.Omittinga questionable stationor satellitedid notchangethispattern. Variationsin the estimationstrategywere studiedin an effortto observechangesin the geocenterestimates.Different fiducial networks yielded little variation in the results, statistical sense. The differences are much less than the corre- sponding1-c• formaluncertainties of the estimates.Both techniques useGIG'91 databut useslightlydifferentstrategiesin obtaining thegeocenter offsets.It is important to note thatBlewittet al. [1992]uses12 sitescollocated with the InternationalTerrestrialReferenceFrame (ITRF) [IERS, 1991]. SinceSV5 is intended to bealignedwithITRF, it is notsurprising thattheresultsarein closeagreement. although thedifferentnetworks we trieddid notresultin a widevariationof thefiducialnetworkgeometry.A sensitivity GravityFieldSensitivity Analysis analysis showed thata 3 cmfiducialerrorin all components (x,y,z) wouldgiveanerrorof approximately 9-15cmin the geocenter, although thiserrorwouldbeexpected primarily as anoverallbiaswith smallerday-to-day variations.The"3 cm fiducial error"refersto independent 3-cmerrorsin eachof x, y, z components for eachof 3 fiducials,with no error cancellationassumed.However, results of Blewitt et al. [1982] inidicate thatfiducial errors aremorelikelytobeatthe levelof 1-2 cm. Both the fiducial and non-fiducial siteswere notwell-distributed in z duringGIG'91, thusmagnifying errors in the z-component. With a full constellation of 24 GPSandequalnorth-south hemisphere coverage, theratioof fiducial togeocenter erroriscloserto !:1, according Malla andWu [1989]. Polarmotion(Earthorientation) parameters wereheld fixedin anothercase,with only slight degradationin the geocenter estimates. We alsoestimated Earthrotation (UT1lyrc) stochastically (every12hours)producing littlechange. Longer orbitarclengths werealsostudied.In thesecases, eclipsing satellites' orbitswereestimated assingle-day arcsto minimize orbitmodeling error.Eclipsing satellites aresatelliteswhose orbit orientation is such that the satellites enter a shadowed regionwherethesun'sradiationeffectson the spacecraft arereduced (penumbra) or completely blocked (umbra) by theEarth.In general, eclipsing satelliteorbiterrorshavebeenfoundtobesignificantly largerthanthosefor The useof GPSto determinethe geocenterfrom the dynamicalinformation in theorbitsmaybe a powerfultechnique sincethe large numberof GPS satellitesenablesfull geographical coverage of theglobewitha relativelysmallnumber of groundstations(10-20) in a dayor less.This enablesrapid determination of the geocenterwith GPS data. In addition, therelativelyhighaltitudeof GPSsatellites(morethantwice thedistancefrom thecenterof the Earthas LAGEOS) makes the GPS solutionsmuch lesssensitiveto drag and gravity mismodeling. To quantifythis,we examinedthe effectof gravityerrorson theGPSgeocenter estimates. Our analysiscomputesthe error which is introducedby estimatingthe geocenterwith GPS data while leavingthe gravityfieldunadjusted. Theeffectof notestimating certain parameterscan be quantifiedthrougha sensitivity,or consideranalysis.In this type of error analysis,the filter computes the sensitivitythe estimatedparameters to those parameters not beingestimated.Let vectorYc containthe considered (unestimated) parameters, andX"'; • arethecomputedfilterestimates andcovariance (not including effects fromtheconsidered