ME 360 – H01 Name _________________________ 1) Norton text problem 4-10. Additionally - write a MATLAB m-file to plot vertical deflection of the beam as a function of position along the beam. The plot should be fully annotated with meaningful labels, titles, and legends as appropriate. See Section 4.9 and Appendix B in Norton for help with beam analysis. The MATLAB code provided below shows two ways to code beam functions. You must attach copy of your MATLAB code. % h01_demo.m - demonstration code for ME 360 H01 % HJSIII, 14.09.03 % constants L = 10; a = 4; % fill column vector from 0 to L with step 0.5 x = ( 0 : 0.5 : L )'; % number of elements in x n = length( x ); % beam <x-a> function using for-loop and if-statement for i = 1 : n, if x(i) >= a, beam1(i) = 1 + 2*x(i) - 2.5*(x(i)-a); else beam1(i) = 1 + 2*x(i); end end % beam <x-a> function using conditional-test and dot-multiply beam2 = 1 + 2*x - 2.5*(x-a).*(x>=a); % plot both figure( 1 ) clf plot( x,beam1,'r-', x,beam2,'go' ) xlabel( 'x [inches]' ) ylabel( 'beam1 and beam2 [inches]' ) title( 'Sample plot for beam <x-a> function' ) legend( 'if-else', 'conditional-test' ) % bottom of h01_demo yMAX = -128 mm from Appendix D ME 360 – H01 Name _________________________ P = (100 kg) (9.81 m/sec2) = 981 N w = 305 mm MMAX = P (1.3 m) = 1.2753x106 N.mm ( t = 32 mm E = 10.3 GPa I = w t3 / 12 = 8.329x105 mm4 c = t/2 = 16 mm ) M c 1.2753x10 6 N.mm (16 mm ) N σ= = = 24.50 = 24.50 MPa 5 4 I mm 2 8.329 x10 mm use MPa units for E in deflection equation yMAX = -128.8 mm from MATLAB code N (MPa ) mm 4 ( N [ mm ] = = mm (MPa )(mm ) ) 3 ME 360 – H01 Appendix B Fig B-3a Norton Name _________________________ ME 360 – H01 Name _________________________ Norton problem 4-10, HJSIII 20 Vertical deflection of beam [mm] 0 -20 -40 -60 -80 -100 -120 -140 0 200 400 600 800 1000 1200 1400 Position along beam [mm] % h01.m - ME 360 Norton problem 4-10 % HJSIII, 14.09.03 % a b L F E I constant values = 2000; % mm = 700; % mm = 2000; % mm = 981; % N = 10.3e3; % MPa = 8.329e5; % mm^4 % values along beam n = 100; dx = L / n; x = ( 0 : n )' * dx; % beam deflection function y_bracket = ((b-a)/b)*(x.^3).*(x>=0) + (a/b)*((x-b).^3).*(x>=b) ... - ((x-a).^3).*(x>=a) + b*(a-b)*x ; y = F * y_bracket /6 /E /I; max_deflection = min(y) % graph figure( 1 ) clf plot( x, y ) xlabel( 'Position along beam [mm]' ) ylabel( 'Vertical deflection of beam [mm]' ) title( 'Norton problem 4-10, HJSIII' ) % bottom of h01 1600 1800 2000 ME 360 – H01 Name _________________________ 2) Norton text problem 4-19. Pin length is not required. See Section 4.8 in Norton for help with direct shear. Be certain to round up to nearest standard size. dROD = 0.75 inch tension AROD = π dROD2 / 4 = 0.4418 in2 σROD = FROD / AROD = 30,000 psi FROD = σROD AROD = 13,253.6 lbf P = 10 FROD = 132,536 lbf APIN = π dPIN2 / 4 direct shear APIN = 3.3134 in2 ASHEAR = 2 APIN τ = P / ASHEAR = 20,000 psi dPIN = 2.054 in ASHEAR = P / τ = 6.6268 in2 round up to 2.125 inch DIA ME 360 – H01 Name _________________________ 3) Build a SolidWorks model of a stepped shaft that is 0.75 inch DIA by 1 inch long reduced to 0.5 inch DIA by 0.75 inches long with a 0.05 in fillet radius at the step. Attach the other end of the larger section to a 1.5 inch by 1.5 inch by 0.25 inch thick plate for future FEA studies. Include a generous fillet between the plate and larger shaft. Provide a hardcopy image of your model.
© Copyright 2024 Paperzz