PDF Locandina - Dipartimento di Matematica

PDE’S AND GLOBAL ANALYSIS @UniMi
27-28 Novembre 2014, Milano
Dipartimento di Matematica “F. Enriques”
Sala di rappresentanza - via Saldini 50, Milano
27 Novembre
28 Novembre
14:00-14:50 Elvise Berchio
Qualitative properties of solutions to
some nonlinear elliptic equations on
Riemannian models
9:00-9:50 Laura Abatangelo
On the sharp effect of attaching a thin
handle on the spectral rate of
convergence
14:50-15:40 Matteo Muratori
Equazione dei mezzi porosi
frazionaria con peso di tipo potenza:
comportamento asintotico delle
soluzioni
9:50-10:40 Michele Rimoldi
Complete self-shrinkers confined into
some regions of the space
15:40-16:10 coffee break
11:10-12:00 Agnese Di Castro
Local behavior of fractional pminimizers
16:10-17:00 Eleonora Cinti
A quantitative weighted isoperimetric
inequality via the ABP method
17:00-17:50 Luca Rossi
Generalized principal eigenvalues for
elliptic operators in non-compact
scenarios
Organizzatori: P. Mastrolia ([email protected])
D. Monticelli ([email protected])
F. Punzo ([email protected])
10:40-11:10 coffee break
12:00-12:50 Alessandro Zilio
New results in the regularity of strongly
competing systems: the case of optimal
Lipschitz uniform estimates
Elvise Berchio (Politecnico di Torino), Qualitative properties of solutions to some nonlinear elliptic equations on
Riemannian models
A classification with respect to asymptotic behavior and stability of radial solutions to the Lane-EmdenFowler equation in a class of Riemannian models is presented. The class includes the classical hyperbolic
space as well as manifolds with sectional curvatures unbounded below. Sign properties and asymptotic
behavior of solutions are influenced by the critical Sobolev exponent while the so-called Joseph-Lundgren
exponent is involved in the stability of solutions. On the same Riemannian model, we also address the
problem of radial symmetry of least energy solutions to some families of nonlinear equations which include
the Lane-Emden-Fowler equation.
Matteo Muratori (Politecnico di Milano), Equazione dei mezzi porosi frazionaria con peso di tipo potenza:
comportamento asintotico delle soluzioni
In questo talk parlerò di un lavoro congiunto con G. Grillo e F. Punzo, nel quale ci siamo occupati di una
versione pesata dell'equazione dei mezzi porosi frazionaria. L'analisi di equazioni ellittiche e paraboliche che
coinvolgono operatori non-locali come il Laplaciano frazionario ha subito un notevole incremento d'interesse
da parte della comunità matematica negli ultimi anni. In particolare, l'equazione dei mezzi porosi frazionaria
è stata di recente studiata principalmente dalla scuola spagnola di J. L. Vázquez. Il nostro contributo consiste
nel descrivere l'effetto dell'introduzione di un peso di tipo potenza (davanti alla derivata temporale) sul
comportamento asintotico delle soluzioni di tale equazione nello spazio Euclideo. Se la potenza è sottocritica,
similmente a quanto accade per l'equazione non pesata, le soluzioni convergono a profili autosimilari, i quali
tuttavia non sono espliciti. Se la potenza è sopra-critica il comportamento è radicalmente diverso, e le
soluzioni convergono a profili semi-espliciti a separazione di variabili, riproducendo l'asintotica tipica dei
domini limitati. Nel caso sotto-critico, una dettagliata analisi dei problemi di esistenza e unicità per dati
iniziali misure di Radon si è resa necessaria in un lavoro a parte, mentre il caso sopra-critico ha richiesto lo
studio di un'opportuna equazione sublineare ellittica frazionaria. Il caso critico rimane aperto.
