Rendiconti online Soc. Geol. It., Vol. n (2012), n-n (Stile: intestazione prima pagina) The geothermal System of Rosario de la Frontera (Salta, Argentina): preliminary geochemical and hydrogeological results P. P. PIERANT ONI (*), C. INVERNIZZI (*), G. GIORDANO (**), S. CORRADO (**), R. M AFFUCCI (**), A. CHIODI (***), F. TASSI (****) & J. VIRAMONT E (***) RIASSUNTO Il siste ma ge ote rmico di Rosario de la Frontera (Salta, Arge ntina): risultati geochimici e idrogeologici preliminari Questo studio è parte di un'indagine multidisciplinare delle sorgenti termali emergenti nel territorio di Rosario de La Frontera (La Candelaria Ridge, Salta, Argentina; Progetto CUIA bando 2010-11); esso è stato condotto al fine di produrre una valutazione preliminare del potenziale geotermico di questo sistema. Queste manifestazioni termali di superficie, la cui temperatura varia tra 22,7 e 93,3°C, si trovano nel settore settentrionale dell’anticlinale a direzione N-S che caratterizza l’intera Sierra Candelaria nella provincia di Salta (Argentina NW, SEGEMAR, Catálogo de Manifestaciones T ermales de la República Argentina, SEGGIARO et alii, 1997). Lo studio si basa su dati analitici relativi alla composizione chimica e isotopica ((18O2, D e 13C-CO2) di 13 campioni di acqua e 5 campioni di gas prelevati da sorgenti termali che emergono in questa area riservata. Inoltre, più di 20 stazioni strutturali sono state realizzate per caratterizzare il principale sistema di fratture. Questi dati sono importanti per valutare la permeabilità del serbatoio e per determinare le principali direzioni di flusso del fluido in profondità. Key words: Hydrothermal fluid, Rosario de la Frontera, Argentina, Geochemistry, Hydrogeologic modeling. INTRODUCTION This study is part of the multidisciplinary investigation of the thermal springs emerging in the area of Rosario de La Frontera (La Candelaria Ridge, Salta, Argentina; CUIA PROJECT call 2010-11); it is carried out in order to produce a preliminary evaluation of geothermal potential of this system. These surface thermal manifestations, whose temperature ranges from 22.7 to 93.3 °C, are located in the northern sector of the La Candelaria Ridge anticline in the province of Salta (NW Argentina; SEGEMAR, Catálogo de Manifestaciones Termales de la República Argentina; SEGGIARO et alii, 1997). The study is based on analytical evidence of the chemical and isotopic composition ((18 O2 , D e 13 C-CO2 ) of 13 water samples _________________________ (*) Scuola di Scienze e T ecnologie, Sezione di Geologia, Università degli Studi di Camerino, 62032 Camerino (MC). (**) Dipartimento di Scienze Geologiche, Università degli Studi “Roma T re”, 00146 Roma. (***) Instituto Geonorte, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina. (****) Dipartimento di Scienze delle T erra, Università di Firenze, 50121 Firenze. and 5 gas samples taken from hot springs emerging in this restricted area. Furthermore, more than 80 stations for structural data acquisition have been performer in order to recognize main fracture system network. These data are important to evaluate the reservoir permeability and to determine main fluid flow directions at depth. GEOLOGICAL SETTING The thermal area of Rosario de la Frontera (25 º 50,047 'S - 64 º 55,715' W) is located north of La Candelaria Ridge, which pertains to Santa Bárbara System (Salta, Argentina; Fig. 1). Santa Barbara System is a thick-skin fold and thrust belt formed by relatively short and broad anticlines with axes striking from NS and NE-SW. The main structure of the Sierra de La Candelaria is a N-S trending periclinalic and asymmetric macro-anticline (Fig. 1), strongly plunging either to the North (below the Metan alluvial plain) and to the South, cored by neo-Proterozoic phyllite basement and draped by a Cretaceous -Quaternary sedimentary succession (ESPELT A et alii, 1975; SEGGIARO et alii, 1997). The sedimentary succession is made up of continental syn - and post-rift sequences (Cretaceous to Eoecene