University of Oldenburg and BSU Minsk Introduction to Solitons Ya Shnir Institute of Theoretical Physics and Astronomy Vilnius, 2013 KdV inverse scattering problem: examples One bound state: 4κ3n t N=1 , reflectionless potential: R(k)=0 , cn (t) = cn (0)e ∞ 1 F (x, t) = c2n e−κn x + R(k , t)eikx dk 2π n=1 N −∞ u(x) = − 3 F (x, t) = c2 (0)e−κx+8κ t l(l + 1) 2 ; λ = − κ , κ = κ1 = 1 2 cosh (x) 2 ψ=0 Sturm -Liouville equation 2 Sturm-Liouville equation (l=1): (l=1): Discrete cosh x spectrum 1 1 1 −x as x → ∞ Single normal discrete mode: ψ1 (x) = √2 cosh x → √2 2 e √ √ 4t c(0) = 2 The scattering data c(t) = 2e 8t−x F ( x , t ) = 2 e ∞ 8t−(x+y) GLM 1 −2x + 2 K (x, z ; t)e8t−(y+z) dz = 0 GLMequation: equation: K (x, y; t) + 2e = 2e ∞ x −y Ansatz: K (x, y , t) = M (x, t)e M (x, t) + 2e8t−x + 2M (x, t)e8t e−2z dz = 0 ψxx = λ + 2e8t−x M (x, t) = − 1 + e8t−2x ∂ u(x, t) = 2 K (x, x, t) = 2 sech2 (x − 4t) ∂x x One-soliton solution propagating to the right KdV inverse scattering problem: examples Two bound states: N=2 , reflectionless potential: R(k)=0 , l(l + 1) = 6; λ = −k2 , κ1 = 1; κ2 = 2 6 Two normal ψxx + λ + ψ = 0 discrete modes: cosh2 x √ −x √ √ 3 tanh x ψ1 = 2 cosh x → 6e c1(0) = 6 =⇒ c1(t) = 6e4t √ √ 32t √ √ c2(0) = 2 3 =⇒ c2(t) = 2 3e ψ2 = 23 cos1h2 x → 2 3e−x F (x, t) = 2 c2n e−κn x = 6e8t−x + 12e64t−2x n=1 GLM GLMequation: equation: ∞ K(x, y; t)+6e8t−(x+y)+12e64t−2(x−y)+ K(x, z; t) 6e8t−(y+z) + 12e64t−2(y+z) dz = 0 −y Ansatz: K (x, y , t) = M1 (x, t)e x −2y + M2 (x, t)e Collecting the coefficients at e−y and e−2y ∞ ∞ M1 + 6e8t−x + 6e8t M1 e−2z dz + M2 e−3z dz = 0 x x ∞ ∞ M2 + 12e64t−2x + 12e64t M1 e−3z dz + M2 e−4z dz = 0 x x 2-soliton solution of the GLM equation: K (x, x, t) = M1 (x, t)e−x + M2 (x, t)e−2x M 1 ( x, t ) = 6(e72t−5x − e8t−x ) 1 + 3 e8 t − 2 x + 3 e 6 4 t − 4 x + e7 2 t − 6 x 64 t − 2 x 7 2 t− 4 x 1 2 ( e + e ) M 2 ( x, t ) = − 1 + 3 e8 t − 2 x + 3 e 6 4 t − 4 x + e7 2 t − 6 x ∂ 3 + 4 cosh(2x − 8t) + cosh(4x − 64t) −x −2x u2 = 2 M1 e + M2 e = −12 ∂x [3 cosh(x − 28t) + cosh(3x − 36t)]2 Most general case: N-soliton solution N bound states, reflectionless potential: R(k)=0 F (x, t) = N c2n (t)e−κn x n=1 The ansatz for the solution of the GLM equation: K (x, y , t) = N n=1 Mn (x, t)e−κn y KdV inverse scattering problem: N-soliton solution The solution of the GLM equation is given by uN ∂2 = 2 2 ln det A(x, t) ∂x Here the N × N matrix A is defined as Amn c2n (0) −(κn −κm )x+8κ3n t = δmn + e κn + κm Asymptotically, as t → ±∞ this solution of the KdV equation represents a superposition of N single-soliton solutions propagating to the right and ordered in space by their speeds (amplitudes): uN (x, t) ∼ N n=1 2κ2n sech2 [κn (x − 4κ2n t − x± n )] The position of the n-th soliton is given by: n−1 N κn − κm κn − κm c2n (0) 1 1 ± ln ± ln − ln xn = 2κn 2κn 2κn m=1 κn + κm κ + κ n m m=n+1 The N-soliton solution is characterised by 2N parameters: κ1 . . . κN , c1 (0), . . . cN (0) The evolution is isospectral, i.e. κn = const - the solitons preserve their amplitudes (and velocities) in the interactions; the