ESERCIZI C ONTENTS 1. 2. 3. Calcolare le seguenti derivate (semplificando il piú possibile le espressioni) Calcolare i seguenti limiti con i teoremi di de l’Hôpital Formule di Taylor e Mac Laurin 1 2 3 1. C ALCOLARE LE SEGUENTI DERIVATE ( SEMPLIFICANDO IL PIÚ POSSIBILE LE ESPRESSIONI ) p (1) D[h (x + a)(x + b)(x + c)] i a (2) D sin(x2 − 5x + 1) + tan . h √ xi x (3) D sin 3x + cos + tan x . 5 (4) D h[sin(2x) cos(3x)]. i x (5) D sin sin(2x) . 2 h i x x (6) D 2 tan3 − 6 tan + 3x . 2 2 h x xi (7) D sin2 cot . 3 2 1 1 6 8 sin 3x − sin 3x . (8) D 24 18 1 1 2 2 (9) D − cos(5x ) − cos(x ) . 20x 4 tan 2 + cot x2 (10) D . x h i p 3 (11) D sin(7x2 ) + 1 + x2 . (12) D x log3 x − 3xlog2 x + 6x log x − 6x . q (13) D 1 + log2 x . hp i √ (14) D log x + 1 + log( x + 1) . " # r √ √ 1+x− 1−x 1−x √ (15) D log √ + 2 arctan . 1+x 1+x+ 1−x h i p (16) D 2 log(2x − 3 1 − 4x2 ) − 6 arcsin(2x) . x xe arctan x (17) D . log5 x h i (18) D (tan 2x)cot(x/2) . x−2 p 2 (19) D 2 arcsin √ − 2 + 4x − x . 6 (20) D |x2 + 1| . (21) D [| sin x| + | cos x|] . (22) D [(arctan x)x ] . h i (23) D 2arcsin(3x) + (1 − arccos(3x))2 . " r !# 1 b (24) D √ arcsin x . a b 1 2 ESERCIZI p 3x2 − 1 + log 1 + x2 + arctan x . 3 3x " √ # √ x 2 1 + x 2 + x2 √ + 2 arctan (26) D log . 1 − x2 1 − x 2 + x2 h i p (27) D exp(arctan 1 + log(2x + 3)) . " √ # x 3 1 . (28) D √ arctan 1 − x2 3 (25) D (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) 2. C ALCOLARE I SEGUENTI LIMITI CON I TEOREMI DI DE L’H ÔPITAL log cos x lim [0]. x→0 sin 2x x − arctan x lim [1/3]. x→0 x3 m m x −a lim [m/n] se m 6= n, a 6= 0. x→a xn − an 2x e −1 lim [2/3]. x→0 arcsin(3x) √ √ 3 3 √ x− 5 6 √ [2/(3 5)] . lim √ x→5 x− 5 log cos(ax) lim [a2 /b2 ]. x→0 log cos(bx) e3x − 3x − 1 lim [9/50]. x→0 sin2 (5x) 1 x sin(2x) lim 1 − . x→0 2 2 log(x − 3) lim 2 [4/7]. x→2 x + 3x − 10 x −x 2 − (e + e ) cos x [1/3]. lim x→0 x4 log x a −x lim [log a − 1]. x→1 log x 2 π √ 1 − 4 sin 6 x lim [π 3/6]. 2 x→1 1−x sin 3x − 3xex + 3x2 lim [18]. x→0 arctan x − sin x − x3 /6 √ √ ea x − 1 lim p [a b/b] . x→0 sin(bx) x e2 − 1 + x2 lim [2e2 ] . x→+∞ 1/x etan x − ex lim [1] . x→0 tan x − x sin(−2x) lim . x→0 3x log x lim [0]. x→0+ cot x cot 5x lim [1/5]. x→0 cot x log sin x lim [0]. x→0+ cot x log(x − a) lim+ [1]. x→a log(ex − ea ) 2 log(1 + ex ) lim [0] . x→+∞ cot πx tan(πx/2) lim [∞] . x→1 log(1 − x) ESERCIZI (24) (25) (26) (27) (28) (29) (30) 3 log sin 2x [1] . log sin x log x lim [1]. x→0+ log sin x √ log 3 x3 + x2 lim [1]. x→+∞ log x log sin ax lim [1] . x→0 log sin bx log x [1/2]. lim x→0 1 + 2 log sin x cos x log(x − 3) lim [cos 3]. x→3 log(ex − e3 ) π/x lim [π 2 /2]. x→0 cot(πx/2) lim x→0+ 3. F ORMULE DI T AYLOR E M AC L AURIN Scrivere i polinomi approssimanti dell’ordine n indicato e centrati in x0 delle seguenti funzioni. (1) f (x) = x3 − 2x2 + 3x + 5, n = 3, x0 = 2. (2) f (x) = x5 − 2x4 + x3 − x2 + 2x − 1, n = 5, x0 = 1. (3) f (x) = x4 − 5x3 + x2 − 3x + 4, n = 4, x0 = 4. (4) f (x) = x3 + 3x2 − 2x + 4, n = 3, x0 = −1 . (5) f (x) = x10 − 3x5 + 1, n = 10, x0 = 1. (6) f (x) = ex , n = 3, x0 = −1 . (7) f (x) = log x, n = 4, x0 = 1. 1 n = 3, x0 = a . (8) f (x) = , xx (9) f (x) = xe , n = 4, x0 = 0. x , n = 4, x0 = 2. (10) f (x) = x−1
© Copyright 2025 Paperzz