in age) and syn orogenic siliciclastics (Oligocene-to present in age). The anticline shows an high angle tectonic contact along the eastern limb, which can be interpreted as a reverse fault probably due to the inversion of a previous extensional structure related to the Cretaceous rifting (CRIST ALLINI et alii, 1997 and references therein; Fig. 2). An important strike-slip component along this features is probable. E-W trending extensional faults witch realize a general N-S extension offset the stratigraphic succession and the other discontinuities. They are probably related to a younger deformation phase. 2 P. AUT ORE ET ALII (ST ILE: INT EST . PAGINE PARI) Fig. 1 – La Candelaria Ridge, Argentina. Blue dots indicates the thermal springs. STRATIGRAPHY The stratigraphic succession of La Candelaria Ridge comprises three major sequences extensively outcropping along a ca. 60 km long N-S anticline. The older unit crops out in the core of the anticline. It is the Precambrian basement made up of low grade metasedimentary rocks (Medina Fm). M ARQUILLAS, 1994). The Salta Group is subdivided from bottom to top in the Pirgua, Balbuena and Santa Barbara subgroups (SALFIT Y AND M ARQUILLAS, 1994). The Early to Late Cretaceous Pirgua subgroup consists mainly of red continental conglomerates and sandstones of 1000 m average thickness (ESPELT A et alii, 1975) and represents the syn-rift stage. The Latest Cretaceous to Early Paleocene Balbuena Subgroup is 180 m thick and comprises sandstones and limestones, whereas the Paleocene to Early Eocene Santa Barbara subgroup 330 m thick, is dominantly shaly with rare carbonate intercalations. The Balbuena and Santa Barbara subgroups represent the post-rift thermal subsidence stage (BIANUCCI et alii, 1981, COMINGUEZ AND RAMOS, 1995). Post-rift deposits are in turn overlain by a thick continental foreland basin fill, related to the Andean mountain building, that was shed from Middle Miocene to Plio-Pleistocene times (GEBHARD et alii, 1974). The retrowedge basin fill includes two subgroups: Metán and Jujuy. They belong to the Oran Group (GEBHARD et alii, 1974). Main lithotypes include sandstones, siltstones and mudstones of the Anta Fm (Metán subgroup) with maximum thicknesses of about 700 m. PRELIMINARY RESULTS Fig. 2 – Geological section across the northern sector of La Candelaria Ridge. These strata are disconformably overlain by a predominantly continental succession of red beds with minor calcareous intercalations (Salta Group) of Cretaceous to Paleogene age. This marks a rift stage (S ALFIT Y AND Our results are relative to 13 hot springs water samples which show a relatively low salinity (TDS < 1000 mg/L), with the exception of three hot springs (Agua Laxante, Vicky e Salada). These latter are characterized by TDS values in the range of 5500 and 30000 mg/L. All the sampled waters have a prevalent sodium chloride composition (Fig. 3a), although the presence of sulfate ion is significant (up to 3000 mg/L). Concentration of ammonium (<0.28 mg/L) and boron (<0.51 mg/L) ions, generally used as tracer for hydrothermal origin of water, are negligible. The isotopic ratios of water (-6.7 and -37 ‰ V-SMOW for δ 18O and δD respectively), suggest a prevalent meteoric origin of fluids (Fig. 3b). Gaseous phases, associated with hot springs as bubbling gases, are mainly CO2 (between 550 and 960 3 T IT OLO DEL LAVORO (ST ILE: INT EST . DISPARI) plunging nose of the anticline where several hot springs occur. E-W system probably exerts a structural control on the distribution of the chemical and physical features of waters. On the other hand N-S, WNW-ESE, and NNE-SSW, E-W trending fractures are predominant in the reservoir rock cropping out along the eastern and western limbs of the anticline, respectively. This unit represents the main reservoir due to fractures continuity showing typical spacing of approximately 30 cm and aperture values that range from 3 mm up to 1 cm. CONCLUSIONS Our study confirms that the Pirgua subgroup