only change they undergo is an additional + − phase shift δn = xn − xn due to collisions. KdV solitons: 2-soliton solution 3 3 A(x, t) = 1 + exp κ1(x − x1) − 4κ1t + exp κ2(x − x2) − 4κ2t 2 κ1 − κ2 3 3 exp κ1(x − x1) − 4κ1t + κ2(x − x2) − 4κ2t + κ1 + κ2 ∂2 u2 = 2 2 ln A(x, t) ∂x Asymptotically, as t → ±∞ u2(x, t) ∼ 2κ21 sech2[κ1(x − 4κ21t − x1) + 2κ22 sech2[κ2(x − 4κ22t − x2)] For a two-soliton collision the outcome is the phase shift (κ1 > κ2 ) 1 δ1 = 2x1 = ln κ1 κ1 + κ2 κ1 − κ2 , 1 κ1 + κ2 δ2 = 2x2 = − ln κ2 κ1 − κ2 As a result of the interaction, the taller soliton gets an additional shift forward by the distance d1 while the shorter soliton is shifted backwards by the distance -d2. KdV solitons: 2-soliton collision Fast and slow solitons interaction for the KdV Equation Fast and slow solitons interaction for the KdV Equation 10 10 u 5 0 8 6 10 t 10 u 4 5 8 6 0 0 2 t 4 10 20 2 0 10 20 x 30 0 40 x κ1 = 1; κ2 = 2 30 40 0 KdV solitons: Hirota method Another way around: Let us apply a different approach to find the 2-soliton solution ut + 6 u ux + ux x x = 0 Step I: Substitute Substituteinto intothe theKdV KdV u = vx ∂ 2 vt + 3vx + vxxx = 0 ∂ x 1-soliton KdV √ v vθ u(θ ) = sech2 2 2 Step II: Hirota Hirotasubstitution substitution Potential PotentialKdV KdVequation: equation: √ √ vθ v (θ) = v tanh +1 2 √ √ √ 2e vθ ηx vθ √ ; = 1 + e = v = 2 η η e vθ + 1 vt + 3vx2 + vxxx = 0 v = 2ηx /η = 2∂x ln η ηxt η − ηx ηt + ηxxxx η − 4ηx ηxxx + 3ηx2x = 0 Hirota Hirotaform formofofKdV KdV(bilinear (bilinearequation) equation) n n Hirota’s Hirota’sD-operator D-operator Dx f · g ≡ (∂x1 −∂x2 ) f (x1)g(x2) n ≡ ∂y f (x + y)g(x − y) x1=x2 =x Dx4 η · η = 2(ηxxxxη − 4ηxηxxx + 3ηx2x) (Dx4 + Dx Dt )η · η = 0 y=0 Dx Dt η · η = 2(ηxt η − ηx ηt ) Hirota’s bilinear operator n n Dx f · g ≡ (∂x1 − ∂x2 ) f (x1 )g (x2 ) x 1 = x2 = x Note: the operator D acts on a product of 2 functions similar to the usual Leibniz rule, except for a crucial sign difference: Dx f · g = fx g − f gx Dx Dt f · g = f gxt − fx gt − ft gx + f gxt Dx2 f · g = fxx g − 2fx gx + gxx f 3 How to construct the soliton solutions of KdV Dx Dt + Dx η · η = 0 ? Almost ! AlmostPerturbatively Perturbatively! Trivial solution: η = 1 1 –soliton solution: η = 1 + eθ ; κ= √ v θ = κx − κ 3 t + δ0 (0) 3 η = 1 + eθ1 + eθ2 + aeθ1 +θ2 θ = κ x − κ t + δ 1 1 1 1 ; 2 (0) 3 κ1 − κ2 θ = κ x − κ t + δ 2 2 2 2 a= κ1 + κ2 ∞ N–soliton solution: η = 1 + ǫn ηn (x, t) - expansion in powers of e N n=1 η1 = eθi - N-soliton θ1 θ1 θ2 η1 = e - 1-soliton η1 = e + e - 2-soliton i=1 2–soliton solution: Nonlinear Schrödinger Equation Non -linear Schr ödinger equation: Non-linear Schrödinger equation: iψt + ψxx + 2σ |ψ |2 ψ = 0 σ = ±1 1 σ 4 2 − ψt ψ ) + |ψx | − |ψ | Lagrangian: L = 2 2 1 σ 4 2 Hamiltonian: H = | ψ | + |ψ | x Symmetries: 2 2 Translational invariance: t → t, x → x + δ x, ψ → ψ i(ψ ψt∗ ∗ Time invariance: t → t + δ t, x → x, ψ → ψ Scale invariance: t → a2 t, x → ax, ψ → ψ/a Galilean invariance: One-parameter Lie group of symmetries c ic ( x − 2 t )/ 2 t → t, x → x − c t ψ → ψ e NSE