La ricerca sul fotovoltaico in ENEA Paola Delli Veneri ENEA “Stato e prospettive del fotovoltaico in Italia”, Roma, 26 giugno 2014 Research on photovoltaics in ENEA Silicon based solar cells (thin film, HIT) Cu2ZnSnS4, Cu2SnS3 solar cells Organic solar cells Tecnologia Efficiency (%) Area (cm Area (cm2) Description c‐Si 25,0 4 UNSW HIT (a‐Si/c‐Si), ( Si/ Si) n‐type c‐Si Si 25 6 25,6 144 P Panasonic‐Sanyo i S a‐Si/nc‐Si/nc‐Si (thin film) 13,4 1 LG electronic CIGS (thin film ) CIGS (thin film ) 20,8 0,5 ZSW CZTSS (thin film) 12,0 0,4 IBM solution grown CdTe (thin film) 19,6 1 GE Global research Organic (thin film) 11,1 0,16 Mitsubishi Chemical Perovskite (thin film) 14,1 0,2 EPFL Martin A. Green et al., Solar cell efficiency tables (version 43),Prog. Photovolt: Res Photovolt: Res. Appl. 2014; 22:1–9 DOI: 10.1002/pip.2452 Thin film silicon based solar cells Innovative absorber and doped materials for multijunction silicon solar cells Textured substrates and new architectures for an optical p improvement of the thin film Si device performance Thin film silicon based solar cells: PECVD grown g n‐SiOx films 4.0 H2/SiH4=100, p=1.9 Torr H2/SiH4=200, p=1.9 Torr 35 3.5 H2/SiH4=200, p=3 Torr n 3.0 2.5 PECVD/VHF PECVD 2.0 0 1 2 100 CO2/SiH / 4 = 3, 1.9 Torr light = Si rich phase dark = O rich phase 4 5 6 7 6 7 1 Conductivity (S/cm) EFTEM 3 CO2/SiH4 gas flow ratio 0.01 1E-4 1E-6 1E 8 1E-8 JEOL 2010F 200KeV EFTEM @ CNR IMM Catania 1E-10 0 1 2 3 4 5 CO2/SiH4 gas flow ratio Thin film silicon based solar cells: n‐SiOx:H n SiOx:H in micromorph in micromorph devices n μc-Si:H n SiOx:H 0.8 μc-Si μ aa-Si S EQ QE 0.6 p 12.3 mA/cm2 np i n i 0.4 1.5 μm 270 nm 10.6 mA/cm2 0.2 No IL No IL 0.0 400 500 600 700 800 900 1000 Wavelength (nm) No ZnO No ZnO 14 JSC (mA A/cm2) 12 10 P. Delli Veneri, L.V. Mercaldo, I. Usatii Appl. Phys. Lett. 97, 023512 (2010); P. Delli Veneri, L.V. Mercaldo, I. Usatii, Prog. Photovolt: Res. Appl. 2013; 21:148–155 L. V. Mercaldo, P. Delli Veneri, I. Usatii, E. M. Esposito, G. Nicotra, Solar Energy Materials & Solar Cells 119 (2013) 67–72 8 6 VOC= 1.3 V 4 JSC = 12.1 mA/cm 2 0 0.0 2 FF = 71.9% η = 11.3% 0.2 0.4 0.6 0.8 Voltage (V) 1.0 1.2 1.4 Ligth trapping strategies for silicon based solar cells: Development of MOCVD grown of MOCVD grown ZnO Impianto di deposizione T t d ZnO Textured Z O As‐depsited Ar etched Ar‐etched ENEA Patent RM2008A000405 14 700 500 2 400 300 ZnO as deposited (d=2.16 μm) 200 100 00 20 30 40 Ageing time (months) 6 4 ZnO-Ar ZnO Ar etched (d=2.1 μm) 10 8 50 2 substrato ENEA substrato commerciale 0.8 10 Quantm Effic ciency 600 η =11.6% 12 ZnO as deposited (d=1.3 μm) J (mA//cm ) Shheet resistaance (ohm/ssq) 800 0.6 Better infrared spectral response with LPCVD ZnO with ith respectt to t commercial TCO 0.4 0.2 0.0 400 500 600 700 800 900 1000 Wavelength (nm) 0 0.0 0.2 0.4 0.6 0.8 1.0 Voltage (V) 1.2 1.4 Ligth trapping strategies for silicon based solar cells 100 Pyramidal structure Double textured structure Double textured ZnO Haze Factor (%)) H 80 60 54 % 40 20 8% 0 400 500 600 700 800 900 