download

Matakuliah
Tahun
: F0274 – Manajemen Keuangan Perusahaan
: Sept 2006
ARUS KAS
DAN
RESIKO PROYEK
Pert.17-18
1
Estimasi Arus Kas
Arus Kas adalah kas bersih yang keluar dan masuk ke dalam
suatu perusahaan. Arus kas berbeda dari laba akuntansi.
Identifikasi Arus Kas Yang Relevan
Adalah arus kas tertentu yang harus dipertimbangkan dalam
mengambil keputusan sehubungan dengan penganggaran
barang modal.
Arus kas vs Laba Akuntansi
Dalam analisa penganggaran barang modal, yang digunakan
adalah arus kas tahunan, dan bukan laba akuntansi (laba atas
modal yang yang ditanamkan). Penyusutan merupakan pemulihan
sebagian modal yang ditanamkan, sehingga :
NCF = EAT + Depreciarion
atau Laba atas modal + Pemulihan modal
Arus kas Inkremental (Incremental Cash Flow)
Adalah arus kas bersih yang dihasilkan langsung oleh suatu
proyek investasi.
2
Empat masalah dalam menentukan arus kas inkremental.
1. Biaya terpendam (Sunk Cost)
Adalah pengeluaran tunai yang telah dilakukan dan tidak dapat
ditutup dengan disetujui atau tidaknya proyek Sunk Cost tidak
dimasukkan dalam aliran kas dari proyek.
2. Biaya opportunities / kesempatan (Opportunity cost)
Adalah hasil terbaik dari alternatif penggunaan aktiva, yaitu hasil
terbaik yang tidak akan diperoleh jika dana yang ada diinvestasikan
pada proyek tertentu. Biaya kesempatan harus dimasukkan sebagai
tambahan aliran kas keluar pada saat menentukan aliran kas keluar
pada proyek yang diusulkan.
3. Biaya eksternalitas
Adalah suatu pengaruh suatu proyek terhadap arus kas pada bagian
lain perusahaan tersebut.
4. Biaya pengiriman dan pemasangan
Adalah perusahaan membeli suatu aktiva perusahaan tersebut harus
menanggung biaya pengiriman dan pemasangan (installation cost)
3
dari aktiva yang dibeli.
Perubahan Modal Kerja Bersih (Change in net working capital)
adalah kenaikan aktiva lancar yang diakibatkan oleh proyek
baru dikurangi dengan kenaikan kewajiban lancar yang terjadi
secara spontan.
Evaluasi Proyek Capital Budgeting.
 Proyek Perluasan
Adalah proyek yang dimaksudkan untuk meningkatkan
penjualan.
 Analisa Arus Kas proyek perluasan
1. Ikhtisar pengeluaran investasi yang diperlukan untuk
proyek.
2. Analisis arus kas setelah produksi dimulai.
3. Mengambil keputusan .
Tiga Resiko Proyek yang saling berbeda
1. Resiko berdikari (Stand Alone Risk = SAR)
Adalah resiko khusus dari suatu proyek (aktiva) tanpa dikaitkan sama
sekali dengan proyek aktiva lain yang mungkin dimiliki. Resiko ini
diukur dari variabilitas tingkat pengembalian yang diharapkan atas
4
aktiva/proyek tersebut.
2. Resiko di dalam perusahaan (Within firm risk atau corporate
risk).
Adalah resiko diukur tanpa mempertimbangkan diversifikasi
portofolio dari pemegang saham. Resiko ini diukur dari variabilitas
laba perusahaan yang diabaikan oleh suatu proyek tertentu.
3. Resiko pasar atau beta (Market or Beta risk)
Adalah bagian resiko proyek yang tidak dapat dieliminasi melalui
diversifikasi. Resiko ini diukur dengan koefisien beta proyek.
