La ricerca sul fotovoltaico in ENEA

La ricerca sul fotovoltaico in ENEA
Paola Delli Veneri
ENEA
“Stato e prospettive del fotovoltaico in Italia”, Roma, 26 giugno 2014
Research on photovoltaics in ENEA
™Silicon based solar cells (thin film, HIT)
™Cu2ZnSnS4, Cu2SnS3 solar cells
™Organic solar cells
Tecnologia
Efficiency
(%)
Area (cm
Area
(cm2)
Description
c‐Si
25,0
4
UNSW
HIT (a‐Si/c‐Si),
( Si/ Si) n‐type c‐Si
Si
25 6
25,6
144
P
Panasonic‐Sanyo
i S
a‐Si/nc‐Si/nc‐Si (thin film)
13,4
1
LG electronic
CIGS (thin film )
CIGS (thin
film )
20,8
0,5
ZSW
CZTSS (thin film)
12,0
0,4
IBM solution grown
CdTe (thin film) 19,6
1
GE Global research
Organic (thin film)
11,1
0,16
Mitsubishi Chemical
Perovskite (thin film)
14,1
0,2
EPFL
Martin A. Green
et al., Solar cell
efficiency tables
(version 43),Prog. Photovolt: Res
Photovolt: Res. Appl. 2014; 22:1–9
DOI: 10.1002/pip.2452
Thin film silicon based solar cells
Innovative absorber and doped materials for multijunction silicon solar cells
Textured substrates and new architectures for an optical p
improvement of the thin film Si device performance
Thin film silicon based solar cells:
PECVD grown
g
n‐SiOx films
4.0
H2/SiH4=100, p=1.9 Torr
H2/SiH4=200, p=1.9 Torr
35
3.5
H2/SiH4=200, p=3 Torr
n
3.0
2.5
PECVD/VHF PECVD
2.0
0
1
2
100
CO2/SiH
/ 4 = 3, 1.9 Torr
light = Si rich phase
dark = O rich phase
4
5
6
7
6
7
1
Conductivity (S/cm)
EFTEM
3
CO2/SiH4 gas flow ratio
0.01
1E-4
1E-6
1E 8
1E-8
JEOL 2010F 200KeV EFTEM @ CNR IMM Catania
1E-10
0
1
2
3
4
5
CO2/SiH4 gas flow ratio
Thin film silicon based solar cells:
n‐SiOx:H
n
SiOx:H in micromorph
in micromorph devices
n μc-Si:H
n SiOx:H
0.8
μc-Si
μ
aa-Si
S
EQ
QE
0.6
p
12.3 mA/cm2
np
i
n
i
0.4
1.5 μm
270 nm
10.6 mA/cm2
0.2
No IL
No IL
0.0
400
500
600
700
800
900
1000
Wavelength (nm)
No ZnO
No ZnO
14
JSC (mA
A/cm2)
12
10
P. Delli Veneri, L.V. Mercaldo, I. Usatii Appl. Phys. Lett. 97, 023512 (2010);
P. Delli Veneri, L.V. Mercaldo, I. Usatii, Prog. Photovolt: Res. Appl. 2013; 21:148–155
L. V. Mercaldo, P. Delli Veneri, I. Usatii, E. M. Esposito, G. Nicotra, Solar Energy Materials & Solar Cells 119 (2013) 67–72
8
6
VOC= 1.3 V
4
JSC = 12.1 mA/cm
2
0
0.0
2
FF = 71.9%
η = 11.3%
0.2
0.4
0.6
0.8
Voltage (V)
1.0
1.2
1.4
Ligth trapping strategies for silicon based solar cells:
Development of MOCVD grown
of MOCVD grown ZnO
Impianto di deposizione
T t d ZnO
Textured
Z O
As‐depsited
Ar etched
Ar‐etched
ENEA Patent RM2008A000405 14
700
500
2
400
300
ZnO as deposited
(d=2.16 μm)
200
100
00
20
30
40
Ageing time (months)
6
4
ZnO-Ar
ZnO
Ar etched
(d=2.1 μm)
10
8
50
2
substrato ENEA
substrato commerciale
0.8
10
Quantm Effic
ciency
600
η =11.6%
12
ZnO as deposited
(d=1.3 μm)
J (mA//cm )
Shheet resistaance (ohm/ssq)
800
0.6
Better infrared
spectral response
with LPCVD ZnO
with
ith respectt to
t
commercial TCO 0.4
0.2
0.0
400 500 600 700 800 900 1000
Wavelength (nm)
0
0.0
0.2
0.4
0.6
0.8
1.0
Voltage (V)
1.2
1.4
Ligth trapping strategies for silicon based solar cells
100
Pyramidal structure
Double textured structure
Double textured ZnO
Haze Factor (%))
H
80
60
54 %
40
20
8%
0
400 500 600 700 800 900 1000 1100 1200
