Materi Simulasi Monte Carlo Kompetensi • Mampu mengembangan percobaan percobaan secara sistematis dengan menggunakan bilangan acak Pokok Bahasan • Menetapkan distribusi probabilitas • Menetapkan distribusi kumulatif • Menentukan interval dari bilangan-bilangan acak • Menjalankan simulasi dari serangkaian percobaan. Pengantar • Simulasi Monte Carlo adalah tipe simulasi probabilistik untuk mencari penyelesaiaan masalah dengan sampling dari proses random • Dasar simulasi Monte Carlo adalah mengadakan percobaan (eksperimen) pada elemen-elemen probabilistik melalui sampling acak. Sehingga simulasi Monte Carlo mengizinkan manajer untuk menentukan beberapa kebijakan yang menyangkut kondisi perusahaan. Lima langkah simulasi Monte Carlo Langkah 1 : Menetapkan distribusi probabilitas untuk variabel-variabel utama. • Ide dasar simulasi Monte Carlo adalah membangkitkan nilai-nilai untuk variabelvariabel penyusun yang sedang dianalisa. Banyak sekali variabel pada kondisi sistem nyata yang bersifat probabilistik secara alami, misalkan permintaan , persediaan harian Langkah 1 (lanjut) • Satu cara yang sering digunakan dalam menetapkan distribusi probabilistik dari variabel yang ada adalah dengan menganalisa data-data historis. Probabilitas atau frekuensi relative untuk setiap hasil yang mungkin dari sebuah variabel di dapat dengan membagi frekuensi observasi dengan total jumlah observasi. Langkah 2 : Menetapkan distribusi kumulatif untuk setiap variabel • Setelah menentukan distribusi probabilitas, langkah selanjutnya mengubah distribusi probabilitas tersebut menjadi distribusi cumulatife dengan cara mengakumulasikan hasil dari distribusi probabilitas yang menghasilkan akumulasi dari masing-masing kelas sebagai total akumulasi dari kelas sebelumnya. Langkah 3 : Menentukan interval dari bilanganbilangan acak untuk setiap variabel. • Setelah ditentukan distribusi probabilitas kumulatif untuk setiap variabel yang terlibat dalam simulasi, selanjutnya kita menentukan bilangan bilangan tertentu untuk mempresentasikan setiap nilai atau hasil yang mungkin didapatkan. Ini sebagai acuan bilangan acak. Langkah 4 Pembangkitan Bilangan Random • Bilangan acak di bangkitkan untuk masalahmasalah simulasi dengan berbagai cara. Jika masalah tersebut sangat kompleks dan proses yang diamati melibatkan ribuan percobaan simulasi, maka suatu program komputer dapat digunakan untuk membangkitkan bilangan acak yang dibutuhkan. Langkah 4 (lanjut) • Jika simulasi dilakukan secara manual, pemilihan bilangan acak dapat dilakukan dengan memilih angka-angka dari tabel bilangan acak. Dimana setiap digit atau angka dalam tabel memiliki kesempatan yang sama untuk muncul. Langkah 5 Menjalankan percobaan. • simulasi dari serangkaian Lakukan simulasi untuk sejumlah besar pengamatan. Jumlah replikasi yang sesuai dengan cara yang sama dengan jumlah yang tepat dari suatu sampel dalam eksperimen aktual. Uji statistik yang umum mengenai signifikansi yang dapat digunakan. Langkah 5 (lanjut) • Dengan simulasi komputer, jumlah sampel yang dapat dilakukan sangat besar dan ekonomis untuk menjalankan sampel besar dengan tingkat kesalahan yang sangat kecil. Munculnya Masalah konsepsi Bilangan Acak Teori Probabilitas Model Parameter Variabel Hubungan Mengembangkan distribusi ke frekuensi kumulatif Mengubah frekuensi distribusi ke frekuensi kumulatif Jumlah random Model Simulasi Menilai model strategi YA Model perlu ditambah atau diperbaiki TIDAK KEPUTUSAN