Solitons iψt + ψxx + 2σ |ψ |2 ψ = 0 iφ(t) Ansatz for the soliton solution: ψ (x, t) = u(x)e −uφt + uxx + 2σu3 = 0 dφ uxx + 2σu2 = C = const =⇒ φ = C t = dt u uxx = −2σu3 + C u X integrating factor ux (ux )2 = −σ u4 + C u2 + C0 Shape of the solitary waves depends on the sign of s (ux )2 = −u4 + C u2 + C0 u √d = dx Boundary conditions: u = u′ = 0, as x → ±∞ 2 u C−u Bright Soliton: s=1 (Focusing NLS) Simplest solution (C=1): u = sech x; φ = t =⇒ ψ = sech xeit Using Galilean and scale symmetry: Homework: Consider C=-1 2 c c2 i 2 x+(A − 4 )t ψ = A sech A(x − ct)e − ln Two-parameter family of bright solitons 1+ √ 1− u2 u =x c=2 Re y c=5 c=10 c=20 Instability of the bright soliton: for sufficiently large values of c the envelope has spatial oscillations of the same period as the carrier wave Dark Soliton: s=-1 Simplest solution (C=-1, C0=¼): 1 x −it ψ = √ tanh √ e 2 2 (ux )2 = u4 + C u2 + C0 1 x u = √ tanh √ ; φ = −t = dx 2 2 (Defocusing NLS) du u2 − 1 2 Homework: Consider C=1 Two-parameter family of dark solitons A(x − ct) i( c x(A2 + c2 )t) A 4 Using Galilean and scale symmetry: ψ = √ tanh √ e 2 2 2 c=1 Re y c=3 c=10 c=20 Focusing NSE:Breathers shallow water surface waves KdV KdVequation equation deep water surface waves NLS NLSequation equation Euler hydrodynamical equations Freak (rogue) wave: a single wave or a very short wave group with a signicantly larger steepness than the surrounding waves – Breather solution of the NLS equation ψ= cos(Ωt − 2ik) − cosh(k ) cosh(px) 2it e ; cos(Ωt) − cosh(k ) cosh(px) Ω = 2 sinh(2k ), p = 2 sinh k Note: While for a bright soliton there is always a reference frame where the envelope |ψ | is stationary, this is not so for breathers (“dynamical solitons") |ψ | Limit of zero breathing period k → 0 : t=0 t=0.5 t=1 Peregrine breather (1983) ψ = 1− x t 4(1 + 4it) 2it e 1 + 4x2 + 16t2 ZS-AKNS technique The ZS-AKNS scheme is a generalisation of the Sturm-Liouville equation Zakharov and Shabat - Ablowitz, Kaup, Newell, and Segur Consider the 2x2 spectral linear problem Note: If p(x, t) = 0 we recover the linear Sturm-Liouville equation: (ψ (2) )xx + (λ2 + q )ψ(2) = 0 ψx(1) = −iλψ(1) + q (x, t)ψ (2) ψx(2) = iλψ (2) + p(x, t)ψ (1) (1) Time evolution: ψt = A(x)ψ (1) + B (x)ψ (2) (2) ψt(2) = C (x)ψ (1) + D(x)ψ (2) D = −A; Ax = q C − pB Bx + 2iλB = qt − 2Aq ; Various solutions of this system yield different integrable PDE Cx − 2iλC = pt + 2Ar (a) (ψx(a) )t = (ψt )x ∗ We take p = −σ q σ = ±1 (1) A = −2iλ2 + iσ q q ∗ ; B = 2q λ + iqx ; C = −2σ q ∗ λ + iσ qx∗ provided that q (x, t) satisfies NLS: iqt + qxx + 2σ |q |2 q = 0 ψt = (−2iλ2 + iσ |q |2 )ψ (1) + (2q λ + iqx )ψ (2) (2) ψt = (−2σ q∗ λ + iσ qx∗ )ψ (1) + (2iλ2 − iσ |q |2 )ψ (2) NLS direct scattering problem ψx(1) = −iλψ(1) + q(x, t)ψ(2) Focusing NLS: s=1 Spectral problem: Spectral problem: ( 2) q (x, t) → 0 as x → ±∞ ψx = iλψ(2) − q∗ (x, t)ψ(1) Complex conjugation: if (ψ (1) , ψ (2) ) is an eigenvector, so is (ψ (2) ∗ , −ψ (1) ∗ ) (1) (2) −iλx , k2 eiλx ) as x → ±∞ Asymptotically (ψ , ψ ) → (k1 e (1) (2) (2) ∗ (1) ∗ Consider the set (ψ+ , ψ+ ), (ψ+ , −ψ+ ) (1) Jost solutions (2) (ψ+ , ψ+ ) → (e−iλx, 0) as x → +∞ (2)∗ (1) as a basis for solutions of the spectral problem (ψ+ , −ψ+ ∗) → (0, −eiλx) as x → +∞ Scattering problem ψ (1) = a(λ)ψ (1) + b(λ)ψ (2) ∗ − + + ψ (2) = a(λ)ψ (2) − b(x)ψ (1) ∗ − + + ( 1) ( 2) ( 1) ( 2) (ψ− , ψ− ) → (e−iλx , 0) as x → −∞ (2) (1) (ψ− ∗ , −ψ− ∗ ) → (0, −eiλx) as x → −∞ Scattering data: a(λ), b(λ) a(λ) → 1, b(λ) → 0 as |λ| → ∞ Note: Discrete spectrum is introduced as those values of l, for which eigenvectors decay both for x → +∞ and for x → −∞ (“bound states”) The discrete spectrum coincides with the zeros of the function a(λ) in the upper half-plane. NLS inverse scattering problem Recall: The inverse scattering problem – reconstruct the function q (x, t) from the scattering data, a(λ), b(λ) Consider representation with restrictions on the kernels of the Jost functions (1) ψ+ (2) ∞ = e−iλx + K1 (x, y )e−iλy dy ∞ K1 (x, y) = K2 (x, y ) = 0 as y < x x ψ+ = K2 (x, y )e−iλy dy x The boundary problem: subject to ∂ K1 ∂x + ∂ K1 ∂y = qK2 ∂ K2 ∂x − ∂ K2 ∂y = −q ∗ K1 K1 (x, y ) → 0, K2 (x, y ) → 0 as y → 0; K2 (x, x) = 12 q ∗ Spectral problem: ψx(1) = −iλψ(1) + q(x, t)ψ (2) ψx(2) = iλψ(2) − q∗ (x, t)ψ (1) if we can find K2 (x, x) from our knowledge of the scattering data, we can reconstruct q (x) from q (x) = 2K2∗ (x, x) NLS inverse scattering problem Analogue of the Gelfand-Levitan-Marchenko equation: K2∗ (x, y ) ≡ K (x, y ), ∞ K (x, y) − F ∗ (x + y ) + G(x, y , z )K (x, z )dz = 0 x Discrete spectrum data where Reflection coefficient ∞ ∞ N 1 b(λ) iλx ∗ iλn x e dλ G(x, y, z ) = F (y + s)F (s + z )ds; F (x) = −i cn e + 2 π a λ ) ( n=1 x −∞ b(λn ) λn are the N zeros of a(λ) in the upper half plane; cn = a(λn ) b(λ) One bound state: a single zero of a(λ) at λ = λ1 and reflecteonless potential: a(λ) = 0 2 i c | | 1 iλ1 (x+y ) −iλ∗ iλ1 x 1 (x+z ) G(x, y, z ) = e e F (x) = −ic1 e λ1 − λ∗1 ∞ IS data equation: 2 i|c1 | ∗ −iλ∗ (x+y) iλ1 (x+z ) −iλ∗ 1 K (x, y ) − ic1 e e e 1 (x+y) K (x, z )dz = 0 − ∗ (λ1 − λ1 ) ∗ −iλ∗ 1y Ansatz: K (x, y ) = M (x)e λ1 = α + iβ −iλ∗ 1x q (x) = 2M (x)e ic∗1 (λ1 − λ∗1 )2 e−iλ1 x M (x) = ∗ (λ1 − λ∗1 )2 − |c1 |2 e2i(λ1 −λ1 )x x = ic∗1 e−2iαx |c1 | 2β sech (2β x − ln ) |c1 | 2β Time evolution of the scattering data (1) Time evolution: Asymptotically q → 0; 2 at = −2iλ a; ψt(1) = (−2iλ2 + iq q ∗ )ψ (1) + (2λq + iqx )ψ (2) (2) ψt(2) = (−2λq ∗ + iqx∗ )ψ (1) + (2iλ2 − iq q ∗ )ψ (2) (1) (2) (1) (2) {ψ− , ψ− } → {a(λ, t)e−iλx , −b(λ, t)eiλx } as x → +∞ 2 bt = 2iλ b −2iλ2 t a(λ, t) = e a(λ, 0); 2iλ2 t b(λ, t) = e b(λ, 0) Note: The zeros of a(λ, t) (i,e. the discrete spectrum) are independent of time, 4iλ2 t cn (t) = e cn (0) This yields the single bright NLS soliton: q (x ) = ∗ i(−2αx+4(β 2 −α2 )t ic1 (0)e 2β |c1 (0)| sech (2β (x + 4αt) − ln ) |c1 (0)| 2β Apropos: Boussinesq equation Recall: The Lax pair for the KdV equation: Lψ ≡ (−∂x2x − u)ψ = λψ ψt = Aψ ≡ (−4∂x3xx − 6u∂x − 3ux )ψ Another example: The Lax pair for the Boussinesq-type equation Lψ ≡ (−∂x3xx + u∂x + v )ψ = λψ ψt = Aψ ≡ (∂x2x 2 + u)ψ 