1000 1100 1200 Wavelength (nm) M. L. Addonizio and A. Antonaia, J. Phys. Chem. C 2013, 117, 24268−24276 M.L. Addonizio, A. Spadoni, A. Antonaia, Applied Surface Science 287 (2013) 311– 317 Development of textured glass Aluminium Induced Texture 9 Metal deposition 9 Thermal Th l annealing li near 600°C 9 Chemical etching WET etching In cooperation with «Federico II» of Naples University Ligth trapping strategies for silicon based solar cells: periodic and quasiperiodic p q p structures In cooperation with University of Sannio Relationship between the cell thickness and the period of textured substrates Nanostructured substrates obtained by means of Focused Ion Beam (FIB) A. Micco, A. Ricciardi, M. Pisco,V. La Ferrara, L. V. Mercaldo, P. Delli Veneri, A. Cutolo, and A. Cusano, Journal of Applied Physics 114, 063103 (2013) Heterojunction a‐Si/c‐Si solar cells Solar cell architectures BEHIND CELL BEHIND CELL Backk Enhanced Heterostructure with INter IN terD Digitated contact cell Ag p a‐Si:H a Si:H i a‐Si:H Cr n a‐Si:H i aa‐Si:H Si:H p c‐Si i a‐Si:H a Si:H SiNx Heterojunction a‐Si/c‐Si solar cells Area: 6 cm2 Current status: VOC= 644 mV JSC=37 mA/cm2 on active area FF=73% η= 17.4% Area: 6 cm2 M. Izzi , M. Tucci, L. Serenelli, P. Mangiapane, M. Della Noce, I. Usatii, E. Esposito, L.V. Mercaldo, P. Delli Veneri, Appl Phys A, 2014, Volume 115, Issue 2, 705. Heterojunction a‐Si/c‐Si solar cells: BEHIND CELL BEHIND CELL Back ack EEnhanced nhanced H Heterostructure with with IN INter terD Digitated contact cell Cross section 30 2 Front side Front side Currentt (mA/cm ) 35 25 20 15 10 5 0 0.0 R id Rear side contacts Voc = 695 mV Jsc = 35.3 mA/cm 2 FF = 60.9 % Eff = 15 % 2 Area = 6.25 6 25 cm 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Voltage (V) This structure allows to enhance cell efficiency up to 24% ENEA patent # BO2007A000717 M. Tucci, L. Serenelli, E. Salza,, S. De Iuliis, L.J. Geerligs , D. Caputo, M. Ceccarelli, G. de Cesare; Journal of non‐cryst. solids 354 (2008) 2386. Graphene/n‐Si heterojunction solar cells Graphene films are grown on coppe o copper foil substrates by a non toxic and low‐cost ethanol b d CVD based CVD near1000°C ENEA UTTMAT‐SUP Lab. 70 60 EQE(%) 50 40 30 20 10 0 400 600 800 λ(nm) 1000 1200 L. Lancellotti, E. Bobeico, A. Capasso M. Della Noce, T. Dikonimos, N. Lisi, P. Delli Veneri, submitted to IEEE xplore Cu2ZnSnS4 (CZTS), Cu2SnS3 (CTS) solar cells CZTS: Kesterite (I‐II‐IV‐V) CIGS: Chalcolpyrite (I‐III‐V) /Se III (G I ) (Ga, In) Eg g (CISe) (CISe)=1.04eV .04eV ηTEO = 31.3 % ηEXP = 20.8 % II + IV Zn + Sn Eg ≈ 1.5eV ηTEO = 32.3 % ηEXP = 9.2 % CTS: monoclinic I1/3 + IV2/3 Cu1/3 + Sn2/3 Eg(CTS) ≈ 0.93eV ηTEO = 30.5 % EXP = 2.8 % ηEXP 28% Cu2ZnSnS4 (CZTS) solar cells ML-Precursor Cu Thermal Annealing Al grid Sn ZnS AZO Molybdenum n‐CdS Soda Lime glass p‐CZTS CS-Precursor ZnS S + CuS C S + SnS S S Molybdenum Chemical Bath Deposition + AZO Sputtering p‐CZTS Molybdenum Soda Lime glass Soda Lime glass Molybdenum Soda Lime glass The best result Th b t lt has h been b obtained bt i d using