Analisa resiko beta (pasar) dapat diukur dengan menggunakan
CAPM dan SML yang menyatakan hubungannya dengan
resiko.
kS  kRF  kM  kRF bt
Analisis Sensitivas
Adalah suatu teknik untuk menganalisa resiko dengan mengubah
ubah variabel-variabel kunci dan mengamati pengaruhnya terhadap
NPV dan tingkat pengembalian (laba). Jadi analisa sensivitas dapat
memberikan wawasan yang lebih mendalam dan bermanfaat atas
tingkat resiko proyek. Analisis sensivitas termasuk Stand Alone Risk.
Analisis ini dimulai dengan memprediksi nilai-nilai yang dipakai untuk
menghitung NPV seperti unit penjualan, harga jual, biaya variable dan
biaya modal. Kemudian terjadi “ What if” , bagaimana NPV jika biaya
naik atau turun 10% atau 20%
Contoh :
Proyek Cash inflow dengan estimate life 15 tahun dan discount factor
10%.
Keterangan
Proyek A ($000)
B($000)
Initial outlays
20.000
20.000
Estimasi NCF
- Pesimis
(3.000)
0
- Dasar/normal 4.000
4.000
- Optimis
5.000
8.000
Range
2.000
8.000
Dengan range cash flow proyek A dan B, resiko proyek A lebih kecil
dari proyek B, karena range hanya sebesar $2.000 atau $ 5.000-$
3.000 dibanding proyek B =$ 8.000 atau $ 8.000- 0 .
6
Dicari NPV dengan “Dasar/normal atau paling memungkinkan” .
NPVproyek A cash flow Pesimis.
NPV
= PV cash flow – PV investasi.
= (CF x PVIFA10%,15) - $ 20.000
= (3.000 x 7,606) - $ 20.000
= $ 2.818
NPV proyek B cash flow pesimis
NPV
= PV cash flow – PV investasi
= (CF x PVIFA10%, 15) - $ 20.000
= (0 x 7,606) - $ 20.000
= ($ 20.000)
NPV Normal
= (4.000 x 7,606) - 20.000
= $ 10.424
NPV Optimis proyek A = (5.000 x 7,606) - 20.000
= $ 18.030
NPV Optimis proyek B = 8.000 x 7,606
= $ 40.848
7
NPV masing-masing
memungkinkan”
Kemungkinan
Cash flow
Pesimis
Normal
Optimis
Range
proyek
pada
NPV
Proyek A
2.818
10.424
18.030
15.212
“Dasar-normal-atau
NPV
Proyek B
(20.000)
10.424
40.848
60.848
Dalam sentivity analysis ini bahwa NPV A $ 15.212 dan B $
60.848, maka resiko proyek B lebih besar dari proyek A.
8
Contoh lainnya yang lebih jelas:
Misalkan suatu perusahaan menerima proposal investasi $
2juta dengan umur 4 tahun tanpa nilai residu. Net Cash Flow
tahunan adalah berikut ini:
Income
Net Cash
Statement
Flow
Sales ( 2.000u X $ 3,5)
Variable cost 30%
Fixed cost
Depresiasi
EBT
Tax 40%
EAT
Net Cash Flow
7.000
2.100
1.600
500
2.800
1.120
1.680
2.180
7.000
2.100
1.600
-1.120
2.180
9
Diasumsikan tingkat keuntungan yang diharapkan(expected rate
of return) 10%, maka
NPV = -2.000 + 2.180 + 2.180 + 2.180 + 2.180
(1,1)^1 (1,1)^2 (1,1)^3 (1,1)^4
= -2.000 + 2.180 + 2.180 + 2.180 + 2.180
1,1
1,21
1,331
1,464
= -2.000 + 1.981,818 + 1.801,653 + 1.637,866 + 1.489,071
= -2.000 + 6.910,408
= 4.910,408
10
Proyek ini diterima. Bagaimana resikonya? Jika variabel-variabel
yang digunakan mengalami perubahan, maka akibatnya
perubahan terjadi kepada NPV. karena kenaikan/penurunan
penjualan, harga per unit berubah, dan biaya-biaya juga berubah.