3 2 d 2 (−∂ 3 + u∂ + v ) = [A, L] = (2v ′ − u′′ )∂ + v ′′ − u′′′ − uu′ dt 3 3 u u̇˙ = 2v ′ − u′′ ; 1 4 utt = − uxxx − (uux )x 3 3 vv̇˙ = v ′′ − 23 u′′′ − 23 uu′ Boussinesq-type equations describe waves which can propagate both to the right, and to the left (“the two-way long-wave equations”). utt − uxx + 3(u2 )xx + uxxxx = 0 u ≡ u(θ) where θ = x − v t 2 2 u(x, t) = 2a sech (a(x − v t)); v = ± 1 − 4a2 Travelling wave solution has the form Fermi-Pasta-Ulam system E Fermi, J Pasta, and S Ulam (1955): numerical study of the dynamics of an anharmonic chain of particles connected to their nearest neighbours by weakly nonlinear springs MANIAC-1 (Mathematical Analyzer Numerical Integrator And Computer) a f (∆u) = k∆u + α(∆u)2 mu ¨n = f (un+1 − un ) − f (un − un−1 ); ü n = 1, 2 . . . N = 64 Weak non-linearity un - displacement of the n-th particle from the equilibrium 2 2 mu ü ¨n = k(un+1 − 2un + un−1 ) + α (un+1 − un ) − (un − un−1 ) A general solution of the linearized system (a=0) is given by the expansion in the normal modes: ukn (t) = Ak sin kπna N +1 cos(ωk t + δk )) ωk = 2 k sin m kπa 2(N + 1) Fermi-Pasta-Ulam… + Mary Tsingou All numerical simulations of the Fermi-Pasta-Ulam problem were performed by Mary Tsingou Note: There is no energy transfer between the modes in the linear approximation. In the nonlinear chain (a≠0) modes become coupled. It was expected that if all the initial energy was put into a few lowest modes, the nonlinear coupling would yield equal distribution of the energy among the normal modes. However: If the energy was initially in the mode of lowest frequency, it returned almost entirely to that mode after interaction with a few other low frequency modes What Whatwas wasobserved? observed? Recurrences From Fermi-Pasta-Ulam to Boussinesq equation Continuum approximation (Zabusky and Kruskal (1965)): un (t) = u(xn , t) = u(na, t); un±1 (t) = u(xn ± a, t) Gradient expansion: a2 ′′ a3 ′′′ a4 ′′′′ un±1 (t) ≈ u(xn , t) ± au (xn , t) + u (xn , t) ± u (xn , t) + u (xn , t) + . . . 2 3! 4! ′ FPU: FPU: 2 2 mu ü ¨n = k (un+1 − 2un + un−1 ) + α (un+1 − un ) − (un − un−1 ) Boussinesq : Boussinesq: utt − c2uxx = εc2(uxuxx + δ2uxxxx) 2 2 a c2 = km ; ε = 2αka ; δ2 = 1a2ε Note: the leading order nonlinear and dispersive contributions in the r.h.s. are balanced at the same order of ε u is the horizontal velocity J. Boussinesq originally derived a system of two first-order (in time) equations for weakly nonlinear surface waves in shallow water (1881) ηt + ux + (η u)x = 0 ut + ηx + uux − uxxt = 0 h is the free surface elevation From Boussinesq equation to KdV utt − c2uxx = εc2(uxuxx + δ2uxxxx) Asymptotic miltiple-scale expansion: u(x, t) = f (θ, T ) + εv (x, t) θ = x − ct, T = εt vtt − c2 vxx = 2cfT θ + c2 fθ fθθ + c2 δ 2 fθθθθ + . . . θ̄¯ = x + ct unless the r.h.s is not zero: Note: The function v (x, t) grows linearly in θ 2cfT θ + c2 fθ fθθ + c2 δ2 fθθθθ = 0 Change of variables: q = fθ cT ; τ= 6 2 2 KdV: KdV: qτ + 6q qθ + δ qθθθ = 0 In 1965 Kruskal and Zabusky numerically studied the dynamics of the