Eleonora Cinti (Università degli Studi di Pavia), A quantitative weighted isoperimetric inequality via the ABP
method
In a recent paper X. Cabre’, X. Ros and J. Serra obtain a new family of sharp isoperimetric inequalities with
weights in open convex cones of Rn. They prove that, under some concavity conditions on the weight,
Euclidean balls centered at the origin (intersected with the cone) minimize the weighted isoperimetric
quotient, even if the weights are nonradial —except for the constant ones. Their proof is based on the ABP
method applied to an appropriate linear Neumann problem. In this talk I will present the quantitative
version of these isoperimetric inequalities, whose proof is still based on the ABP method, combined with
some weighted trace inequality which allows to obtain the optimal exponent on the isoperimetric deficit.
This is a joint work with X. Cabre’, A. Pratelli, X. Ros and J. Serra.
Luca Rossi (Università di Padova), Generalized principal eigenvalues for elliptic operators in non-compact
scenarios
What is the analogue of the principal eigenvalue for elliptic operators with non-compact resolvents?
Focusing on the case where the lack of compactness is due to the unboundedness of the domain, we show
that the answer depends on the property one is looking for: existence of a positive eigenfunction, simplicity,
lower bound of the spectrum, characterization of the maximum principle. Indeed, there is not a unique
notion fulfilling all such properties in general. In the last part of the talk we present some recent results
concerning degenerate elliptic operators.
Laura Abatangelo (Università di Milano – Bicocca), On the sharp effect of attaching a thin handle on the spectral
rate of convergence.
Consider two domains connected by a thin tube: it can be shown that the resolvent of the Dirichlet Laplacian
is continuous with respect to the channel section parameter. This in particular implies the continuity of
isolated simple eigenvalues and the corresponding eigenfunctions with respect to domain perturbation.
Under an explicit nondegeneracy condition, we improve this information providing a sharp control of the
rate of convergence of the eigenvalues and eigenfunctions in the perturbed domain to the relative
eigenvalue and eigenfunction in the limit domain.
Michele Rimoldi (Università di Milano – Bicocca), Complete self-shrinkers confined into some regions of the
space.
We study geometric properties of complete non-compact bounded self-shrinkers for the mean curvature
flow and obtain natural restrictions that force these hypersurfaces to be compact. Furthermore, we observe
that, to a certain extent, complete self-shrinkers intersect transversally a hyperplane through the origin.
When such an intersection is compact, we deduce spectral information on the natural drifted Laplacian
associated to the self-shrinker. These results go in the direction of verifying the validity of a conjecture by
H.D. Cao concerning the polynomial volume growth of complete self-shrinkers. A finite strong maximum
principle in case the self-shrinker is confined into a cylindrical product is also presented.
This is a joint work with S. Pigola.
Agnese Di Castro (Università di Pisa), Local behavior of fractional p-minimizers
I will present an extension of the De Giorgi-Nash-Moser theory for some nonlocal integro-differential
operators.
This talk is based on a series of papers in collaboration with Tuomo Kuusi (Aalto University) and Giampiero
Palatucci (University of Parma).
Alessandro Zilio (EHESS, laboratorio CAMS di Parigi), New results in the regularity of strongly competing
systems: the case of optimal Lipschitz uniform estimates
For a class of systems of semi-linear elliptic equations, including
−∆ ui = f i ( x ,ui ) − β ui ∑ aij u jp ,
i=1,…,k,
j ≠i
for p=2 (variational-type interaction) or p=1 (symmetric-type interaction), we prove that uniform L∞
boundedness of the solutions implies uniform boundedness of their Lipschitz norm as β → ∞ , that is, in the
limit of strong competition. This extends known quasi-optimal regularity results and covers the optimal case
for this class of problems. The proof rests on monotonicity formulae of Alt-Caffarelli-Friedman and Almgren
type in the variational setting and Caffarelli-Jerison-Kenig in the symmetric one. The talk is mainly based on
a recent paper available on arXiv (http://arxiv.org/abs/1407.6674), obtained in collaboration with Nicola
Soave.