parameters). Thenthesensitivity matrix, S is defined as s = o(x- x) Oyc O) where S is calculatedfrom the measurementpartials(see Bierman [1977]).Thetotalerrorcovariance, including the TABLE2: Comparison of Geocenter Estimates Between FiducialandSevenParameterTransformation Techniques GPS estimates of the geocenter offsetusingfiducials GPS estimates of the formal errorscomputedin the filter as well as the error contribution fromunestimated (considered) parameters, is Pcon= P + SPc ST (2) geocenter offsetbyestimation of a 7 Parameter Transformation wherePcis thea prioricovariance for theconsider parame- Gx=-8.3 cm +/- 2.7 cm Tx = -7.5 cm +/- 2.6 cm ters.Usually,Pcisa diagonal matrix,buta morerealistic rep- Gy= 13.4cm +/- 2.4 cm Ty = 13.0cm +/- 2.5cm resentation sometimesutilizesa full matrix in orderto account C,z= -7.7cm +/- 13.7cm Tz = -14.8 cm +/- 13.8 cm for correlationsbetweenconsideredparameters. For our analysis, theconsider parameters aresimply thegravity coef- 1490 Vigueetal.' Precise Determinh[ion ofGeocenter UsingGPS ficients.A verysimpleandsomewhat abbreviated analysis by Bertigeret al. [1986]indicated thattheeffectof gravityerrors on GPS orbits determined from less than 24 hours of datawasanorderof magnitudesmallerthanothererrorssuch as data noise, fiducial errors,etc. One would infer from this that other GPS-inferredquantities,suchas the geocenter, would alsobe relativelyunaffectedby gravityfield errors. Howeverwe re-analyzedthisusingthe full GEM-T2 covari- ance[Marshet al., 1990]for Pcwiththeglobaltrackingnetwork for GIG'91, in order to better understandthe effect of leavingthe gravityfield fixedwhile estimatinga neworigin (geocenter).The new calculations showthattheerrorsintroducedin the GPS geocenterestimatesfrom holdingthe gravity field fixedareonly 0.05 mm, 0.7 mm, and0.5 mm in the x, y, andz components. Theseerrorsare lessthan1% of other observederrorsand are clearly insignificantin the overallGPS geocentererrorbudget. International TerrestrialReferenceFrameUsingGPS, Geophys.Res. Lett., 19, No. 9, 853-856, 1992. Eanes, R., B. Schutz, B. Tapley and M. Watkins, Earth Orientation Results from CSR 89L02, IERS Technical Note 5, p.51, Observatoirede Paris,1990. Heftin, M., W. Bertiger, G. Blewitt, A. Freedman, K. Hurst,S. Lichten,U. Lindqwister,Y. Vigue, F. Webb, T. Yunck,andJ. Zumberge,GlobalGeodesyUsingGPS WithoutFiducialSites,Geophys. Res.Lett., 19, 131-134, 1992. Herring, T., D. Dong, and R. King, Sub-milliarcsecond Determination of PolePosition UsingGlobalPositioning SystemData, Geophys.Res. Lett., 18, pp. 1893-!896, 1991. IERS, Annual Report for 1990, IERS Central Bureau, Observatoirede Paris, 1991. Lichten,S., S. Marcus,andJ. Dickey, Sub-DailyResolution of Earth RotationVariationswith Global Positioning System Measurements,Geophys.Res. Lett., 19, 537540, 1992. Lichten, S., Towards GPS Orbit Accuracy of Tens of Summaryand Conclusions The mean GPS geocenterestimatefrom a 3-week 1991 experiment agreesto 7-13 cm in each componentwhen comparedwith an SLR (SVS) reference measurement. Individualsingle-dayGPSsolutionsexhibitedrmsvariations of 4 cm in x andy and30 cm in z. Geocenter estimates made with a standardfiducial strategyand with a fiducial-free7parametertransformationproducesimilar answers,with formal errorsof 2-3 cm in x and y, and 15 cm in z. The incompleteGPS conste!lationand very limited