is the reservoir due to its lithology, secondary permeability (continous fractures) and thickness, while the Metán subgroup, although fractured, can still be a cap rock able to preserve temperature and pressure conditions of geothermal fluids where it is kept and mainly below the Quaternary deposits surrounding La Candelaria Ridge. As a whole, the detected fracture systems affecting the principal reservoir enhanced its permeability, and allows deep circulation of meteoric water. Hydro-geochemical and isotopic preliminary results indicate a prevalent meteoric signal of the spring waters. Comparison between preliminary data from values of spring discharge in the area of Rosario de La Frontera and values of average annual rainfalls, which in La Candelaria Ridge is about 900 mm/a, allow to estimate recharge time of the reservoir in the order of some years. Further data may allow to obtain an hydraulic conductivity value for the characterization of the rocks heaps . ACKOWLEDGEMENTS Fig. 3 – a) Ion composition of watersamples (Piper diagram). b) Isotopic composition of water samples. mmol/mol), with relevant concentration of N2 (>28 mmol/mol). Sulfurosa de la Vieja Quemada, Sulfurosa and Aguas Chicas springs are characterized by relatively high concentrations of CO2, H2S (up to 3.6 mmol/mol), H2 (up to 0.022 mmol/mol) and CH4 (up to 0.087 mmol/mol), and low abundances of atmospheric gases (O2, Ar and Ne). 13C/ 12C ratio in CO2 (δ 13CCO2 from -5.16 to -3.66 ‰ V-PDB) are consistent with a prevalent mantle origin of this gas. Preliminary results from structural analyses carried out by scan lines within different lithologies allowed us to define the main characteristics of the potential geothermal reservoir and cap-rock and to identify the main fracture systems and their relationships with the macro-scale structure. Fractures orientations show six main different trends: N-S, NNESSW, WNW-ESE, NW-SE, NE-SW and E-W. Furthermore NWSE and E-W trending fractures are concentrated in the northern We kindly acknowledge Walter Baez, Lea Di Paolo and Pablo Caffe for useful discussions and their precious help in the field. Fundings: Project C.U.I.A. 2011-12 “Esplorazione e utilizzo di risorse geotermiche di media e bassa entalpia in area sub andina per lo sviluppo energetico sostenibile delle città delle province di Jujuy e Salta”, responsable C. Invernizzi. REFERENCES BIANUCCI H., A CEVEDO O., CERDÁN J., (1981) - Evolución tectosedimentaria del Grupo Salta en la Subcuenca Lomas de Olmedo (provincias de Salta y Formosa). Actas 8th Congr Geol Arg, 3, 159-172. COMÍNGUEZ A.H., RAMOS V.A., (1995) - Geometry and seismic expression of the Cretaceous Salta Rift System, Northwestern Argentina. In: Tankard A.J., Suárez R, 4 P. AUT ORE ET ALII (ST ILE: INT EST . PAGINE PARI) Welsink H.J. (Eds). Petroleum basins of South America. Am Assoc Petrol Geol, 62, 325-340 CRIST ALLINI E., COMINGUEZ A.H. AND RAMOS V.A. (1997) Deep structure of the Metan-Guachipas region: tectonic inversion in Northwestern Argentina. Journal of South American Earth Sciences, 10, 403-421. ESPELT A C.M., VIRAMONT E J. G., AND A RIAS J. E. (1975) - Area termal de Rosario de la Frontera y sus posibilidades. Actas del II Congreso Ibero-Americano de Geología Económica IV, 543-548. GEBHARD J.A., GUIDICE A.R., AND GASCON J.O., (1974) Geología de la comarca entre el Río Juramento y Arroyo las Tortugas, provincias de Salta y Jujuy. Revista de la Asociación Geológica Argentina, 29, 359–375 SALFIT Y J.A. AND M ARQUILLAS R.A. (1994) - Tectonic and sedimentary evolution of the Cretaceous–Eocene Salta Group, Argentina. In J. A. Salfity (Eds). Cretaceous tectonics of the Andes. Earth Evolution Sciences, Brunswick, Germany, Friedrich Vieweg and Sohn, 266–315. SEGEMAR - Catálogo de Manifestaciones Termales de la República Argentina. SEGGIARO, R., N. A GUILERA,J. FERRET T I , E. GALLARDO (1997) - Estructura del area geotermica de Rosario de la Frontera, Salta, Argentina. Actas vol. 1, 2, 390-394.
© Copyright 2024 Paperzz