Perubahan ini mengakibatkan “sensitivas” bagi perusahaan.
Umumnya manajemen dihadapkan kepada
pesimis, normal
(diharapkan) dan optimis, yang dapat digambarkan berikut ini:
Parameter
Unit terjual
Harga/unit/$
Variable cost
Fixed cost
Investasi awal
Pesimis
Normal
Optimis
1.900
2.000
2.100
$ 3,40
$
3,50
$
3,60
30% …> dari…..> sales
$ 1.650
1.600
1.550
$ 2.200
2.000
1.800
Kalau perusahaan berpendapat kepada pemikiran pesimis maka
NCF dan NPV dapat dicari.
11
Income statement
Sales(1900u x $3,4)
6.460
V.Cost(30% x $6.460)
1.938
Fixed cost
1.650
Depresiasi($2.200/4thn)
550
EBT
2.322
Tax(40% x $2.455)
989
EAT
1.393
NCF
1.883
NCF
6.460
1.938
1.650
989
1.883
NPV = -2.200 + 1.883 + 1.883 + 1.883 + 1.883
(1,1)^1 (1,1)^2 (1,1)^3 (1,1)^4
= -2.200 + 1.883 + 1.883 + 1.883 + 1.883
1,1
1,21
1,331 1,464
= -2.200 + 1.711,818 + 1.556,198 + 1.414.726 + 1.286,202
= -2.200 + 5.968,944
= 3768,944
12
Dengan adanya perubahan variabilitas dari normal ke
pesimis, maka NPV berubah secara drastis sebesar $
4.910,408 - $ 3768,944 = $ 1141,464, hal ini merupakan
“sensitive” untuk penurunan NPV tersebut.
Jika biaya variable meleset sedikit dari prediksi,
akibatnya NPV turun drastis. Jadi setiap perubahan
dalam variabal-variabel yag terjadi pada perusahaan
mengalami “sensitivitas”. Kalau dicari untuk terbaik
optimis maka NPV hasilnya.
13
* Analisis Skenario (Scenario analysis)
Adalah tehnik untuk menganalisa resiko dengan membandingkan
situasi yang paling memungkinkan atas skenario dasar (semacam
situasi normal) dengan keadaan yang “baik” dan “buruk”.
Atau
disebut
juga
suatu
tehnik
analisis
resiko
yang
mempertimbangkan baik sensitivas NPV terhadap perubahan
variabel-variabel kunci maupun rentangan (range) dari nilai-nilai
variabel yang sangat menguntungkan.
Dalam analisis skenario probabilitas karena rantangan nilai yang
paling memungkiankan
bagi variable-variabel tercermin dalam
distribusi probabilitas.
Analisis Skenario dan NPV yang diharapkan
Contoh:
Hasil analisis skenario sangat berguna untuk menentukan NPV yang
diharapkan, deviasi standar dari NPV, dan koefisien varians (CV).
Untuk mengestimasi ketiga skenario tersebut dinyatakan p1
(probabilitas).
14


n
NPV yg diharapkan   P1NPV
t
i1
n
Deviasi standar NPV  σ   P1NPVi  NPV yang diharapkan 2
i1
σ NPV
Koefisien varians  CV

NPV ΕNPV 
Kita pergunakan data dari analisis sensivitas dan diadakan
probabilitas untuk parameter terburuk/pesimis, normal (nilai
dasar) dan terbaik/optimis. Analisis skenario dapat dihitung
seperti
Skenario Probabiltas Sales/U Price/$
Terburuk
25%
1.900
3,4
Normal
50%
2.000
3,5
Terbaik
25%
2.100
3,6
NPV/$
3.768,944
4.910,408
5.887,036
15
* NPV yg diharapkan


n
  P1NPV
t
i 1
 0,25(761)  0,5(1.102)  0,25(1.750)
 $1.178
* Deviasi standar NPV  σ
n
  P1NPVi  NPV yang diharapkan 2
i 1
 {(0,25(761 - 1.179))^2  (0,5(1.102 - 1,178))^2  (0,25( 1.750 - 1.178))^2)}
 - 43.681 - 2.888  81.796
 188
* Koefisien varians CVNPV
σ NPV
ΕNPV 
 188
1.178
 0,16

Hal ini menunjukka n bahwa resiko proyek tid ak signifikan atau relative kecil.