Wavelength (nm)
M. L. Addonizio and A. Antonaia, J. Phys. Chem. C 2013, 117, 24268−24276
M.L. Addonizio, A. Spadoni, A. Antonaia, Applied Surface Science 287 (2013) 311– 317
Development of textured
glass
Aluminium Induced Texture
9 Metal deposition
9 Thermal
Th
l annealing
li near 600°C
9 Chemical etching
WET etching
In
cooperation
with
«Federico II» of Naples
University
Ligth trapping strategies for silicon based solar cells:
periodic and quasiperiodic
p
q
p
structures
In cooperation with University of Sannio
Relationship between the cell thickness and the period of textured substrates
Nanostructured substrates obtained
by means of Focused Ion Beam (FIB)
A. Micco, A. Ricciardi, M. Pisco,V. La Ferrara, L. V. Mercaldo, P. Delli Veneri,
A. Cutolo, and A. Cusano, Journal of Applied Physics 114, 063103 (2013)
Heterojunction a‐Si/c‐Si solar cells
Solar cell
architectures
BEHIND CELL
BEHIND CELL Backk
Enhanced Heterostructure with INter
IN
terD
Digitated contact cell
Ag
p a‐Si:H
a Si:H
i a‐Si:H
Cr
n a‐Si:H
i aa‐Si:H
Si:H
p c‐Si
i a‐Si:H
a Si:H
SiNx
Heterojunction a‐Si/c‐Si solar cells
Area: 6 cm2
Current status:
VOC= 644 mV
JSC=37 mA/cm2 on active area
FF=73%
η= 17.4%
Area: 6 cm2
M. Izzi , M. Tucci, L. Serenelli, P. Mangiapane, M. Della Noce, I. Usatii, E. Esposito, L.V. Mercaldo, P. Delli Veneri, Appl Phys A, 2014, Volume 115, Issue 2, 705.
Heterojunction a‐Si/c‐Si solar cells: BEHIND CELL
BEHIND CELL
Back ack EEnhanced nhanced H
Heterostructure with with IN
INter
terD
Digitated contact cell
Cross section
30
2
Front side
Front side
Currentt (mA/cm )
35
25
20
15
10
5
0
0.0
R
id
Rear side contacts
Voc = 695 mV
Jsc = 35.3 mA/cm
2
FF = 60.9 %
Eff = 15 %
2
Area = 6.25
6 25 cm
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Voltage (V)
This structure allows to enhance cell efficiency up to 24%
ENEA patent # BO2007A000717
M. Tucci, L. Serenelli, E. Salza,, S. De Iuliis, L.J. Geerligs , D. Caputo, M. Ceccarelli, G. de Cesare; Journal of non‐cryst. solids 354 (2008) 2386.
Graphene/n‐Si heterojunction solar cells
Graphene films are grown on coppe o
copper foil substrates by a non toxic and low‐cost ethanol b d CVD
based CVD near1000°C ENEA UTTMAT‐SUP Lab. 70
60
EQE(%)
50
40
30
20
10
0
400
600
800
λ(nm)
1000
1200
L. Lancellotti, E. Bobeico, A. Capasso M. Della Noce, T. Dikonimos, N. Lisi, P. Delli Veneri, submitted to IEEE xplore
Cu2ZnSnS4 (CZTS), Cu2SnS3 (CTS) solar cells
CZTS: Kesterite (I‐II‐IV‐V)
CIGS: Chalcolpyrite (I‐III‐V)
/Se
III (G I )
(Ga, In)
Eg
g (CISe)
(CISe)=1.04eV
.04eV
ηTEO = 31.3 %
ηEXP = 20.8 %
II + IV
Zn + Sn
Eg ≈ 1.5eV
ηTEO = 32.3 %
ηEXP = 9.2 %
CTS: monoclinic
I1/3 + IV2/3
Cu1/3 + Sn2/3
Eg(CTS) ≈ 0.93eV
ηTEO = 30.5 %
EXP = 2.8 %
ηEXP 28%
Cu2ZnSnS4 (CZTS) solar cells
ML-Precursor
Cu
Thermal
Annealing
Al grid
Sn
ZnS
AZO
Molybdenum
n‐CdS
Soda Lime glass
p‐CZTS
CS-Precursor
ZnS
S + CuS
C S + SnS
S S
Molybdenum
Chemical Bath
Deposition
+
AZO Sputtering
p‐CZTS
Molybdenum
Soda Lime glass
Soda Lime glass
Molybdenum
Soda Lime glass
The best result
Th
b t
lt has
h been
b
obtained
bt i d
using co‐sputtered precursors with
a thickness of 0.7μm.