co‐sputtered precursors with a thickness of 0.7μm. 0 -2 -4 4 -6 2 J (mA A/cm ) i-ZnO + AZO CdS CZTS KC192 dot 7 Voc=629 mV Jsc=15.23 mA/cm FF=59.2% Eff=5.6 % 2 A=0.1 cm 2 -8 -10 -12 MoS2 -14 Molybdenum -16 0.0 0.2 0.4 V 0.6 Cu2SnS3 (CTS) solar cells Al grid Deposizione del Precursore Cu/Sn per co-sputtering Thermal Annealing AZO n-CdS Chemical Bath D Deposition iti + AZO Sputtering p-CTS CuS + SnS Molybdenum Molybdenum Soda Lime glass Soda Lime glass p-CTS Molybdenum Soda Lime glass New efficiency record for Cu2SnS3 based solar cells!! 0 100 -5 80 Eff=3.14 % E.Q.E. % 2 J (mA/cm ) -10 Voc=240 mV 2 Jsc=27.5 mA/cm FF=47.6 % -15 60 -20 40 -25 20 -30 0.00 0.05 0.10 0.15 0.20 Voltage (V) 0.25 0.30 0 400 600 800 1000 1200 1400 wavelength (nm) R. Chierchia, E. Salza, P. Mangiapane, M. Valentini, M. Tucci and A. Mittiga, New efficiency record for Cu2SnS3 based solar cells, in preparation Polymer solar cells Donors Acceptors P. Morvillo, F. Parenti, R. Diana, C. Fontanesi, A. Mucci, F. Tassinari, L. Schenetti, Solar Energy Materials and Solar Cells, 104, 45‐52, 2012 P. Morvillo, R. Diana, C. Fontanesi, R. Ricciardi, M. Lanzi, A. Mucci, F. T i i L S h Tassinari, L. Schenetti, C. Minarini, F. Parenti, Polymer Chemistry, 5, tti C Mi i i F P ti P l Ch i t 5 2391‐2400, 2014 A. Bruno, F. Villani, I. A. Grimaldi, F. Loffredo, P. Morvillo, R. Diana, S. Haque, C. Minarini, Thin Solid Films, 560, 14‐19, 2014. Polymer solar cells: Device Architecture STANDARD INVERTED Polymer solar cells: PBDTTT‐C:[70]PCBM blend PBDTTT‐C (Solarmer Energy, Inc.) [ ] [70]PCBM (Solenne BV) 50 Photo oluminescence iintensity (a.u.) GLASSS / PBDTTT-C:[70]PCBM (1:1.5) Absorption (%) 40 30 20 10 0 400 500 600 700 Wavelength (nm) 800 900 E @570 Ex @570nm PBDTTT-C PBDTTT-C:[70]PCBM 600 650 700 750 800 Wavelength (nm) 850 900 Polymer solar cells 5 Currrent density (mA/cm2) STANDARD INVERTED 0 -5 -10 -15 -0.2 0.0 0.2 0.4 0.6 0.8 Voltage (V) ARCHITECTURE PCE Jsc Voc (%) (mA/cm2) (V) STANDARD 6.3 14.1 711 INVERTED 70 7.0 15 8 15.8 712 FF (%) 63 62 P. Morvillo, R. Diana, R. Ricciardi, E. Bobeico, C. Minarini, journal of Sol‐gel Science and Technology, 2014, submitted. Contact people ENEA laboratories: UTRINN FVC (Mario Tucci) – UTRINN FVC (Mario Tucci) ENEA Casaccia ENEA Casaccia Heterojunctions a‐Si/c‐Si, CZTS & CTS solar cells UTTP MDB (Paola Delli Veneri) – ( l ll ) ENEA Portici Thin film silicon solar cells, heterojunctions (a‐Si/c‐Si, graphene), ligth trapping strategies UTTP FOS (Alessandro Antonaia) ‐ENEA Portici TCO front electrodes, ligth , g trapping pp g strategies g UTTP NANO (Carla Minarini) ‐ENEA Portici Polymer solar cells solar cells Lucia V. Mercaldo Iurie Usatii Emila M Esposito Emila M. Esposito Vera La Ferrara Maria Luisa Addonizio Luigi Fusco Luigi Fusco Emilia Gambale Marco Della Noce Eugenia Bobeico Eugenia Bobeico Laura Lancellotti Pasquale Morvillo Rosita Diana os ta a a Rosa Ricciardi Massimo Izzi Alberto Mittiga g Rosa Chierchia Luca Serenelli Matteo Valentini Claudia Malerba Luigi Abenante Giuseppe Arabbito
© Copyright 2024 Paperzz