16
Tiga jenis analisis skenario
1. Skenario terburuk (Worst case scenario)
Adalah keadaan dimana untuk semua variabel masukan
diberikan nilai terburuk berdasarkan perkiraan yang
wajar.
2. Skenario terbaik (Best case scenario)
Adalah keadaan dimana untuk semua variabel masukan
diberikan nilai terbaik berdasarkan perkiraan yang wajar.
3. Skenario dasar (Base scenario)
Adalah keadaan dimana untuk semua variabel diberikan
nilai yang paling menguntungkan.
Analisis Simulasi (Monte Carlo)
17
Analisis Proyek–Proyek dengan umur berbeda
Jika suatu proyek mandiri, umur proyek tidak penting, tetapi jika
proyek itu umurnya dan aliran kas masuk tidak sama dan saling
bersaing meniadakan maka untuk menghitung NPV, maka
proyek tersebut diulang hingga mempunyai masa akhir yang
sama (asumsi proyek tidak unik).
Pendekatan untuk mengevaluasi proyek yang umurnya tidak
sama dapat juga dilakukan dengan “Annualized NPV Approach
= ANPV)” yaitu suatu tehnik pendekatan untuk perhitungan NPV
sekarang tahunan untuk dua atau lebih proyek yang bersaing
menyediakan, ANPA sama dengan EAS = Equivalent Annual
Series (seri anuitas seragam).
AVPVA  EAS 
NPVx
PVIFA k, n
18
Contoh :
PT Mulia Tio mempunyai dua proyek yaitu proyek A dengan
nilai investasi $ 130.000 dan proyek B dengan nilai investasi &
150.000. Biaya modal ditetapkan 10%.
Aliran Kas Masuk dan umur proyek adalah sbb:
_____________________________________________________________
Aliran Kas Masuk (Net Cash In Flow)
Tahun
----------------------------------------------------------------
Proyek A
Proyek B
_____________________________________________________________
1
2
3
4
5
6
$ 64.000
66.000
76.000
-------
$ 80.000
60.000
50.000
40.000
30.000
20.000
19
PV Proyek A (dicari dengan df/biaya modal 10%)
PV proyek B
= $ 39.768
= $ 67.060
Bila tidak memperhatikan umur dari kedua proyek tersebut, maka yang
lebih baik dan menarik adalah proyek B.
Tetapi kedua proyek ini berbeda umur maka dicari Annualized NPV :
Langkah 1: PV proyek A = $ 39.768, poryek B = $ 67.060, disini
Tidak diperhatikan faktur umur proyek tersebut.
Langkah 2 : ANPV Proyek A = NPV/ PFIFA (10%) ,3 thn
= $ 39.768/ 2,487 = $ 15.990
ANPV Proyek B = $ 67.060 / 4,355 = $ 15.398
Langkah 3: Dengan memperhatikan perhitungan pada langkah
kedua maka proyek A lebih menarik daripada proyek
B. Proyek A dan B adalah proyek bersaing
meniadakan satu sama lain, sehingga proyek B
direkomendasikan untuk dilaksanakan dari metode
proyek-proyek umur berbeda.
20
Capital Asset Pricing Model ( CAPM)
Seperti dibahas pada pertemuan sebelumnya maka CAPM dalam
pertemuan ini dibahas lebih lanjut. CAPM dirumuskan oleh dua orang
yang bekerja secara independen yaitu William Sharpe (1964) dan John
Lintner (1965). William Sharpe mendapat “ hadiah Nobel” untuk
jasanya tahun 1990.