Gambar 1. Diagram Simulasi Monte Carlo Contoh 1: Permintaan Ban • Setelah melakukan pengamatan selama 200 hari, sebuah toko ban memperkirakan permintaan ban per harinya seperti pada tabel 6.1. Toko tersebut hendak memperkirakan permintaan ban untuk 10 hari kedepan. Tabel 6.1 Distribusi Permintaan Permintaan 0 1 2 3 4 5 Total Frekuensi (hari) 10 20 40 60 40 30 200 Penyelesaian Langkah 1: Menetapkan distribusi probabilitas • Tabel 6.2 Probabilitas Permintaan Ban Radial Variabel Permintaan 0 1 2 3 4 5 Total Probabilitas 10/200 = 0,05 20/200 = 0,10 40/200 = 0,20 60/200 = 0,30 40/200 = 0,20 30/200 = 0,15 200/200 =1,00 Langkah 2 : Menetapkan distribusi kumulatif • Tabel 6.3 Kumulatif Probabilitas Variabel Permintaan Probabilitas Kumulatif Probabilitas 0 1 2 3 4 5 10/200 = 0,05 20/200 = 0,10 40/200 = 0,20 60/200 = 0,30 40/200 = 0,20 30/200 = 0,15 0,05 0,15 0,35 0,65 0,85 1,00 Langkah 3 : Interval Bilangan Acak • Tabel 6.4 Interval Bilangan Acak Variabel Permintaan Probabilitas Kumulatif Probabilitas 0 1 2 3 4 5 10/200 = 0,05 20/200 = 0,10 40/200 = 0,20 60/200 = 0,30 40/200 = 0,20 30/200 = 0,15 0,05 0,15 0,35 0,65 0,85 1,00 Interval Bilangan Acak 01 – 05 06 – 15 16 – 35 36 – 65 66 – 85 86 - 99 Langkah 4 : Pembangkit Bilangan Acak • Tabel 6.5 Penarikan Bilangan Acak 1 2 3 4 5 6 7 8 9 10 52 37 82 69 98 96 33 50 88 90 Langkah 5 : Menjalankan Simulasi • Tabel 6.6 Simulasi Permintaan Hari Bilangan Acak Hasil Simulasi 1 2 3 4 5 6 7 8 9 10 52 37 82 69 98 96 33 50 88 90 3 3 4 4 5 5 2 3 5 5 Total 39 Rata rata permintaan per hari : 39/10 = 3,9 ban Cara ekspektasi: 5 E = ∑ (probablitas dari ban) x ( permintaan ban) i=0 = (0,05)(0) + (0,10)(1) + (0,20)(2) + (0,30)(3) + (0,20)(4) + (0,15)(5) = 2,95 ban Kalau dilakukan 100 kali penarikan bilangan acak akan terlihat jelas permintaan ban sesuai dengan masa lalu yang disimulasikan ************ Contoh 2 Permintaan Sepatu Tabel 6.7 Distribusi Permintaan No urut Permintaan/ hari Frekuensi Permintaan 1 2 3 4 5 6 4 psg 5 psg 6 psg 7 psg 8 psg 9 psg Jumlah 5 10 15 30 25 15 100 Tabel 6.7 Interval Bilangan Acak No Urut Permintaan/hari Probabilitas Kumulatif Distribusi Interval Bilangan Acak 1 2 3 4 5 6 4 psg 5 psg 6 psg 7 psg 8 psg 9 psg 0,05 0,10 0,15 0,30 0,25 0,15 0,05 0,15 0,30 0,60 0,85 1.00 00 - 05 06 - 15 16 - 30 31 - 60 61 - 85 86 - 99 Tabel 6.9 Simulasi Kebutuhan Sepatu Hari 1 2 3 4 5 6 7 8 9 10 Bilangan Acak 0,5751 0,1270 0.7039 0,3853 0,9166 0,2888 0,9518 0,7348 0,1347 0,9014 Kebutuhan Sepatu 7 5 8 7 9 6 9 8 5 9 Rata rata permintaan per hari : 73/10 = 7,3 psg Cara ekspektasi: 6 E = ∑ (probablitas dari sepatu) x ( permintaansepatu) i=0 = (0,05)(4) + (0,10)(5) + -----------------------+ (0,15)(9) = 7,05 psg Kalau dilakukan 100 kali penarikan bilangan acak akan terlihat jelas permintaan ban sesuai dengan masa lalu yang disimulasikan ************ Soal soal : no 1 • Berdasarkan data yang lalu dengan pengamatan selama 50 minggu didapat data penjualan dispenser , sebagai berikut : Penjualan /minggu 4 5 6 7 8 9 10 Jumlah Minggu 6 5 9 12 8 7 3 Bilangan acak (20) 1 2 3 4 5 6 7 8 9 10 10 24 3 32 23 59 95 34 34 51 11 12 13 14 15 16 17 18 19 20 8 48 66 97 3 96 46 74 77 44 Pertanyaan : 1. Berdasarkan hasil simulasi untuk 20 minggu ke depan, periode ke berapa saja yang terjual 8 dispenser 2. Rata-rata penjualan per minggu dari hasil simulasi 3. Nilai ekspektasi (E) penjualan Kunci Jawaban 1. Periode : 7, 14 dan 16 2. 6,75 per minggu 3. 6,88 dispenser
© Copyright 2024 Paperzz