0
-2
-4
4
-6
2
J (mA
A/cm )
i-ZnO + AZO
CdS
CZTS
KC192 dot 7
Voc=629 mV
Jsc=15.23 mA/cm
FF=59.2%
Eff=5.6 %
2
A=0.1 cm
2
-8
-10
-12
MoS2
-14
Molybdenum
-16
0.0
0.2
0.4
V
0.6
Cu2SnS3 (CTS) solar cells
Al grid
Deposizione del
Precursore
Cu/Sn per co-sputtering
Thermal Annealing
AZO
n-CdS
Chemical Bath
D
Deposition
iti
+
AZO Sputtering
p-CTS
CuS + SnS
Molybdenum
Molybdenum
Soda Lime glass
Soda Lime glass
p-CTS
Molybdenum
Soda Lime glass
New efficiency record for Cu2SnS3 based solar cells!!
0
100
-5
80
Eff=3.14 %
E.Q.E. %
2
J (mA/cm )
-10
Voc=240 mV
2
Jsc=27.5 mA/cm
FF=47.6 %
-15
60
-20
40
-25
20
-30
0.00
0.05
0.10
0.15
0.20
Voltage (V)
0.25
0.30
0
400
600
800
1000
1200
1400
wavelength (nm)
R. Chierchia, E. Salza, P. Mangiapane, M. Valentini, M. Tucci and A. Mittiga, New efficiency record for Cu2SnS3 based solar cells, in preparation
Polymer solar cells
Donors
Acceptors
P. Morvillo, F. Parenti, R. Diana, C. Fontanesi, A. Mucci, F. Tassinari, L. Schenetti, Solar Energy Materials and Solar Cells, 104, 45‐52, 2012
P. Morvillo, R. Diana, C. Fontanesi, R. Ricciardi, M. Lanzi, A. Mucci, F. T i i L S h
Tassinari, L. Schenetti, C. Minarini, F. Parenti, Polymer Chemistry, 5, tti C Mi i i F P
ti P l
Ch i t 5
2391‐2400, 2014 A. Bruno, F. Villani, I. A. Grimaldi, F. Loffredo, P. Morvillo, R. Diana, S. Haque, C. Minarini, Thin Solid Films, 560, 14‐19, 2014. Polymer solar cells: Device Architecture
STANDARD
INVERTED
Polymer solar cells: PBDTTT‐C:[70]PCBM blend
PBDTTT‐C
(Solarmer Energy, Inc.)
[ ]
[70]PCBM
(Solenne BV)
50
Photo
oluminescence iintensity (a.u.)
GLASSS / PBDTTT-C:[70]PCBM (1:1.5)
Absorption (%)
40
30
20
10
0
400
500
600
700
Wavelength (nm)
800
900
E @570
Ex
@570nm
PBDTTT-C
PBDTTT-C:[70]PCBM
600
650
700
750
800
Wavelength (nm)
850
900
Polymer solar cells
5
Currrent density (mA/cm2)
STANDARD
INVERTED
0
-5
-10
-15
-0.2
0.0
0.2
0.4
0.6
0.8
Voltage (V)
ARCHITECTURE PCE
Jsc
Voc
(%) (mA/cm2) (V)
STANDARD
6.3
14.1
711
INVERTED
70
7.0
15 8
15.8
712
FF
(%)
63
62
P. Morvillo, R. Diana, R. Ricciardi, E. Bobeico, C. Minarini, journal of Sol‐gel Science and Technology, 2014, submitted.
Contact people
ENEA laboratories:
UTRINN FVC (Mario Tucci) –
UTRINN
FVC (Mario Tucci) ENEA Casaccia
ENEA Casaccia
Heterojunctions a‐Si/c‐Si, CZTS & CTS solar cells
UTTP MDB (Paola Delli Veneri) –
(
l
ll
) ENEA Portici
Thin film silicon solar cells, heterojunctions (a‐Si/c‐Si, graphene), ligth trapping strategies
UTTP FOS (Alessandro Antonaia) ‐ENEA Portici
TCO front electrodes, ligth
, g trapping
pp g strategies
g
UTTP NANO (Carla Minarini) ‐ENEA Portici
Polymer solar cells
solar cells
Lucia V. Mercaldo Iurie Usatii
Emila M Esposito
Emila M. Esposito
Vera La Ferrara
Maria Luisa Addonizio Luigi Fusco
Luigi Fusco
Emilia Gambale
Marco Della Noce
Eugenia Bobeico
Eugenia Bobeico
Laura Lancellotti
Pasquale Morvillo
Rosita Diana
os ta a a
Rosa Ricciardi
Massimo Izzi
Alberto Mittiga
g
Rosa Chierchia
Luca Serenelli
Matteo Valentini
Claudia Malerba
Luigi Abenante
Giuseppe Arabbito