> Short Sales
Dalam asumsi CAPM perlu mendapat perhatian adalah “ short sales
yaitu penjualan asset yang dipinjam. “Short sales” dilakukan jika
perusahaan mengantisipasi penurunan harga. Contohnya: harga saham
saat ini $1.000/lbr, kemudian diantisipasi penurunan harga. Saat ini,
perusahaan mempunyai saham tsb. Kita dapat meminjam saham tersebut
(dari broker/makelar kita), kemudian kita jual. Perusahaan menerima
uang $1.000. Seminggu kemudian, harga saham benar-benar turun
menjadi $ 900/share. Dan perusahaan mengembalikan saham yang
sudah dijual . Dan perusahaan membeli saham tsb.dari pasar dengan
harga $ 900 yang berarti ada kas keluar $ 900.Keuntungan bersih
diperoleh perusahaan adalah $ 100. Jika harga terus naik, berarti
21
perusahaan akan menderita resiko kerugian yang semakin besar.
Mengukur resiko adalah merupakan yang tidak mudah, karena
banyak faktor yang diperhatikan. Salah satu model yang banyak
digunakan adalah CAPM. CAPM Adalah model yang didasarkan
pada dalil bahwa tingkat pengembalian yang disyaratkan atas
setiap saham atau sekuritas sama dengan tingkat pengembalian
bebas resiko ditambah dengan premi resiko sekuritas yang
bersangkutan, di mana resiko yang dimaksud
di sini
mercerminkan adanya diversifikasi.
CAPM menentukan
tingkat keuntungan minimum yang
disyaratkan atau minimum required rate of return dari investasi
asset yang berisiko dan trade off resiko. CAPM menjelaskan
keseimbangan antara tingkat resiko yang sistematis dan tingkat
keuntungan yang diisyaratkan sekuritas portfolio. Konsep CAPM
berdasarkan pada asumsi pasar modal adalah efisien dan semua
aset dapat dibagi-bagi secara sempurna (perfectly divisible) dan
likuid diperjual belikan setiap asset. Artinya para investor dapat
melakukan diversifikasii hingga satuan terkecil
dan dapat
melakukan jual beli sekuritas setiap saat. Hal ini telah dibahas
22
sebelumnya.
Hubungan antara risiko dengan tingkat pengembalian yang
berhubungan dengan CAPM, Market Risk Premium (MRP atau
RPM) dan Security Market Line (SML).
Market Risk Premium
Adalah tambahan pengembalian di atas tingkat pengembalian yang
bebas resiko sebagai kompensasi bagi investor karena menanggung
tingkat resiko rata-rata.
Security Market Line (SML)
Adalah garis yang memperlihatkan hubungan diantara risiko, tang
diukur dengan beta dan tingkat pengembalian yang disyaratkan dari
masing-masing saham.
Contoh:
Spencer Coy menghendaki saham rata-rata menghasilkan tingkat
pengembalian yang disyaratkan sebesar 13%. Tingkat pengembalian
bebas risiko (kRF) sebesar 9%, premi risiko pasar 4%, koefisien beta
b1= 0,5, RPm = (km- kRP) =4% atau premi bebas pasar, dan RP1 =
23
2%. Dengan rumus hal ini dinyatakan RP 1= (kM – kRP) b1
Premi Risiko Saham 1 = RP1 =(RPM)n1
= 4% (0,5)
= 2%.
SML = k1= kRF + ( kM – kRP) b1
= kRF + (RPM(b1
= 9% + 4 %(0,5)
= 11%
Kalau saham ada 2 dengan b1=2, maka hal ini risikonya lebih
besar dari saham 1, dan tingkat pengembalian disyaratkan
darinya :
k1 = 9% + 4% (2) = 17%.
Saham rata –rata atau dengan risiko sedang , dimana b1=1,
dan tingkat pengembalian diharapkan 13% atau sama dengan
tingkat pengembalian pasar, maka kA 9%+ 4%(1) = 13% = kM
24
25