KdV equation with sinusoidal initial conditions (for small d =0.022 with periodic boundary conditions) The appearing solitary waves interact with each other elastically They have called the waves solitons since they behave like particles Explanation of the FPU reccurence as property of the system of solitons moving with different speed. Since the system studied was of finite length, solitons eventually reassembled in the (x, t) plane and approximately recreated the initial configuration The Frenkel-Kontorova model a The original FK model (1938) was proposed to describe dislocations in metals. The atoms are treated as a one-dimensional chain subjected to an external periodic potential produced by the surrounding atoms. 2V0 α 2πun n 2 L=T −V = (un+1 − un ) − V0 1 − cos − 2 2 a n n n 2π V0 (a/2π)2 2π un Rescaling I: un → ; t→ t; α → α a a m V0 mu u̇˙ 2 u ü ¨n − α(un+1 − 2un + un−1 ) = − sin un Gradient expansion: x Rescaling II: x → √ a α utt − αa2 uxx = − sin u u tt − u x x + s i n u = 0 This Thisisisthe thesine-Gordon sine-Gordonequation equation Sine-Gordon model: Josephson junctions Superconducting transmission line Capacitance C per unit length Inductance L per unit length Critical current I0 per unit length Josephson phase f= f2- f1 Voltage V ∂V ∂I = −L ∂x ∂t shunt current ∂I ∂V = −C − I0 sin φ ∂x ∂t Swihart Swihartvelocity: velocity: √ c = 1/ LC ∂ ∂x ∂φ 2eL =− I ∂x 1 ∂ 2φ ∂ 2φ 1 sin φ = 0 − + 2 2 2 2 c ∂t ∂x λ sine-Gordon sine-Gordonequation! equation! ∂φ 2eV = ∂t Josephson Josephsonlength length λ = /2eLI0 Sine-Gordon model: scalar field theory L= U (φ) 1 ∂µ φ∂ µ φ − U (φ); 2 U (φ) = 1 − cos φ Note: The model is Lorentz-invariant Symmetry: Field equation: φtt − φxx + sin φ = 0 φ → φ ± 2π n, n ∈ Z Non-trivial static solutions: the function f(x) interpolates between φ(−∞) = 0 and φ(+∞) = 2π 1 2 dφ dx 2 Integration: φxx = sin φ = − cos φ + C X integrating factor Boundary condition: φx → 0 as x → ±∞ dφ dx C=1 It looks like an equation of motion of a “particle” in the effective potential Separating the variables: x − x0 = ± Kink solution: dφ =± 2( 1 − c os φ) φ = ±4 arctan exp (x − x0 ) dφ = 2 si n (φ / 2 ) d( l n t an φ ) 4 x − vt √ x → Busted kink: 1 − v2 Sine-Gordon model: scalar field theory Note: Unlike KdV solitary wave the function f(x) does not go to 0 as x → ±∞ The amplitude of the SG soliton is independent of its velocity SG soliton is topological φK The SG model is integrable The SG model is relativistic-invariant φ2 φ4 +... + For small f(x) 1 − cos φ ≈ 2 4 1 4 L = ∂µ φ∂ µ φ − (φ2 − 1)2 f model 2 Kink solution: φK ¯ K̄ −x+x0 φK K ) ¯ = ±4 arctan(e K̄ 4 E = Energy density: cosh2 (x − x0 ) Topological charge: Topological current: Q= 1 2π Jµ = Mass of the kink: ∞ M= dx ∂∂φx - n-fold cover of [0,2̟] −∞ 1 εµν ∂ ν φ, 2π ∂ µ Jµ ≡ 0 Note: This is not a Noether current! E dx = 8 Sine-Gordon model is integrable! Bäcklund transformation: if we have a solution of an integrable system, even a trivial one, there is a transformation which transforms it into a new non-trivial solution. Example I: Laplace