southern hemisphere grounddataarebelievedto be factorslimitingthe precisionandaccuracyof dailyestimates fromthe199! data set. With satellite launches in the near future, the GPS constellationwill grow by about50%. Additionalsouthern hemispheredata shouldimprovethe z componentof the geocenter particularly.GPS geocenteraccuracyon a daily basiswith a full constellationand uniformglobalnetworkis expectedto be betterthan5 cm; incorporation of datafrom low earthorbiterssuchas TOPEX is expectedto strengthen thesolution evenmore[Mallaet al., 1992].FurtherGPSand SLR intercomparisons couldpotentiallyuncoversystematic errorsthatmayexistin eithertechnique. Centimeters, Geophys. Res.Lett., 17, 215-218,1990a. Lichten,S., Estimationand Filteringfor High-PrecisionGPS PositioningApplications,Manus. Geod., 15, 159-176, 1990b. Lichten, S., and J. Border, Strategiesfor High Precision Global Positioning System Orbit Determinati•n, J. Geophys.Res., 92, 12751-12762,1987. Lindqwister, U., A. Freedman, and G. B lewitt, Daily Estimates of the Earth's Pole Position with the Global PositioningSystem,Geophys.Res. Lett., 19, 845-848, 1992. Malla, R., and S. Wu, GPS Inferred Geocentric Reference Frame for Satellite Positioning and Navigation, Bull. Geod., 63, 263-279, 1989. Malla, R., S. Wu, and S. Lichten, Geodetic ReferenceFrame for Geodynamics, J. Geophys. Res., Solid Earth: ModellingCrustalDeformationSpecialSection,In Press, 1992. Marsh, J., F. Lerch, B. Putney, T. Felsentreger,B. Sanchez, S. Klosko, G. Patel, J. Robbins, R. Williamson,T. Engelis,W. Eddy, N. Chandler,D. Chinn,S. Kapoor,K. Rachlin,L. Braatz,andE. Pavlis, The GEM-T2 GravitationalModel,J. Geophys. Res.,95 (B13), 22043-22071,1990. Murray,M., R. King,andP. Morgan,SV5:A Terrestrial Reference FrameforMonitoring CrustalDeformation with the GlobalPositioning System,(Abstract),EOS Trans, AGU, 71, p. 1274, 1990. Acknowledgements. The work described in thispaper wascarriedoutby theJetPropulsion Laboratory, California Instituteof Technology, undercontractwith theNational Aeronautics andSpaceAdministration. We thankthemany participants whohelpedmakeGIG'91a success, andYoaz Bar-Sever and Ron Muellerschoen, who contributed to special software usedin thiswork. Schutz,B., C. Ho, P. Abusali,andB. Tapley,CASAUN0 GPS Orbit and BaselineExperiments,Geophys.Res. Lett., 17, 643-646, 1990. Sovers,O., andJ. Border,Observation ModelandParameter Partials for the JPL GeodeticGPS Modelling Software "GPSOMC",JPL Pub. 87-21, Rev. 2, Jet Propulsion Laboratory,Pasadena, CA, 1990. Srinivasan, J., T. Meehan,and L. Young,Codeand Codeless Ionospheric Measurements withNASA'sRogue References GPSReceiver, Proceedings Inst.ofNavigation GPS-89 Conference, !989, 451-454(Inst.of Navigation). Bertiger,W., S. Wu, J. Border,S. Lichten,B. Williams, and J. Wu, High PrecisionGPS Orbit Determination UsingMarch1985 Demonstration Data,AIAA 24th Aerospace Sciences Meeting, paper AIAA-86-0089, 1986. GeoffBlewitt,MichaelHeflin,SteveLichten, RajjuMalla, andYvonneVigue,JetPropulsion Laboratory, Mail Stop. Bierman,G., Factorization Methodsfor DiscreteSequential Estimation, V128, AcademicPress,New York, 1977. Blewitt, G., M. Heflin, F. Webb, U. Lindqwisterand R. Malla,GlobalCoordinates withCentimeter Accuracy in the (Received March10,1992; accepted May 8, 1992.) 238-600,4800OakGroveDrive,Pasadena, CA 91109.
© Copyright 2024 Paperzz