equation in 2d ∆u(x, y ) = (∂x2 + ∂y2 )u = 0 Let us take another equation for a new function v (x, y ) : ∆v (x, y ) = (∂x2 + ∂y2 )v = 0 Note: the functions u(x, t) and v (x, t) are not independent: ∂x u = ∂y v ; ∂y u = −∂x v Indeed ∂x (∂x u) = ∂x (∂y v ), Bäcklund Bäcklundtransformation transformation ∂y (∂y u) = −∂y (∂x v ) , so sum of these two equations yields the original Laplace equation. Now we take the trivial solution v(x,y) = xy and plug it into the Bäcklund transformation: ux = x; uy = −y i.e. u = 1 2 2 2 x −y Bäcklund transformation for the sine-Gordon model Light cone coordinates: x± = 12 (x ± t) ∂x = 12 ∂+ + 12 ∂− ; ∂t = 12 ∂+ − 12 ∂− ∂t2 − ∂x2 = −∂− ∂+ Then the SG equation becomes ∂− ∂+ φ = sin φ Consider the pair of equations: SG SGBäcklund Bäcklundtransformation transformation φ+ψ φ−ψ 2 , ∂− ψ = −∂− φ + sin 2 2 λ φ+ψ φ−ψ sin = ∂− ∂+ φ + sin φ − sin ψ ∂− ∂+ ψ = ∂− ∂+ φ − 2 cos 2 2 If ∂− ∂+ φ = sin φ, then ∂− ∂+ ψ = sin ψ ∂+ ψ = ∂+ φ − 2λ sin Start with the trivial vacuum solution: f=0 Homework: Prove it! −1 ψ = 4 arctan(e−λx+ − λ x− ) ∂+ψ = −2λ sin(ψ/2); ∂−ψ = −2λ sin(ψ/2) 2 x − vt 1 λ − −1 Back to original coordinates: λx+ + λ x− = ± √ v= 2 1−v 1 + λ2 −1 Kink solution: ± √x−v t2 φK K ¯ = ±4 arctan(e K̄ 1−v ) Bäcklund transformation for the sine-Gordon model λ1 SG two-soliton solution: ψ1 φ0 λ2 λ2 φ2 ψ2 λ1 Elimitating the derivatives in the SG Bäcklund transformation, we obtain (f0=0) tan Recall: θ1,2 ψ1,2 = 4 arctan e φ2 4 = λ1 + λ2 λ1 − λ2 tan ψ2 − ψ1 2 1 2 one-soliton solutions −1 θ1,2 = λi x + λi t + Ci 2 θ1 λ1 + λ2 e − eθ2 two-soliton solution φ2 = 4 arctan λ1 − λ2 1 + eθ1 +θ2 θ1 θ2 θ1 θ2 e − e e / e −1 −θ1 Consider asymptotic: θ2 ≫ 1 e → ∼ − 1 + eθ1 +θ2 e−θ2 + eθ1 1 1 − λ21 The symmetric 2-kink solution λ2 = − ; v = , λ1 > 0 (head-on collision, identical velocities): λ1 1 + λ21 ! x ∞ v sinh √1−v2 1 ∂ φ2 Q = d x =2 φ2 = 4 arctan Topological charge: vt 2 π ∂ x √ cosh 1−v2 −∞ sine-Gordon model: 2-soliton interactions KK-collison v=0.8 φ2 = 4 arctan v sinh √1x−v2 cosh √1v−t v2 ! φ2 Asymptotic: θ → ±∞ The phase shift: δ = 2 v 2 − 1 ln v KK-collison v=0.8 φ2 = 4 a rc t a n Breather: iω v=√ 1 − ω2 1 1 − λ21 ; v= , λ1 > 0 λ2 = λ1 1 + λ21 ! sinh √1v−t v2 v cosh √1x−v 2 ! ! √ 1 − ω2 si n ω t √ φ2 = 4 a rc t a n ω cosh 1 − ω 2 x x t φ2 t x x t sine-Gordon model: Lax pair formulation Recall: Lax pair is given by two linear equations ψxt = Lt ψ + Lψt ; ψtx = Ax ψ + Aψx . ψt = Aψ ψ= Lt ψ + LAψ = Ax ψ + ALψ ; ψ11 ψ21 ψ12 ψ22 Lt − Ax = [A, L] Zero curvature condition sine-Gordon: iutx Lt = · σ1 ; 2 [A, L] = ψx = Lψ ; i 0 ux i 1 0 L = iλ + = iλ · σ3 + ux · σ1 ; λ ∈ C 0 −1 2 ux 0 2 cos u 1 0 1 0 −i cos u 1 A= + = · σ3 + · σ2 4iλ 0 −1 4iλ i 0 4iλ 4iλ 1 1 ux sin u · σ3 + Ax = − ux · σ2 4iλ 4iλ i i i · σ2 − · σ3 + sin u · σ1 4λ 4λ 2 in 0th order in λ sine-Gordon equation is recovered! iutx i · σ1 = sin u · σ1 2 2 sine-Gordon ↔ massive Thirring model S= 1 α d2 x ∂µ φ∂ µ φ − 2 (1 − cos β φ) 2 β Thirring model S= sine-Gordon model " # g µ µ d x iψ ψ̄¯γµ ∂ ψ + mψ ψ̄¯ψ − (ψ ψ̄¯γµ ψ )(ψ ψ̄¯γ ψ ) 2 2 γ0 = σ1 , γ1 = −iσ2 , γ5 = γ0 γ1 = σ3 Invariancies: φ → φ′ = φ + 2πβn ; Bosonization: 1 ∓ γ5 α ±iφ ¯ mψ ψ = − 2e ψ̄ 2 β ψ → ψ′ = eiαV ψ; ψ → ψ′ = eiγ5 αA ψ Meson states → fermion-anti fermion bound states β2 4π = 1 1+g /π (S.Coleman, 1975) Soliton → fundamental fermion 1 ν The topological current of the sine-Gordon model Jµ = 2π εµν ∂ φ ψ̄¯γµ ∂ µ ψ coincides with the Noether current of the massive Thirring model jµ = iψ Solitons vs. Solitary Waves Equation S-G: ¨ − φ′′ + sin φ = 0 φ φ̈ λφ 4 : φ φ̈¨ − φ′′ − φ + φ3 = 0 Solution YES NO! −x+x0 φK K ) ¯ = ±4 arctan (e K̄ φK K ¯ = ±a tanh K̄ m(x−x0 ) √ 2 How do we know if it is integrable or it is a non-integrable? Historically, combination of “experimental mathematics” (φ4) and known analytic solutions (S-G), then inverse scattering transform, group theoretic structure (Kac-Moody Algebras), Painlevé test. Does any part of “hierarchy” of solitons in integrable theories (S-G breather) exist in non-intergrable theories? Topology primer: maps and windings Kinks in 2d: +∞ Space: Vacuum: -∞ +1 Maps: -1 Topological charge: Q = 1 2 ∞ dx ∂∂φx = φ(∞) − φ(−∞) −∞ Circles: S1 →S1 Space: Vacuum: φα = (sin ϕ; cos ϕ) Maps: Circles: S1 →S1 Topological charge: 2π α d φ Q = 21π dϕ εαβ φβ dϕ 0 Vacuum: Q=0: φα = (0, 1) Q=1: φα = (sin ϕ; cos ϕ) Q=2: φα = (sin 2ϕ; cos 2ϕ) Scaling agruments: Derrick’s theorem Consider a model with scalar field in d-dim d E [φ] = d x [∂µ φ∂ µ φ + U (φ)] = E2 + E0 Scale transformation: Dx → Dy = λDx; ∂µ φ(Dx) = dd x → dd (λx)λ−d = λ−d dd y ∂ φ(# x) ∂ xµ → λ ∂∂ (φλ(λxµ#x)) = λ ∂∂φy(µy#) E [φ] → λ2−d E2 + λ−d E0 Each term is positive. If there is a stationary point of E(λ)? dE [λφ] dλ = (2 − d)λ1−d E2 − dλ−d−1 E0 d=1 d=2 d=3 For a simple model E [φ] = dd x [∂µ φ∂ µ φ + U (φ)] = E2 + E0 nontrivial solutions (E2 ≠ 0, E0 ≠ 0 ) are possible only in d=1 There are 3 possibilities to evade Derrick’s theorem: • d=2: take E0 = 0, then the model is scale-invariant • Extend the model including higher derivatives in ϕ (Skyrme model in d=3, baby Skyrme model in d=2, Faddeev-Skyrme model in d=3) • Extend the model including gauge fields (monopoles in d=3, instantons in Euclidean space d=4) Dx → λDx = Dy ; Aµ (Dx) → λAµ (Dy ); E [φ] = Dµ φ(Dx) → λDµ φ(Dy); Fµν (Dx) → λ2 Fµν (Dy ) 2 2 d x |Fµν | + |Dµ φ| + U (φ) = E4 + E2 + E0 dd x E [φ] → λ4−d E4 + λ2−d E2 + λ−d E0 If we restrict ourselves to the models with quadratic terms in derivatives, there are possibilities: • d=1: there are soliton solutions in the models with gauge and scalar fields or in pure scalar models with a potential U(ϕ) (Kinks). • d=2: there are soliton solutions in the models with gauge and scalar fields (vortices) or in pure scalar models without potential U(ϕ) (Lumps). • d=3: there are soliton solutions in the models with gauge and scalar fields (monopoles) • d=4: there are soliton solutions in the models with gauge field only (instantons) • d>4: there are no soliton solutions, higher derivatives are necessary. Alternative: one can consider time-dependent stationary configurations!
© Copyright 2025 Paperzz